CN113174070A - 一种环糊精基多孔淀粉及其制备方法 - Google Patents

一种环糊精基多孔淀粉及其制备方法 Download PDF

Info

Publication number
CN113174070A
CN113174070A CN202110405729.7A CN202110405729A CN113174070A CN 113174070 A CN113174070 A CN 113174070A CN 202110405729 A CN202110405729 A CN 202110405729A CN 113174070 A CN113174070 A CN 113174070A
Authority
CN
China
Prior art keywords
starch
cyclodextrin
beta
based porous
enzymolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110405729.7A
Other languages
English (en)
Other versions
CN113174070B (zh
Inventor
王金鹏
郑欣盈
邱超
田耀旗
焦爱权
龙杰
陈龙
周星
赵建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202110405729.7A priority Critical patent/CN113174070B/zh
Publication of CN113174070A publication Critical patent/CN113174070A/zh
Application granted granted Critical
Publication of CN113174070B publication Critical patent/CN113174070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/20Preparation of compounds containing saccharide radicals produced by the action of an exo-1,4 alpha-glucosidase, e.g. dextrose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/16Cyclodextrin; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种环糊精基多孔淀粉及其制备方法,属于多孔淀粉技术领域。本发明以淀粉和β‑环糊精为原料,经物料混合、调节体系反应环境、加入环氧氯丙烷交联固载、洗涤、固液分离、干燥制备得到β‑环糊精交联淀粉;将所得β‑环糊精交联淀粉经α‑淀粉酶和糖化酶酶解二次改性、固液分离、干燥制备得到环糊精基多孔淀粉。本发明所制备环糊精基多孔淀粉有较强疏水物质负载能力,且热稳定性、抗剪切性能良好,拓宽了传统玉米多孔淀粉的应用条件范围。

Description

一种环糊精基多孔淀粉及其制备方法
技术领域
本发明涉及一种环糊精基多孔淀粉及其制备方法,尤其涉及一种交联复合酶解双重改性的环糊精基多孔淀粉制备技术,属于多孔淀粉技术领域。
背景技术
多孔淀粉由于其表面丰富的孔隙、较大比表面积以及良好的吸附性和生物相容性,已被广泛应用于化学、制药、食品、环境等领域。多孔淀粉的制备方法包括物理、化学、生物和协同作用等方法。其中酶解法因其温和的反应条件、较高制样效率和底物特异性被广泛采用。然而多孔淀粉丰富的羟基结构使其具有良好的亲水性,这一特点限制了其对于疏水活性物质的负载能力,进而限制了多孔淀粉的应用领域。此外,多孔淀粉的孔隙结构使其稳定性下降,无法在一些温度较高、存在外部机械力的条件下得到良好应用。已有研究表明,多孔淀粉的交联改性可以通过形成淀粉分子间共价键来增强淀粉结构,但在提高淀粉稳定性的同时改善淀粉的疏水性仍然是多孔淀粉改性过程中亟需解决的问题,且部分疏水改性手段,如OSA酯化改性会使淀粉的酶敏感性降低,使得酶解过程消耗的酶用量更多、时间更长。
β-环糊精由于其独特的内部疏水空腔,可与疏水性物质进行包合。但是单独作为输送载体存在高成本、难回收等问题。然而其亲水外壁丰富的羟基结构有良好的反应性,可与多种大分子载体材料进行化学改性,从而实现对环糊精分子的固定,改善其溶水难回收的缺陷,提高稳定性,同时增强改性材料疏水物质负载能力。
发明内容
[技术问题]
现有的多孔淀粉存在稳定性差、疏水性物质负载能力差的问题。
[技术方案]
为了解决上述问题,本发明提供了一种环糊精基多孔淀粉的制备方法,本发明利用交联反应将淀粉与环糊精进行交联固载,充分保留了交联淀粉的颗粒态,改善了淀粉热稳定性及抗剪切性,同时提高了多孔淀粉对疏水性物质的负载能力。
首先,本发明提供了一种环糊精基多孔淀粉的制备方法,所述方法为以淀粉和β-环糊精为原料,经物料混合、调节体系反应环境、交联固载、洗涤、固液分离、干燥制备得到β-环糊精交联淀粉;将所得β-环糊精交联淀粉经酶解二次改性、固液分离、干燥制备得到环糊精基多孔淀粉。
在本发明的一种实施方式中,所述方法的具体步骤如下:
(1)物料混合:将淀粉分散于NaCl溶液中,溶胀20~60min后,再加入β-环糊精,得到混合体系;
(2)调节体系反应条件:调节步骤(1)得到的混合体系的pH为4-10,反应温度为30-70℃;
(3)交联固载:将步骤(2)得到的预热厚的混合体系中搅拌下滴入环氧氯丙烷,于30-70℃温度下反应2-8h;
(4)初产物分离:调节体系pH结束反应,固液分离除去上清液后获得β-环糊精交联淀粉,洗涤、干燥;
(5)酶解改性:将步骤(4)所得β-环糊精交联淀粉分散于磷酸盐-柠檬酸缓冲液中,预热后加入α-淀粉酶和糖化酶的复合酶液,于一定温度下进行酶解;
(6)终产物分离:调节体系pH终止酶解,固液分离除去上清液,洗涤、干燥后获得环糊精基多孔淀粉。
在本发明的一种实施方式中,步骤(1)中,所述淀粉为玉米淀粉,NaCl溶液浓度为0.5-3g/100mL水,混合体系中淀粉的添加量为5-20g/100mL NaCl溶液,所述淀粉与β-环糊精的质量比为10:0.2-10:1.2。
在本发明的一种实施方式中,步骤(3)中,所述环氧氯丙烷的添加量为0.5-3mL/100mL悬浮液(混合体系)。
在本发明的一种实施方式中,步骤(4)中,体系用浓度为0.5-3mol/L的HCl溶液将pH调节至6.5-7.5以结束反应;所述固液分离优选离心分析,离心参数为3000-4000rpm,5-15min;所述洗涤条件为50-65%乙醇溶液洗涤2-5次;所述干燥条件为45-55℃温度下保持10-14h,密封保存。
在本发明的一种实施方式中,步骤(5)中,所述β-环糊精交联淀粉酶解浓度为5%-40%,所述磷酸盐-柠檬酸缓冲液的pH为4~6;所述α-淀粉酶和糖化酶复合体积为1:1-1:5,加酶量相对于干基淀粉为0.1-5%(v/w,mL/g),于40-55℃条件下酶解9-12h。
在本发明的一种实施方式中,步骤(6)中所述加入NaOH调节体系pH,其中NaOH溶液浓度为0.5-3mol/L,加入体积为3-5mL/50mL反应体系,所述离心分离条件为3500-4000rpm,10-15min,并用水洗涤2-5次,所述干燥条件为45-55℃温度下保持10-14h,密封保存。
本发明还提供了上述制备方法制备得到的环糊精基多孔淀粉。
本发明还提供了上述环糊精基多孔淀粉在吸附疏水性物质中的应用。
有益效果:
本发明利用交联反应将淀粉与环糊精进行交联固载,反应条件温和,不会破坏淀粉晶型结构,充分保留了交联淀粉的颗粒态。交联使淀粉的热稳定性及抗剪切性得到明显改善,且这一特性在酶解后仍然得以保留,同时提高了多孔淀粉对疏水性物质的负载能力。此外,通过环糊精改性使得淀粉对酶的敏感性提高,可有效提高酶解效率,节省酶用量。
附图说明
图1为本发明实施例1所制备β-环糊精基多孔淀粉X射线衍射图。
图2为本发明实施例1所制备β-环糊精基多孔淀粉的扫描电镜图。
图3为本发明实施例1所制备β-环糊精基多孔淀粉及对比例1、2的粘度曲线。
图4为本发明实施例1和对比例1、对比例2的交联或溶胀条件下制得的β-环糊精交联淀粉、溶胀淀粉和淀粉交联淀粉以及原淀粉的酶敏感性对比图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作详细说明。
α-淀粉酶:800FAU/g,上海阿拉丁生化科技股份有限公司;糖化酶:100000U/g,上海阿拉丁生化科技股份有限公司。
实施例1
将10%(w/v,g/mL)的淀粉NaCl溶液中充分溶胀后(NaCl的浓度为1.5g/100mL水,溶胀30min),加入4%(w/w,g/g淀粉)β-环糊精,调节体系pH为10,50℃条件下持续搅拌滴加1%(v/v,mL/mL)环氧氯丙烷,反应6h后,添加1mol/L的HCl溶液将pH调节至6.5-7.5结束反应,将悬浮液离心分离(3500rpm,10min),并用50%乙醇溶液洗涤3次,沉淀在50℃条件干燥12h。将所制得β-环糊精交联淀粉分散于pH为4.6的磷酸盐-柠檬酸缓冲液配制底物浓度为20%(w/v,g/mL)的分散体系,加入0.5%(w/w,g/g,基于干淀粉)α-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解11h,加入体积为5mL/50mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,离心(3500rpm,10min)并用去离子水洗涤沉淀,50℃条件干燥12h后密封保存。
吸附实验:准确称取0.5g环糊精基多孔淀粉样品于预先称重过的50mL离心管中,按1:10(w/v)的比例加入5mL大豆油,50℃条件下水浴振荡30min,使样品与大豆油进行充分吸附。吸附结束后,将混合物在3500rpm转速下离心10min,倾倒上清液至无多余油滴滴落,测量沉淀物重量。吸油性能计算公式如下:
吸油率(%)=(m2-m1-m0)/m0×100% (1)
式中:m0—称取的环糊精基多孔淀粉质量,g;m1—离心管质量,g;m2—离心后沉淀于离心管总质量,g。
本实施例制备的β-环糊精基多孔淀粉对大豆油进行吸附,吸附量为316.28%。
本实施例制备的β-环糊精基多孔淀粉的X射线衍射图如图1所示,可以看出交联酶解后的多孔淀粉仍表现为玉米淀粉A-型衍射曲线,表明两次改性条件均不会破坏或改变淀粉晶型结构。
本实施例制备的β-环糊精基多孔淀粉的扫描电镜图如图2所示。可以观察到该多孔淀粉的形貌特征主要为球状或不规则状颗粒,有较多孔洞分布于颗粒表面,成孔效果良好,表明交联改性对后续酶解无不良影响。
本实施例制备的β-环糊精基多孔淀粉的粘度曲线如图3所示。可以看出β-环糊精基多孔淀粉的糊化曲线较为平坦,表明交联提高了淀粉结构的致密性,进而抑制其在水中的溶胀,同时淀粉糊的热稳定性和抗剪切性得到了显著改善,且有良好的冷糊稳定性。
实施例2
将10%(w/v,g/mL)的淀粉NaCl溶液中充分溶胀后(NaCl的浓度为1.5g/100mL水,溶胀30min),加入8%(w/w,g/g淀粉)β-环糊精,调节体系pH为10,70℃条件下持续搅拌滴加1%(w/v,g/mL)环氧氯丙烷,反应4h后,添加1mol/L的HCl溶液将pH调节至6.5-7.5结束反应,将悬浮液离心分离(3500rpm,10min),并用50%乙醇溶液洗涤3次,沉淀在50℃条件干燥12h。将所制得β-环糊精交联淀粉分散于pH为4.6的磷酸盐-柠檬酸缓冲液配制底物浓度为20%(w/v,g/mL)的分散体系,加入5%(w/w,g/g,基于干淀粉)α-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解11h,加入体积为5mL/50mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,离心(3500rpm,10min)并用去离子水洗涤沉淀,50℃条件干燥12h后密封保存。
本实施例制备的β-环糊精基多孔淀粉对大豆油进行吸附,吸附实验同实施例1,吸附量为274.55%。
实施例3
将10%(w/v,g/mL)的淀粉NaCl溶液中充分溶胀后(NaCl的浓度为1.5g/100mL水,溶胀30min),加入4%(w/w,g/g淀粉)β-环糊精,调节体系pH为8,50℃条件下持续搅拌滴加1%(w/v,g/mL)环氧氯丙烷,反应8h后,添加1mol/L的HCl溶液将pH调节至6.5-7.5结束反应,将悬浮液离心分离(3500rpm,10min),并用50%乙醇溶液洗涤3次,沉淀在50℃条件干燥12h。将所制得β-环糊精交联淀粉分散于pH为4.6的磷酸盐-柠檬酸缓冲液配制底物浓度为20%(w/v,g/mL)的分散体系,加入5%(w/w,g/g,基于干淀粉)α-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解11h,加入体积为5mL/50mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,离心(3500rpm,10min)并用去离子水洗涤沉淀,50℃条件干燥12h后密封保存。
本实施例制备的β-环糊精基多孔淀粉对大豆油进行吸附,吸附实验同实施例1,吸附量为272.81%。
对比例1
将10%(w/v,g/mL)的淀粉NaCl溶液中充分溶胀后(NaCl的浓度为1.5g/100mL水,溶胀30min),调节体系pH为10,50℃条件下持续搅拌滴加1%(w/v,g/mL)环氧氯丙烷,反应6h后,添加1mol/L的HCl溶液将pH调节至6.5-7.5结束反应,将悬浮液离心分离(3500rpm,10min),并用50%乙醇溶液洗涤3次,沉淀在50℃条件干燥12h。将所制得交联淀粉分散于pH为4.6的磷酸盐-柠檬酸缓冲液配制底物浓度为20%(w/v,g/mL)的分散体系,加入0.5%(w/w,g/g,基于干淀粉)α-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解11h,加入体积为5mL/50mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,离心(3500rpm,10min)并用去离子水洗涤沉淀,50℃条件干燥12h后密封保存。
本对比例制备的多孔交联淀粉对大豆油进行吸附,吸附实验同实施例1,吸附量为233.32%。
本对比例制备的多孔交联淀粉的粘度曲线如图3所示。可以看出多孔交联淀粉的糊化曲线与实施例1中β-环糊精基多孔淀粉的粘度曲线相似,较为平坦,表明交联改性确实提高了淀粉结构的致密性,且改善了淀粉糊的热稳定性和抗剪切性。
对比例2
将10%(w/v,g/mL)的淀粉NaCl溶液中充分溶胀后(NaCl的浓度为1.5g/100mL水,溶胀30min),加入4%(w/w,g/g淀粉)β-环糊精,调节体系pH为10,50℃条件下持续搅拌溶胀6h后,添加1mol/L的HCl溶液将pH调节至6.5-7.5,将悬浮液离心分离(3500rpm,10min),并用50%乙醇溶液洗涤3次,沉淀在50℃条件干燥12h。将所制得溶胀淀粉分散于pH为4.6的磷酸盐-柠檬酸缓冲液配制底物浓度为20%(w/v,g/mL)的分散体系,加入0.5%(w/w,g/g,基于干淀粉)α-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解11h,加入体积为5mL/50mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,离心(3500rpm,10min)并用去离子水洗涤沉淀,50℃条件干燥12h后密封保存。
本对比例制备的多孔溶胀淀粉对大豆油进行吸附,吸附实验同实施例1,吸附量为228.81%。
本对比例制备的多孔溶胀淀粉的粘度曲线如图3所示。可以看出多孔溶胀淀粉的糊化曲线与实施例1中的β-环糊精基多孔淀粉以及对比例1中的多孔交联淀粉的曲线形状相差较大,温度变化以及剪切搅拌过程中粘度出现明显变化,表明未交联改性的多孔淀粉更易吸水溶胀,热稳定性以及抗剪切性能较差。
对比例3
将10%(w/v,g/mL)的淀粉NaCl溶液中充分溶胀后(NaCl的浓度为1.5g/100mL水,溶胀30min),加入2%(w/w,g/g淀粉)β-环糊精,调节体系pH为3,30℃条件下持续搅拌滴加1%(w/v,g/mL)环氧氯丙烷,反应2h后,添加1mol/L的HCl溶液将pH调节至6.5-7.5结束反应,将悬浮液离心分离(3500rpm,10min),并用50%乙醇溶液洗涤3次,沉淀在50℃条件干燥12h。将所制得β-环糊精交联淀粉分散于pH为4.6的磷酸盐-柠檬酸缓冲液配制底物浓度为20%(w/v,g/mL)的分散体系,加入5%(w/w,g/g,基于干淀粉)α-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解11h,加入体积为5mL/50mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,离心(3500rpm,10min)并用去离子水洗涤沉淀,50℃条件干燥12h后密封保存。
本实施例制备的β-环糊精基多孔淀粉对大豆油进行吸附,吸附实验同实施例1,吸附量为230.34%。
酶敏感性测试例:分别准确称取1.0g原淀粉以及分别在对比例1交联条件下、对比例2溶胀条件下和实施例1交联条件下制得的淀粉交联淀粉、溶胀淀粉和β-环糊精交联淀粉,并分散于5mL pH为4.6的柠檬酸-磷酸氢二钠缓冲液中,加入0.15mLα-淀粉酶和糖化酶复合酶液(淀粉酶和糖化酶复合体积为1:3),50℃条件下酶解30min后,加入体积为0.5mL/5mL反应体系,浓度为1mol/L的NaOH溶液终止酶解,3500rpm离心10min,测量酶解液体积,稀释一定倍数后,利用3,5-二硝基水杨酸(DNS)法测定酶解液中葡萄糖含量,并以被水解的淀粉量表示样品酶敏感度,计算公式如下:
酶敏感度(%)=0.9CV/m×100%(2)
式中:C—水解液中葡萄糖浓度,g/mL;V—水解液体积,mL;0.9—葡萄糖与淀粉的转化系数;m—投入淀粉量,g。
原淀粉以及分别在对比例1交联条件下、对比例2溶胀条件下和实施例1交联条件下制得的淀粉交联淀粉、溶胀淀粉和β-环糊精交联淀粉的酶敏感性如图4所示。可知与原淀粉相比,淀粉交联淀粉、溶胀淀粉和β-环糊精交联淀粉的酶敏感度均有显著提升。淀粉酶通过其非催化位点与淀粉表面的亲和吸附作用而实现进一步水解。加热、碱性条件下,淀粉颗粒充分水合溶胀,暴露出更多可与酶结合的位点,提高了酶的可及性。此外,交联过程中β-CD的引入进一步增加了淀粉对酶的敏感度。其原因为β-CD也可以与淀粉酶的相关亲和位点实现吸附作用,增加了淀粉酶与淀粉的接触。而随着糖化酶的随机内切作用,为α-淀粉酶提供了新的非还原末端,向颗粒内部持续深入酶解,提高了酶解的效率。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种环糊精基多孔淀粉的制备方法,其特征在于,所述方法为以淀粉和β-环糊精为原料,经物料混合、调节体系反应环境、交联固载、洗涤、固液分离、干燥制备得到β-环糊精交联淀粉;将所得β-环糊精交联淀粉经酶解二次改性、固液分离、干燥制备得到环糊精基多孔淀粉。
2.根据权利要求1所述的制备方法,其特征在于,所述方法的具体步骤如下:
(1)物料混合:将淀粉分散于NaCl溶液中,溶胀20~60min后,再加入β-环糊精,得到混合体系;
(2)调节体系反应条件:调节步骤(1)得到的混合体系的pH为4-10,反应温度为30-70℃;
(3)交联固载:将步骤(2)得到的预热厚的混合体系中搅拌下滴入环氧氯丙烷,于30-70℃温度下反应2-8h;
(4)初产物分离:调节体系pH结束反应,固液分离除去上清液后获得β-环糊精交联淀粉,洗涤、干燥;
(5)酶解改性:将步骤(4)所得β-环糊精交联淀粉分散于磷酸盐-柠檬酸缓冲液中,预热后加入α-淀粉酶和糖化酶的复合酶液,于一定温度下进行酶解;
(6)终产物分离:调节体系pH终止酶解,固液分离除去上清液,洗涤、干燥后获得环糊精基多孔淀粉。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述淀粉为玉米淀粉.
4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,NaCl溶液浓度为0.5-3g/100mL水,混合体系中淀粉的添加量为5-20g/100mL NaCl溶液,所述淀粉与β-环糊精的质量比为10:0.2-10:1.2。
5.根据权利要求2所述的制备方法,其特征在于,所述环氧氯丙烷的添加量为0.5-3mL/100mL悬浮液。
6.根据权利要求2所述的制备方法,其特征在于,步骤(4)中,体系用HCl溶液将pH调节至6.5-7.5以结束反应。
7.根据权利要求2所述的制备方法,其特征在于,步骤(5)中,所述β-环糊精交联淀粉酶解浓度为5%-40%,所述磷酸盐-柠檬酸缓冲液的pH为4~6;所述α-淀粉酶和糖化酶复合体积为1:1-1:5,加酶量相对于干基淀粉为0.1-5%(v/w,mL/g),于40-55℃条件下酶解9-12h。
8.根据权利要求2所述的制备方法,其特征在于,步骤(6)中所述加入NaOH调节体系pH,其中NaOH溶液浓度为0.5-3mol/L,加入体积为3-5mL/50mL反应体系。
9.权利要求1~8任一项所述的制备方法制备得到的环糊精基多孔淀粉。
10.权利要求9所述的环糊精基多孔淀粉在吸附疏水性物质中的应用。
CN202110405729.7A 2021-04-15 2021-04-15 一种环糊精基多孔淀粉及其制备方法 Active CN113174070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110405729.7A CN113174070B (zh) 2021-04-15 2021-04-15 一种环糊精基多孔淀粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110405729.7A CN113174070B (zh) 2021-04-15 2021-04-15 一种环糊精基多孔淀粉及其制备方法

Publications (2)

Publication Number Publication Date
CN113174070A true CN113174070A (zh) 2021-07-27
CN113174070B CN113174070B (zh) 2022-11-01

Family

ID=76923989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110405729.7A Active CN113174070B (zh) 2021-04-15 2021-04-15 一种环糊精基多孔淀粉及其制备方法

Country Status (1)

Country Link
CN (1) CN113174070B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420464A (zh) * 2021-12-04 2022-04-29 山东阳谷华泰化工股份有限公司 一种生物酶扩孔碳纳米纤维电极材料的新方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329533A (zh) * 2018-01-26 2018-07-27 江南大学 一种非交联型淀粉-β-环糊精复合纳米颗粒的制备方法
CN108993421A (zh) * 2018-05-29 2018-12-14 天津工业大学 一种环糊精改性淀粉染料吸附剂及其制备方法
CN109385454A (zh) * 2018-10-23 2019-02-26 东莞东美食品有限公司 一种交联多孔淀粉的生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329533A (zh) * 2018-01-26 2018-07-27 江南大学 一种非交联型淀粉-β-环糊精复合纳米颗粒的制备方法
CN108993421A (zh) * 2018-05-29 2018-12-14 天津工业大学 一种环糊精改性淀粉染料吸附剂及其制备方法
CN109385454A (zh) * 2018-10-23 2019-02-26 东莞东美食品有限公司 一种交联多孔淀粉的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIGEL J.BELSHAW等: "Interaction of β-cyclodextrin with the granular starch binding domain of glucoamylase", 《BIOCHIMICA ET BIOPHYSICA ACTA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420464A (zh) * 2021-12-04 2022-04-29 山东阳谷华泰化工股份有限公司 一种生物酶扩孔碳纳米纤维电极材料的新方法

Also Published As

Publication number Publication date
CN113174070B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN106883463B (zh) 一种形貌和粒径可控型淀粉纳米颗粒的制备方法
CN105950604B (zh) 一种酶的固定化方法
CN109704334B (zh) 一种木质素基介孔碳材料的制备方法
CN106750388B (zh) 一种***胶空心纳米球的制备方法
CN107893062B (zh) 一种纤维素酶固定化及水解纤维素的方法
CN113174070B (zh) 一种环糊精基多孔淀粉及其制备方法
CN112980827B (zh) 一种金属有机框架材料固定化葡萄糖氧化酶及其制备方法和应用
CN109266639B (zh) 一种双重固定化酶及其制备方法和应用
Salvi et al. Surface functionalization of SBA-15 for immobilization of lipase and its application in synthesis of alkyl levulinates: Optimization and kinetics
CN113801258A (zh) 一种单分散交联聚苯乙烯-二乙烯基苯微球的制备方法
Orrego et al. Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method
CN113214532B (zh) 一种高载量酯化多孔淀粉基材料的制备方法
JPS6228679B2 (zh)
Ren et al. Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases
Gruesbeck et al. Insolubilized glucoamylase enzyme system for continuous production of dextrose
Ge et al. Immobilization of glucose isomerase and its application in continuous production of high fructose syrup
KR102556289B1 (ko) 단백질 고정화용 키토산 하이드로젤 캡슐 및 이의 제조방법
CN110746636B (zh) 一种温度敏感型海藻酸钠/纤维素醚复合水凝胶及其制备方法与应用
CN100554417C (zh) 海藻酸-碳酸钙杂化凝胶固定β-葡萄糖醛酸苷酶的方法
Amud et al. Methods and supports for immobilization and stabilization of cyclomaltodextrin glucanotransferase from Thermoanaerobacter
CN110294824B (zh) 一种高效阳离子型聚合物的制备方法及其应用
CN114317513A (zh) 一种壳聚糖-羧甲基纤维素固定化酶及其制备方法
Anming et al. Covalent assembly of penicillin acylase in mesoporous silica based on macromolecular crowding theory
Huo et al. Immobilization of glucoamylase onto novel porous polymer supports of vinylene carbonate and 2-hydroxyethyl methacrylate
CN1148445C (zh) 以多元共聚物为骨架的多孔型微珠状固定化酶载体及制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant