CN113158962A - 一种基于YOLOv4的泳池溺水检测方法 - Google Patents

一种基于YOLOv4的泳池溺水检测方法 Download PDF

Info

Publication number
CN113158962A
CN113158962A CN202110488324.4A CN202110488324A CN113158962A CN 113158962 A CN113158962 A CN 113158962A CN 202110488324 A CN202110488324 A CN 202110488324A CN 113158962 A CN113158962 A CN 113158962A
Authority
CN
China
Prior art keywords
swimming pool
model
swimming
drowning
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110488324.4A
Other languages
English (en)
Inventor
雷飞
朱恒宇
欧家豪
王蕊
张轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110488324.4A priority Critical patent/CN113158962A/zh
Publication of CN113158962A publication Critical patent/CN113158962A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于YOLOv4的泳池溺水检测方法,通过对YOLOv4检测模型加入泳池判定线进一步约束检测目标类别,提高检测精度。游泳池布置的水下摄像机采集游泳池中所有游泳人群的图像并对其进行标注,得到专有游泳者数据库;游泳者数据库采用K‑means聚类算法得到先验框的尺寸,按照不同尺度聚类出9种尺寸的先验框;构建YOLOv4网络模型,进行迭代训练,直到损失函数收敛,保存训练好的网络模型;将上述训练好的网络模型加入泳池判定线模型,使模型对识别到的目标类别可以进行再一次判定;输出符合要求的YOLOv4‑泳池判定线检测模型;使用YOLOv4‑泳池判定线检测模型对水下序列图像进行目标检测。本发明检测速度快,准确度高,溺水检测误报率低,满足实时监控的要求。

Description

一种基于YOLOv4的泳池溺水检测方法
技术领域
本发明涉及计算机视觉人工智能技术,特别是涉及一种基于YOLOv4的泳池溺水检测方法。
背景技术
随着国民的运动健身意识的觉醒,游泳成为了人们最喜欢的运动之一。但与此同时泳池溺水事故呈现出高发态势,一旦发生溺水事件,救生员往往难以在第一时间察觉并作出反应。所以研究怎样才能及时的发现,救助溺水者,有着重大的现实价值。
对于公共人工游泳馆(池)的安全问题,一部分场馆使用传统的人力监管模式。每个游泳池都靠2-4个救生员时刻紧盯着水面来预防和救援溺水人员。但这种监管模式,可靠性差、救生员处理突发事件的能力较弱、溺水者救助速度也很慢,很难有效保证场馆内的公共安全。再加上人生理条件的限制使得救生员很难保持长时间的注意力高度集中,长时间注视泳池水面还会让救生员出现眩晕状态。对于游泳旺季,游泳池经常人数众多,环境嘈杂,溺水者在水面上的求救动作很难及时引起救生员的注意,而一旦溺水者沉入水下就更加难以被察觉。另一部分场馆使用摄像头对游泳馆内部和水下进行监控,但多为人工监视,不仅耗费人力,而且监视效果会受到人的情绪以及疲劳程度等因素影响,容易出现漏检现象,对溺水者预防和救助效果不明显。
发明内容
本发明提供一种基于YOLOv4算法的泳池溺水检测方法,通过对YOLOv4检测模型加入泳池判定线模型进一步约束检测目标类别提高检测精度,降低溺水者检测误报率,其特征在于,包括以下步骤:
S1:通过游泳池布置的水下摄像机采集游泳池中所有游泳人群的图像并对其进行标注,得到专有游泳者数据库。
S2:游泳者数据库采用K-means聚类算法得到先验框的尺寸,按照不同尺度聚类出9种尺寸的先验框。
S3:在YOLOv4网络模型的配置文件中设置网络模型参数,将YOLOv4网络结构放入配置好环境的计算机中,使用训练集对预训练模型进行迭代训练,直到损失函数收敛,保存训练好的网络模型。
S4:将上述训练好的网络检测模型加入泳池判定线模型,使模型对识别到的目标类别进行再一次判定。
S5:输出符合要求的YOLOv4-泳池判定线检测模型。
S6:使用步骤S5中符合要求的YOLOv4-泳池判定线检测模型对序列图像进行目标检测,输出检测结果,并对溺水现象进行报警。
进一步的,步骤S1中所述的游泳者数据库,为如下要求:水下摄像机采集游泳池中游泳人群的视频,将采集的视频转化为图片格式,利用Labelimg软件标注成VOC格式得到得到游泳者数据库,其中游泳者的自由泳、仰泳、蛙泳、蝶泳、跳水、踩水等行为标记为正常游泳(swimming),潜水、挣扎、溺水等行为标记为溺水(drowning)。
进一步的,步骤S3中所述的配置文件,为如下要求:
S3-1:当输入图像大小为416x416,参数random为0,batch_size参数为16,批次细分subdivision=16,迭代次数为6000,初始学习率为0.001,检测物体种类为2时,用户使用cpu训练模型,至少需要2GB内存;使用单GPU训练模型,至少需要4GB。
S3-2:当输入图像大小为608x608,参数random为0,batch_size参数为16,批次细分subdivision=16,迭代次数为6000,初始学习率为0.001,检测物体种类为2时,用户使用cpu训练模型,至少需要3GB内存;使用单GPU训练模型,至少需要6GB。
进一步的,步骤S4中所述的泳池判定线模型,具体包括如下:根据图片中泳池水下歇脚台的位置对图片进行划分,图片中歇脚台位置即为判定线,依据所划分的判定线将图片分为上下两部分,判定线的上方为正常游泳区,下方为溺水区。当检测目标中心位置位于正常游泳区时,如果目标标签为溺水(drowning),则将标签修正为正常游泳(swimming),如果目标标签为正常游泳(swimming),则无需修正;当检测目标中心位置位于溺水区时,如果目标标签为正常游泳(swimming),则将标签修正为溺水(drowning),如果目标标签为溺水(drowning),则无需修正。
进一步的,步骤S5中所述的符合要求是指对YOLOv4-泳池判定线检测模型进行性能评估,mAP0.5达到92%及以上。
进一步的,步骤S6中所述的进行报警的要求为:连续5秒内出现溺水报警信号。
附图说明
图1为YOLOv4-泳池判定线检测方法的流程图。
图2为YOLOv4网络结构图。
图3为泳池判定线坐标图。
图4泳池水下目标检测图。
具体实施方式
下面结合附图1和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
一种基于YOLOv4算法的泳池溺水检测方法,如图1~图4所示,包括:
S1-1:图像的获取:
通过游泳池布置的水下摄像机,采集游泳池中所有游泳人群的数据,视频的帧速一般是1秒30帧图片左右,设置取帧频率为1秒取3帧,样本总数至少20个视频以上,即样本数目约为15000张左右。并将采集到的图像按照Pascal VOC数据集的格式将图片命名,同时创建名为Annotations、ImageSets、JPEGImages的三个文件夹,在ImageSets下新建Main文件夹。将收集到的数据集图片拷贝到JPEGImages目录下。
S1-2图像的标注:
使用的标注工具labelimg对图片进行标注,生成xml标注文件。将约15000张视频帧图片进行随机编号,给图片编一个合理的序号,比如000001~000999;利用labelimg软件标注数据,每一个图片名对应的有一个相应名字的xml标注文件,比如图片000001.jpg,标注文件是000001.xml。标注的范围包括:图像所在位置、图像名称(如000001.jpg)、图像宽高、图像维度、标注的物体名称以及bbox的坐标值;游泳者行为包括自由泳、仰泳、蛙泳、蝶泳、跳水、踩水、潜水、挣扎、溺水,其中游泳者的自由泳、仰泳、蛙泳、蝶泳、跳水、踩水等行为标记为正常游泳(swimming),潜水、挣扎、溺水等行为标记为溺水(drowning)。其中对图像数据进行划分,分为训练数据集和验证数据集,其中训练数据集占80%,验证数据集占20%。
S2:对图片数据集采用K-means聚类得到先验框的尺寸:
为每种下采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。数据集的9个先验框是:(68x118),(93x137),(114x84),(139x220),(158x135),(173x72),(213x300),(237x104),(291x159)。
表1特征图多尺度分配
Figure BDA0003051379560000041
Figure BDA0003051379560000051
S3:YOLOv4模型训练步骤:利用YOLOv4对训练数据集进行训练学习,操作如下:
YOLOv4目标检测网络以CSPDarknet53为主干,包含5个CSP模块,各模块前的卷积核大小为3×3,步幅为2,能够进一步增强网络学习能力;路径聚合网络(PANet)作为颈部,增添空间金字塔池(SPP)附加模块,采用1×1,5×5,9×9,13×13最大池化方式,能够增加感受区并分离出更重要的上下文特征;沿用YOLOv3检测头作为头部。最后通过全连接层输出训练结果,包括边框回归坐标、目标分类结果和置信度大小。
S3-1:当输入图像大小为416*416,参数random为0,batch_size参数为16,批次细分subdivision=16,迭代次数为6000,初始学习率为0.001,检测物体种类为2时,用户使用cpu训练模型,至少需要2GB内存;使用单GPU训练模型,至少需要4GB。
S3-2:当输入图像大小为608*608,参数random为0,batch_size参数为16,批次细分subdivision=16,迭代次数为6000,初始学习率为0.001,检测物体种类为2时,用户使用cpu训练模型,至少需要3GB内存;使用单GPU训练模型,至少需要6GB。
S4:泳池判定线模型,具体包括:
S4-1:根据图片中泳池水下歇脚台的位置对图片进行划分,图片中歇脚台位置即为判定线,依据所划分的判定线将图片分为上下两部分,判定线的上方为正常游泳区,下方为溺水区。当检测目标中心位置位于正常游泳区时,如果目标标签为溺水(drowning),则将标签修正为正常游泳(swimming),如果目标标签为正常游泳(swimming),则无需修正;当检测目标中心位置位于溺水区时,如果目标标签为swimming,则将标签修正为溺水(drowning),如果目标标签为溺水(drowning),则无需修正。
S4-2:为了便于计算,建立平面直角坐标系,坐标原点位于图像左上角,坐标值随着图像边缘向右和垂直向下不断增加。此外,坐标系中的坐标(x,y)与图片分辨率有关,x∈[0,1920],y∈[0,1080]。
S4-3:判定线表达式为分段函数,具体的:
Figure BDA0003051379560000061
其中A1-An,B1-Bn为方程系数,R1-Rn为x的定义域,不相交且∈[0,1920]。
S4-4:对YOLOv4模型输出的检测框中心坐标(x,y)进行判断,中心坐标(x,y)在判定线上方则检测目标标签为swimming,在判定线下方则检测目标标签为drowning。
步骤S5:YOLOv4-泳池判定线模型验证步骤:
通过验证数据集对YOLOv4-泳池判定线检测模型进行验证,得到模型评分,对模型进行评估,经过模型评估筛选出预测性能最优的模型。
平均精度均值(mAP)是测量目标检测效率的重要指标,由精确率(Precision)和召回率(Recall)决定。以Recall为横轴,Precision为纵轴的曲线简称P-R曲线,P-R曲线下面积记为精度均值,所有目标类别的精度均值的平均值为mAP值,其值越大,神经网络模型效果越好。
它们的计算公式分别如下:
Figure BDA0003051379560000071
Figure BDA0003051379560000072
Figure BDA0003051379560000073
式中:
TP(True Positives)——被判为正类的正类;
FP(False Positives)——被判为正类的负类;
FN(False Negatives)——被判为负类的正类。
AP:PR曲线下面积(PR曲线:Precision-Recall曲线),衡量的是对一个类检测好坏,mAP就是对多个类的检测好坏。
表2检测结果精度值
Figure BDA0003051379560000074
目标检测步骤:利用最终得到的YOLOv4-泳池判定线检测模型对泳池水下场景进行监测,通过水下的摄像头作为模型的输入,当识别出游泳者和溺水者,当连续5秒内出现溺水报警信号时,推送报警信息。

Claims (6)

1.一种基于YOLOv4的泳池溺水检测方法,包括以下步骤:
S1:通过游泳池布置的水下摄像机采集游泳池中所有游泳人群的图像并进行标注,得到游泳者数据库;
S2:游泳者数据库采用K-means聚类算法得到先验框的尺寸,按照不同尺度聚类出9种尺寸的先验框;
S3:在YOLOv4网络模型的配置文件中设置网络模型参数,将YOLOv4网络结构放入配置好环境的计算机中,使用训练集对预训练模型进行迭代训练,直到损失函数收敛,保存训练好的网络检测模型;
S4:将上述训练好的网络检测模型加入泳池判定线模型,使模型对识别到的目标类别进行再一次判定;
S5:输出符合要求的YOLOv4-泳池判定线检测模型;
S6:使用步骤S5中符合要求的YOLOv4-泳池判定线检测模型对序列图像进行目标检测,输出检测结果,并对溺水现象进行报警。
2.根据权利要求1所述的一种基于YOLOv4的泳池溺水检测方法,其特征在于,S1中所述的游泳者数据库中,水下摄像机采集游泳池中游泳人群的视频,将采集的视频转化为图片格式,利用Labelimg软件标注成VOC格式得到得到游泳者数据库,其中游泳者的自由泳、仰泳、蛙泳、蝶泳、跳水、踩水行为标记为正常游泳,潜水、挣扎、溺水行为标记为溺水。
3.根据权利要求1所述的一种基于YOLOv4的泳池溺水检测方法,其特征在于,S3中所述的配置文件,为如下要求:
S3-1:当输入图像大小为416x416,参数random为0,batch_size参数为16,批次细分subdivision=16,迭代次数为6000,初始学习率为0.001,检测物体种类为2时,用户使用cpu训练模型,至少需要2GB内存;使用单GPU训练模型,至少需要4GB;
S3-2:当输入图像大小为608x608,参数random为0,batch_size参数为16,批次细分subdivision=16,迭代次数为6000,初始学习率为0.001,检测物体种类为2时,用户使用cpu训练模型,至少需要3GB内存;使用单GPU训练模型,至少需要6GB。
4.根据权利要求1所述的一种基于YOLOv4的泳池溺水检测方法,其特征在于,S4中所述的泳池判定线模型,具体包括:根据图片中泳池水下歇脚台的位置对图片进行划分,图片中歇脚台位置即为判定线,依据所划分的判定线将图片分为上下两部分,判定线的上方为正常游泳区,下方为溺水区;当检测目标中心位置位于正常游泳区时,如果目标标签为溺水,则将标签修正为正常游泳,如果目标标签为正常游泳,则无需修正;当检测目标中心位置位于溺水区时,如果目标标签为正常游泳,则将标签修正为溺水,如果目标标签为溺水,则无需修正。
5.根据权利要求1所述的一种基于YOLOv4的泳池溺水检测方法,其特征在于,S5中所述符合要求是指对YOLOv4-泳池判定线检测模型进行性能评估,[email protected]达到92%及以上。
6.根据权利要求1所述的一种基于YOLOv4的泳池溺水检测方法,其特征在于,S6中进行报警的要求为:连续5秒内出现溺水报警信号。
CN202110488324.4A 2021-05-06 2021-05-06 一种基于YOLOv4的泳池溺水检测方法 Pending CN113158962A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110488324.4A CN113158962A (zh) 2021-05-06 2021-05-06 一种基于YOLOv4的泳池溺水检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110488324.4A CN113158962A (zh) 2021-05-06 2021-05-06 一种基于YOLOv4的泳池溺水检测方法

Publications (1)

Publication Number Publication Date
CN113158962A true CN113158962A (zh) 2021-07-23

Family

ID=76871495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110488324.4A Pending CN113158962A (zh) 2021-05-06 2021-05-06 一种基于YOLOv4的泳池溺水检测方法

Country Status (1)

Country Link
CN (1) CN113158962A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114170317A (zh) * 2022-01-10 2022-03-11 杭州巨岩欣成科技有限公司 泳池防溺水人头位置判断方法、装置、计算机设备及其存储介质
CN114359967A (zh) * 2022-01-10 2022-04-15 杭州巨岩欣成科技有限公司 泳池防溺水人体目标检测方法、装置、计算机设备及存储介质
CN114560059A (zh) * 2022-03-08 2022-05-31 三峡大学 水下救生机器人及救援方法
CN114735165A (zh) * 2022-03-08 2022-07-12 三峡大学 智能水下救生***及溺水检测、救援方法
CN115994911A (zh) * 2023-03-24 2023-04-21 山东上水环境科技集团有限公司 一种基于多模态视觉信息融合的游泳馆目标检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200057935A1 (en) * 2017-03-23 2020-02-20 Peking University Shenzhen Graduate School Video action detection method based on convolutional neural network
CN111709489A (zh) * 2020-06-24 2020-09-25 广西师范大学 一种基于改进YOLOv4的柑橘识别方法
CN111985451A (zh) * 2020-09-04 2020-11-24 南京航空航天大学 一种基于YOLOv4的无人机场景检测方法
CN112052826A (zh) * 2020-09-18 2020-12-08 广州瀚信通信科技股份有限公司 基于YOLOv4算法的智慧执法多尺度目标检测方法、装置、***及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200057935A1 (en) * 2017-03-23 2020-02-20 Peking University Shenzhen Graduate School Video action detection method based on convolutional neural network
CN111709489A (zh) * 2020-06-24 2020-09-25 广西师范大学 一种基于改进YOLOv4的柑橘识别方法
CN111985451A (zh) * 2020-09-04 2020-11-24 南京航空航天大学 一种基于YOLOv4的无人机场景检测方法
CN112052826A (zh) * 2020-09-18 2020-12-08 广州瀚信通信科技股份有限公司 基于YOLOv4算法的智慧执法多尺度目标检测方法、装置、***及存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114170317A (zh) * 2022-01-10 2022-03-11 杭州巨岩欣成科技有限公司 泳池防溺水人头位置判断方法、装置、计算机设备及其存储介质
CN114359967A (zh) * 2022-01-10 2022-04-15 杭州巨岩欣成科技有限公司 泳池防溺水人体目标检测方法、装置、计算机设备及存储介质
CN114170317B (zh) * 2022-01-10 2024-04-05 杭州巨岩欣成科技有限公司 泳池防溺水人头位置判断方法、装置及计算机设备
CN114560059A (zh) * 2022-03-08 2022-05-31 三峡大学 水下救生机器人及救援方法
CN114735165A (zh) * 2022-03-08 2022-07-12 三峡大学 智能水下救生***及溺水检测、救援方法
CN115994911A (zh) * 2023-03-24 2023-04-21 山东上水环境科技集团有限公司 一种基于多模态视觉信息融合的游泳馆目标检测方法

Similar Documents

Publication Publication Date Title
CN113158962A (zh) 一种基于YOLOv4的泳池溺水检测方法
Long et al. Safety helmet wearing detection based on deep learning
CN111723748A (zh) 一种红外遥感图像舰船检测方法
CN110427813A (zh) 基于姿态指导行人图像生成的孪生生成式对抗网络的行人重识别方法
CN111091072A (zh) 一种基于YOLOv3的火焰及浓烟检测方法
CN112861635B (zh) 一种基于深度学习的火灾及烟雾实时检测方法
CN110569772A (zh) 一种泳池内人员状态检测方法
CN111814638B (zh) 基于深度学习的安防场景火焰检测方法
CN115661943B (zh) 一种基于轻量级姿态评估网络的跌倒检测方法
CN108229674A (zh) 聚类用神经网络的训练方法和装置、聚类方法和装置
CN110598693A (zh) 一种基于Faster-RCNN的船牌识别方法
CN106981063A (zh) 一种基于深度学习的电网设备状态监测装置
CN111488850B (zh) 一种基于神经网络的老年人跌倒检测方法
CN109800756A (zh) 一种用于中文历史文献密集文本的文字检测识别方法
CN113139481B (zh) 基于yolov3的教室人数统计方法
CN115527234A (zh) 一种基于改进YOLOv5模型的红外图像笼内死鸡识别方法
CN113822185A (zh) 一种群养生猪日常行为检测方法
CN109886086A (zh) 基于hog特征和线性svm级联分类器的行人检测方法
Lei et al. Drowning behavior detection in swimming pool based on deep learning
CN116824335A (zh) 一种基于YOLOv5改进算法的火灾预警方法及***
CN106991400A (zh) 一种火灾烟雾检测方法及装置
CN115546904A (zh) 基于目标检测时序跟踪并识别人员摔倒后的危险性的方法
CN111507353A (zh) 一种基于文字识别的中文字段检测方法及***
CN114187664A (zh) 一种基于人工智能的跳绳计数***
CN110321775A (zh) 一种基于多旋翼无人机的水上落水人员自主识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination