CN113174584A - 一种多孔氮化物电极及其制备方法和应用 - Google Patents

一种多孔氮化物电极及其制备方法和应用 Download PDF

Info

Publication number
CN113174584A
CN113174584A CN202110422271.6A CN202110422271A CN113174584A CN 113174584 A CN113174584 A CN 113174584A CN 202110422271 A CN202110422271 A CN 202110422271A CN 113174584 A CN113174584 A CN 113174584A
Authority
CN
China
Prior art keywords
porous
nitride
electrode according
nitride electrode
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110422271.6A
Other languages
English (en)
Inventor
黄辉
渠波
陈顺姬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN113174584A publication Critical patent/CN113174584A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/586Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及电极材料技术领域,具体涉及一种多孔氮化物电极及其制备方法和应用,该多孔氮化物电极包括衬底、沉积在衬底上的三维多孔骨架结构、以及包覆三维多孔骨架结构的包覆层,所述三维多孔骨架结构材料为氮化镓、氮化铟、氮化铝中的一种或其复合物,所述包覆层材料为氮化钛、氮化钴、氮化镍中的一种或其复合物。该多孔氮化物电极可用于电化学传感器以及电解水中,具有高的表面积、导电性、催化活性、以及耐腐蚀性。

Description

一种多孔氮化物电极及其制备方法和应用
技术领域
本发明涉及电极材料技术领域,具体涉及一种多孔氮化物电极及其制备方法和应用。
背景技术
电化学器件可用于检测液体或气体中的微量物质含量(电化学传感器),还可用于新能源领域中的电解水制氢。
为了提高电化学器件的灵敏度、转换效率等性能,需要增加电极的表面积,常见的方法是采用纳米材料如纳米颗粒、纳米线或多孔薄膜作为电极材料。对于纳米颗粒电极,需要组装和固定纳米颗粒、且不能遮挡和覆盖颗粒表面,因此器件电极的制备工艺复杂、且稳定性和可靠性不佳;对于纳米线电极,由于纳米线的结构纤细,对纳米线的排列组装困难,因此器件电极的制备工艺复杂;对于多孔薄膜电极,则难以形成三维立体空间,总表面积有限。
氮化镓(GaN)材料属于第三代半导体材料,与传统半导体材料如硅、GaAs、SnO2、ZnO等相比,其制备工艺成熟可靠,且具备优异的稳定性和导电性。但是,氮化镓材料不具备化学催化活性,并且耐腐蚀性能仍有欠缺(特别在碱性溶液中),这限制了其在电化学领域的应用;并且,目前通常采用化学刻蚀工艺制备多孔氮化镓薄膜,工艺复杂。
发明内容
本发明的目的在于针对现有技术的不足,提供一种具有高可靠性、大比表面积、以及高催化活性的多孔氮化物电极。
为实现上述目的,本发明采用如下技术方案:
提供一种多孔氮化物电极,包括衬底、沉积在衬底上的三维多孔骨架结构、以及包覆三维多孔骨架结构的包覆层,所述三维多孔骨架结构材料包括氮化镓、氮化铟、氮化铝中的一种或其复合物,所述包覆层材料包括氮化钛、氮化钴、氮化镍中的一种或其复合物。
上述技术方案中,所述三维多孔骨架结构包括多孔膜、微米柱阵列、纳米线阵列以及它们的复合结构。
优选的,所述三维多孔骨架结构为多孔膜。
更为优选的,所述三维多孔骨架结构由多孔膜以及多孔膜表面的纳米线阵列或纳米线交叉网络构成。
上述技术方案中,所述包覆层由包层以及包层表面的多孔膜、纳米片、纳米线或纳米管构成。
优选的,所述包覆层由包层以及包层表面的纳米片构成。
上述技术方案中,所述衬底为蓝宝石衬底或硅衬底。
上述多孔氮化物电极的制备方法,包括以下步骤:
在衬底表面生长一层三维多孔骨架结构,然后三维多孔骨架表面生长包覆层,即得所述多孔氮化物电极。
上述技术方案中,生长方法包括金属有机物化学气相沉积、化学气相沉积、物理气相沉积、水热合成、分子束外延、热蒸发、电子束蒸发、磁控溅射以及电化学沉积中的任意一种或多种组合。
其中,电化学沉积易于形成比表面积大的结构(如花状纳米片),有利于提高传感器的灵敏度;磁控溅射和热蒸发则易于形成薄膜结构。
上述多孔氮化物电极在电化学传感器以及电解水中的应用。
本发明的有益效果:
(1)本发明的多孔氮化物电极含有的氮化镓、氮化铟、氮化铝等材料,属于第三代半导体材料,其产业化生长制备工艺非常成熟,易于控制其晶体质量(如掺杂和引入氮空位)和形态(如制备薄膜、微米柱和纳米线),因此易于制备三维多孔骨架结构,制备工艺简单、结构稳定、无需胶黏剂;氮化钛、氮化钴、氮化镍等材料具有优异的导电性、催化活性、以及耐腐蚀性,包覆在三维多孔骨架结构表面可以阻止其被腐蚀、并提高导电性和稳定性,从而改善电极器件的灵敏度和稳定性。本发明的多孔氮化物电极解决了三维多孔骨架结构导电性、耐腐蚀性差,以及包覆层易团聚的缺陷。
(2)本发明的多孔氮化物电极,当待测物在氮化物电极表面发生还原(或氧化)反应时,会产生信号电流,因此可用作电化学传感器;在氮化物电极上施加电压和电流时,水中的氢离子或氢氧根离子在电极表面发生还原或氧化反应,使得水分解成氢气和氧气,因此可用于电解水制氢。
附图说明
图1为实施例1的多孔氮化物电极的结构示意图。
图2为实施例2的多孔氮化物电极的结构示意图。
图3为实施例1的花状纳米片的电子显微镜照片。
图4为实施例2的花状纳米片的电子显微镜照片。
附图标记:衬底1,多孔膜2,花状纳米片3,纳米线5,包层6。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种多孔氮化物电极的制备方法,包括以下步骤:
步骤一、在蓝宝石衬底1表面使用金属有机物化学气相沉积(MOCVD)技术在600~800℃下生长一层氮化镓多孔膜2,氮化镓多孔膜2具有密集小孔和丰富的氮空位;
步骤二、在氮化镓多孔膜2表面磁控溅射一层钴镍合金,然后在氨气氛围中800℃退火,得到氮化钴镍包层6;
步骤三、将步骤二得到的物质置于含钴离子和镍离子的水溶液中,使用电化学沉积的方法在包层6的表面上施加电压使水溶液中的钴离子和镍离子沉积在氮化钴镍包层6表面,形成钴镍氢氧化物,然后将钴镍氢氧化物置于氨气氛围中400℃~700℃退火,得到氮化钴镍复合物花状纳米片3。
本实施例的多孔氮化物电极可用作电化学传感器电极材料。
本实施例中,氮化钴镍复合物花状纳米片3的生长温度优选为500℃。
本实施例中,氮化镓多孔膜2的生长温度优选为720℃;600~800℃的生长温度易于引入氮空位,从而提高氮化物的催化活性与导电性,有利于改善电极性能;当生长温度很高时(如>800℃)则形成光滑平整的薄膜,当生长温度较低时(如<600℃)则形成颗粒状薄膜,这两种范围均不能得到多孔薄膜。
本实施例中,当氨化温度低于500℃时,易形成Co3N和Co3N-Ni3N的三维花瓣状纳米结构(即图3所示的花状纳米片3);当氨化温度高于500℃时,则易于形成Co5.47N和Co5.47N-NixN的花状纳米片3。氮化钴镍复合物的花状纳米片3具有高的表面积、导电性、以及丰富的活性位点,可以提高灵敏度和转换效率。
花状纳米片3上具有纳米孔,相邻花状纳米片3之间具有缝隙,该三维花瓣状结构有利于待测样品(离子或分子)进出纳米孔,使得传感器的响应速度快,还能获得大的表面积即高的灵敏度。该三维花瓣状结构通过沉积生长而成,无需采用刻蚀工艺或粘结剂,结构结实稳定,传感器稳定性好。
由于氮化钴镍包层6与花状纳米片3具有良好的耐腐蚀性(即良好的化学稳定性),二者共同包覆氮化镓多孔膜2,从而阻止氮化镓多孔膜2被溶液腐蚀,以提高电极的稳定性和使用寿命。
实施例2
一种多孔氮化物电极的制备方法,包括以下步骤:
步骤一、在硅衬底1表面使用化学气相沉积(CVD)技术在600~900℃下生长一层铝镓氮多孔膜2,铝镓氮多孔膜2具有密集小孔和丰富的氮空位;
步骤二、在铝镓氮多孔膜2表面使用MOCVD技术在600~800℃下生长氮化镓纳米线5,氮化镓纳米线5相互交叉互联,构成一个稳定的三维多孔骨架;
步骤三、在氮化镓纳米线5表面利用CVD技术生长一层氮化钛包层6;
步骤四、将步骤三得到的物质置于含镍离子的水溶液中,使用电化学沉积的方法在包层6的表面上施加电压使水溶液中的镍离子沉积在氮化钛包层6表面,形成氢氧化镍,然后将氢氧化镍置于氨气氛围中500℃退火,得到氮化镍花状纳米片3(相互交联形成三维花瓣状纳米结构),具有高的表面积和催化活性。
本实施例中,铝镓氮多孔膜2的生长温度优选为820℃,氮化镓纳米线5的生长温度优选720℃。
氮化镍花状纳米片3生长在氮化镓纳米线5的三维骨架以及氮化钛包层6之上,既能防止氮化镍花状纳米片3团聚(将花状纳米片3分散于三维骨架之中),又能增加总表面积;而且,由于氮化钛包层6与氮化镍花状纳米片3具有良好的耐腐蚀性和导电性,二者共同包覆着氮化镓纳米线5,从而阻止氮化镓纳米线5被溶液腐蚀,增加电极的寿命。该多孔氮化物电极可用作电解水的电极材料。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种多孔氮化物电极,其特征在于:包括衬底、沉积在衬底上的三维多孔骨架结构、以及包覆三维多孔骨架结构的包覆层,所述三维多孔骨架结构材料包括氮化镓、氮化铟、氮化铝中的一种或其复合物,所述包覆层材料包括氮化钛、氮化钴、氮化镍中的一种或其复合物。
2.根据权利要求1所述的一种多孔氮化物电极,其特征在于:所述三维多孔骨架结构包括多孔膜、微米柱阵列、纳米线阵列以及它们的复合结构。
3.根据权利要求2所述的一种多孔氮化物电极,其特征在于:所述三维多孔骨架结构为多孔膜。
4.根据权利要求2所述的一种多孔氮化物电极,其特征在于:所述三维多孔骨架结构由多孔膜以及多孔膜表面的纳米线阵列或纳米线交叉网络构成。
5.根据权利要求1所述的一种多孔氮化物电极,其特征在于:所述包覆层由包层以及包层表面的多孔膜、纳米片、纳米线或纳米管构成。
6.根据权利要求5所述的一种多孔氮化物电极,其特征在于:所述包覆层由包层以及包层表面的纳米片构成。
7.根据权利要求1所述的一种多孔氮化物电极,其特征在于:所述衬底为蓝宝石衬底或硅衬底。
8.权利要求1-7任意一项所述的一种多孔氮化物电极的制备方法,其特征在于:在衬底表面生长一层三维多孔骨架结构,然后三维多孔骨架表面生长包覆层,即得所述多孔氮化物电极。
9.根据权利要求8所述的一种多孔氮化物电极的制备方法,其特征在于:生长方法包括金属有机物化学气相沉积、化学气相沉积、物理气相沉积、水热合成、分子束外延、热蒸发、电子束蒸发、磁控溅射以及电化学沉积中的任意一种或多种组合。
10.权利要求1-7任意一项所述的多孔氮化物电极在电化学传感器以及电解水中的应用。
CN202110422271.6A 2021-01-16 2021-04-20 一种多孔氮化物电极及其制备方法和应用 Pending CN113174584A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021100853841 2021-01-16
CN202110085384 2021-01-16

Publications (1)

Publication Number Publication Date
CN113174584A true CN113174584A (zh) 2021-07-27

Family

ID=76923732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110422271.6A Pending CN113174584A (zh) 2021-01-16 2021-04-20 一种多孔氮化物电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113174584A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750438A (en) * 1996-06-04 1998-05-12 United Microelectronics Corporation Method for fabricating a local interconnection structure
US20060067871A1 (en) * 2004-05-26 2006-03-30 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US8377728B1 (en) * 2011-10-07 2013-02-19 Tsinghua University Method for making light emitting diode
CN105845714A (zh) * 2016-02-27 2016-08-10 黄辉 一种基于桥接生长的纳米线器件及其制备方法
CN106770543A (zh) * 2016-08-27 2017-05-31 黄辉 一种基于纳米线微电极的电化学传感器
CN107243356A (zh) * 2017-04-06 2017-10-13 山东大学 一种具有镍钴氮化物三维结构的电催化剂及其应用
CN109637822A (zh) * 2018-12-19 2019-04-16 大连理工大学 一种高比表面积的TiN电极、制备方法及其应用
CN110412082A (zh) * 2019-06-20 2019-11-05 黄辉 一种半导体多孔晶体薄膜传感器及制备方法
CN111261428A (zh) * 2020-02-27 2020-06-09 三峡大学 一种氨气等离子体增强硫化钴镍超级电容器性能的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750438A (en) * 1996-06-04 1998-05-12 United Microelectronics Corporation Method for fabricating a local interconnection structure
US20060067871A1 (en) * 2004-05-26 2006-03-30 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US8377728B1 (en) * 2011-10-07 2013-02-19 Tsinghua University Method for making light emitting diode
CN105845714A (zh) * 2016-02-27 2016-08-10 黄辉 一种基于桥接生长的纳米线器件及其制备方法
CN106770543A (zh) * 2016-08-27 2017-05-31 黄辉 一种基于纳米线微电极的电化学传感器
CN107243356A (zh) * 2017-04-06 2017-10-13 山东大学 一种具有镍钴氮化物三维结构的电催化剂及其应用
CN109637822A (zh) * 2018-12-19 2019-04-16 大连理工大学 一种高比表面积的TiN电极、制备方法及其应用
CN110412082A (zh) * 2019-06-20 2019-11-05 黄辉 一种半导体多孔晶体薄膜传感器及制备方法
CN111261428A (zh) * 2020-02-27 2020-06-09 三峡大学 一种氨气等离子体增强硫化钴镍超级电容器性能的方法

Similar Documents

Publication Publication Date Title
Yang et al. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review
JP6797685B2 (ja) グラフェンで覆われた電極を含む電気化学セル
US7250188B2 (en) Depositing metal particles on carbon nanotubes
Berglund et al. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction
CN108722453B (zh) 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
Zhang et al. Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles
CN110550597B (zh) 一种直立少层石墨烯-金属纳米粒子复合催化电极
Liu et al. Mesoporous IrNiTa metal glass ribbon as a superior self-standing bifunctional catalyst for water electrolysis
CN113638002B (zh) 一种FeCo LDH/Ti3C2 MXene/NF复合材料及其制备方法和应用
US10253423B2 (en) Method for making three-dimensional porous composite structure
Khudhayer et al. Platinum nanorod arrays with preferred morphological and crystal properties for oxygen reduction reaction
CN105655610A (zh) 一种阴离子交换膜上附着的超薄催化层及其制备和应用
CN111647909A (zh) 一种表面疏水的枝晶状铜电极及其制备方法和应用
CN108654657B (zh) 一种镍磷铜电催化剂及其制备方法
Yarlagadda et al. High surface area carbon electrodes for bromine reactions in H2-Br2 fuel cells
WO2006041212A1 (en) Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
CN110699701B (zh) 一种负载金属镍和三氧化二钒复合物的泡沫镍及其制备方法和应用
JP2007173109A (ja) 燃料電池用膜電極接合体、その製造方法および燃料電池
CN114774961A (zh) 一种铋基纳米颗粒催化剂及其制备方法和应用
CN113174584A (zh) 一种多孔氮化物电极及其制备方法和应用
CN103911628A (zh) 纳米Si/TiO2有序阵列复合物光解水制氢阴极材料及其制备方法
Ma et al. Lattice-dislocated bismuth nanowires formed by in-situ chemical etching on copper foam for enhanced electrocatalytic CO2 reduction
CN112133926A (zh) 铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法
Khudhayer et al. Periodic Pt nanorod arrays with controlled porosity for oxygen reduction reaction
CN109987600A (zh) 一种在金属基底上制备原位石墨烯包裹金属氧化物纳米花结构的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210727

RJ01 Rejection of invention patent application after publication