CN113130681B - 一种窄带隙二维磁性薄膜异质结非制冷红外探测器 - Google Patents

一种窄带隙二维磁性薄膜异质结非制冷红外探测器 Download PDF

Info

Publication number
CN113130681B
CN113130681B CN202110400291.3A CN202110400291A CN113130681B CN 113130681 B CN113130681 B CN 113130681B CN 202110400291 A CN202110400291 A CN 202110400291A CN 113130681 B CN113130681 B CN 113130681B
Authority
CN
China
Prior art keywords
heterojunction
electrode layer
thin film
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110400291.3A
Other languages
English (en)
Other versions
CN113130681A (zh
Inventor
龙明生
王瑞洁
单磊
李峰
韩涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202110400291.3A priority Critical patent/CN113130681B/zh
Publication of CN113130681A publication Critical patent/CN113130681A/zh
Application granted granted Critical
Publication of CN113130681B publication Critical patent/CN113130681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种基于层状材料异质结的光电探测器,包括在衬底上设有自下到上的结构:衬底绝缘层,底面反射电极层,所述电极层置于所述衬底绝缘层上;异质结包括n‑型二维层状薄膜材料薄膜,p‑型二维层状薄膜材料薄膜层在上述n‑型二维层状薄膜材料薄膜层上,上述二维层状异质结置于所述底电极层上,其中异质结结区与底面反射电极层重合且紧密接触;顶电极层,所述顶电极层设置在所述p‑n结上方p‑型二维材料的一侧或部分区域;透明顶栅绝缘层,所述透明顶栅绝缘层覆盖在整个异质结器件正上方,透明顶栅绝缘层包括高介电材料如二氧化铪和PMMA;所述的透明顶栅电极设置在p‑n结正上方,包含石墨烯、ITO等透明材料。

Description

一种窄带隙二维磁性薄膜异质结非制冷红外探测器
技术领域
本发明是关于窄带隙磁性二维层状材料异质结光电子技术,特别是关于一种基于磁性偏振灵敏非制冷宽谱红外探测。
背景技术
光电探测器是一种可以将光信号转换为电信号的器件,被广泛运用于军事、工业控制、光通信、医疗影像、环境监测及航空航天等诸多领域。其中可见光(380nm-760nm)和红外(IR,770nm-1mm)探测技术作为一种前景广阔的技术,在军事、消防和环境监测等领域有着巨大的应用潜力。目前,大多数的红外探测器取决于化合物的单晶半导体红外吸收,如HgCdTe InSb和III-V三元合金,但生长单晶化合物半导体包括的沉积加工过程所需的高成本使其应用受到限制。另外在红外波段为获得高探测性能,需要工作在液氮温度,不能满足新一代红外探测小型化和轻型化需求,在这种背景下,二维材料及异质结构的出现,给新一代红外光电探测技术发展带来了新的希望。比如石墨烯、过渡金属硫化物、黑磷等二维材料因具有宽光谱吸收、带隙可调、高载流子迁移率等良好的光学与电学性能,广泛应用于可见及红外探测器的制作。
发明内容
本发明目的是,提供一种基于窄带隙二维磁性层状薄膜材料异质结宽谱偏振灵敏非制冷红外探测器,通过异质结构减小探测器的体积,并实现室温、宽波段和高灵敏探测器。
为了实现上述目的,本发明技术方案是:一种基于层状材料异质结的光电探测器,其特征是,包括在衬底上设有自下到上的结构:衬底绝缘层2,底面反射电极层3,所述电极层置于所述衬底绝缘层上;异质结包括n-型二维层状薄膜材料薄膜5,p-型二维层状薄膜材料薄膜层6(p型层状带隙磁性半导体材料FePSe3、CrSiTe3、CrGeTe3)叠放在上述n-型二维层状薄膜材料薄膜层上,整个约25±10nm厚的二维层状异质结置于所述底电极层上,其中异质结结区与底面反射电极层重合且紧密接触;顶电极层4,所述顶电极层设置在所述p-n结上方p-型二维材料的一侧或部分区域(一周);透明顶栅绝缘层7,所述透明顶栅绝缘层覆盖在整个异质结器件正上方,透明顶栅绝缘层包括高介电材料如二氧化铪和PMMA7等;顶栅透明电极层8,所述的顶栅透明电极设置在p-n结正上方,包含石墨烯,ITO等透明材料。
光电探测过程中,所述异质结在探测器在加偏置电压和在零偏振电压情况下测试开光和关光时候的电流以得到电导的变化的响应,其中异质结结区下的底面反射金属电极层通过反射入射光提高材料光吸收以提高响应灵敏度。通过改变照射光波长和功率,获得不同波段的探测灵敏度。改变光偏振模式在磁性材料铁磁转变温度以下测试偏振灵敏光响应、也可以对物体做光电流成像以观测其非制冷红外光探测性能。
本发明p-n异质结宽谱红外光探测器和相关的异质结电子器件能构成原子级厚度的p-n结,与传统光探测器相比,体积更小,偏振灵敏光响应、具有高探测效率及宽谱响应和非制冷红外探测性能,反射式镜面结构增强光吸收和光电流收集效率使获得的p-n异质结探测器具有更高外量子效率。
制备窄带隙二维磁性p型半导体材料:FePSe3、CrSiTe3、CrGeTe3等。
有益效果:本发明提供了一种基于窄带隙二维磁性层状薄膜材料异质结宽谱偏振灵敏非制冷红外探测器,本发明的p-n异质结探测器不同于传统的光电探测器。第一,本发明的传感器以窄带隙二维层状磁性薄膜材料搭建的异质结作为光敏单元,相较于传统光探测单元,该p-n异质结探测器可以做至很小、可高度集成。其次,本发明所采用的底面反射电极层可以通过对入射光的反射有效提高光电流及响应灵敏度。第三,二维层状薄膜材料层异质结内建电场耗尽区长度很小,内建电场场强较大,二维层状薄膜材料光吸收强,和块体状的材料光吸收率差距很大。最后,此二维层状薄膜材料可以实现非制冷宽波段探测。尤其是采用FePSe3、CrSiTe3等窄带隙磁性半导体材料作为近些年新出现的磁性二维材料,存在长波红外探测结果,这使得将本发明的p-n异质结光探测器应用于需要高灵敏可见及红外探测和红外制导等领域。本发明实施例探测器能够探测1pW中波红外(2-5μm)和10pW长波红外10.6μm。
附图说明
图1为本发明实施例的基于窄带隙二维磁性层状薄膜材料异质结宽谱偏振灵敏非制冷红外探测器器件结构图;
图2为本发明实施例的基于窄带隙二维磁性层状薄膜材料异质结宽谱偏振灵敏非制冷红外探测器的光电流成像***图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种基于窄带隙二维磁性层状薄膜材料异质结宽谱偏振灵敏非制冷红外探测器,所述的异质结的光电探测器包括:衬底绝缘层2,底面反射电极层3,顶电极层4,二维层状材料薄膜层5、6,顶栅绝缘层7以及顶栅电极层8和基底层1。
所述二维半导体材料FePSe3的制备:高纯铁粉,高纯Se粉和高纯红磷按比例混合均匀后,放置在高温炉中烧制。烧制过程为:经过6小时升温至750度,保温4小时后,经过80小时降至710℃,最后自然冷却。二维半导体材料FePSe3作为PVD的原材料。
衬底绝缘层2上放置或PVD蒸发底面反射电极层3,n-型二维层状薄膜材料薄膜层5和p-型二维层状薄膜材料薄膜层6部分重叠后放置在底面反射电极层上。顶电极层置于p-型二维层状薄膜材料薄膜层上方或一周,后上述整个体系覆盖一层顶栅绝缘层7,在顶栅绝缘层正上方再设置顶栅电极层8。
在实施例中,PVD蒸发n-型二维层状薄膜材料薄膜层5和p-型二维层状薄膜材料薄膜层6组成的异质结结区位于底面反射电极层的正上方。
在实施例中,PVD蒸发底面反射电极层3和顶电极层4由5nm厚的钛及50nm厚的金组成。在实施例中,顶栅电极层8由石墨烯构成。顶栅绝缘层7PMMA可以是预聚体旋涂。
所述p-n异质结探测器还包括:基底1,该基底1设置在绝缘层2下面,基底1可以为硅等绝缘性材料,本发明仅以硅为例进行说明。
底面反射电极层和二维层状薄膜材料薄膜异质结层5、6为本发明的异质结p-n探测器的核心部分,在底面反射电极层的作用下,通过二维材料异质结区获得较高的光电流。并且半导体结形成的内建电场有效的抑制暗电流。使得器件获得较高的信噪比,在红外长波波段室温下有较高的光响应。
本发明仅以FePSe3作为p型二维半导体材料、MoS2、WS2等作为n型二维半导体材料进行说明。本发明的p-n异质结红外探测器中的半导体二维层状薄膜材料薄膜层为窄带隙磁性半导体材料例如FePSe3、CrSiTe3、CrGeTe3和MoS2、WS2等过渡金属硫族化合物,
本发明的p-n异质结红外探测器中的衬底绝缘层2可以是绝缘材料及介电材料,绝缘材料例如二氧化硅、三氧化二铝、PMMA、PI等柔性绝缘衬底,本发明仅以二氧化硅层作为绝缘层进行说明。
下面结合具体的例子简单介绍p-n异质结探测器的其它制作过程。
器件包括p-n异质结另一种制作过程如下:对于二氧化硅层作为绝缘层,硅作为基底的情况,二氧化硅层及硅基底合称为氧化硅片。按照计划图样提前在氧化硅片上写好底面反射电极及顶电极层。具体制作时,取写好电极的氧化硅片一片,氧化硅片下面是硅层,上面是300nm的二氧化硅层。
准备好的目标样品使用范德瓦尔斯异质结转移方法将n-type型TMD半导体(如MoS2)堆叠在氧化硅片上,并保证覆盖到底面反射电极层,再用目标15nm±5nm厚的p-型磁性半导体层样品堆叠在目标n-型半导体薄层上,在p-型半导体层样品另一头覆盖到顶电极层的同时,保证两半导体的异质结结区位于底面反射电极层的正上方。这样所述p-n异质结就形成在上述的300纳米氧化硅的硅片上。覆盖上一层透明顶栅绝缘层,采用同样的转移方法加上顶栅电极层,这样完成了器件的制作,探测器能够探测1pW中波红外(2-5μm)和10pW长波红外10.6μm。
半导体薄膜的获得方法:
机械剥离法:在胶带上机械剥离FePSe3与MoS2薄膜,使用干法转移技术将目标样品至预制金属电极的硅+300nm二氧化硅衬底上。
CVD或PVD生长法:通过CVD或PVD生长半导体薄膜晶体。主要的操作流程有:a、将反应物(典型的是二维半导体材料FePSe3)以蒸发气体的形式通入反应容器中,发生化学反应后以固体的形式按设计的异质结顺序沉积不同的二维材料在基底上。该法可以通过控制反应物的量和沉积时间精确控制二维材料厚度。
b、还可以把使用CVD或PVD生长的大面积二维材料通过湿法转移至硅衬底上。
图1所示,硅1、衬底绝缘层2,底面反射电极层3,所述电极层置于所述衬底绝缘层上;异质结包括n-型二维层状薄膜材料薄膜5,p-型二维层状薄膜材料薄膜层6(p型层状带隙磁性半导体材料FePSe3、CrSiTe3、CrGeTe3均可)叠放在上述n-型二维层状薄膜材料薄膜层上,上述25±10nm左右厚的二维层状异质结置于所述底电极层上,其中异质结结区与底面反射电极层重合且紧密接触;顶电极层4,所述顶电极层设置在所述p-n结上方p-型二维材料的一侧或部分区域(一周);透明顶栅绝缘层如PMMA7,所述透明顶栅绝缘层覆盖在整个异质结器件正上方,透明顶栅绝缘层包括高介电材料如二氧化铪和PMMA等;顶栅透明电极层8(石墨烯)。
光电流成像***如图2所示,本发明实施例只是提供一种光电流成像***。成像***由光源和云台9中间安装有探测器10、电流放大器11、电流电压源13和电脑数据采集和处理***12组成。在具体实施时,由光源发射出光照在上述探测器上,电流、电压源给探测器通入一定偏置电压和栅电压,通过电流放大器后用电脑采集光电流数据,电脑自动成像。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种基于窄带隙二维磁性薄膜异质结非制冷红外探测器,其特征是,包括在衬底上设有自下到上的结构:衬底绝缘层,底面反射电极层,所述电极层置于所述衬底绝缘层上;二维层状异质结,包括n-型二维层状材料薄膜,p-型二维层状材料薄膜在上述n-型二维材料薄膜上,上述25±10 nm厚的二维层状异质结置于所述底面反射电极层上,其中二维层状异质结结区与底面反射电极层重合且紧密接触;顶电极层,所述顶电极层设置在p-型二维层状材料薄膜的部分区域;透明顶栅绝缘层,所述透明顶栅绝缘层覆盖在整个异质结正上方,透明顶栅绝缘层为二氧化铪或PMMA;所述的透明顶栅电极设置在二维层状异质结正上方,为石墨烯或ITO透明材料;
所述n-型二维层状材料为MoS2,p-型二维层状材料为窄带隙磁性半导体材料,窄带隙磁性半导体材料为FePSe3、CrSiTe3或CrGeTe3
2.根据权利要求1所述的红外探测器,其特征在于,所述衬底绝缘层为二氧化硅、三氧化二铝、PMMA或PI柔性绝缘衬底。
3.根据权利要求2所述的异质结光电子器件,其特征在于,所述衬底绝缘层的厚度为300±100纳米。
4.根据权利要求1所述的红外探测器,其特征在于,所述顶电极层由8±4nm厚的钛及50±20nm厚的金组成。
5.根据权利要求1所述的红外探测器,其特征在于,所述底面反射电极层由8±4nm厚的钛及50±20nm厚的金组成。
6.根据权利要求1所述的红外探测器,其特征在于,所述顶栅绝缘层包括高介电材料还为氧化锆、三氧化二铝;厚度为300±100纳米。
7.一种根据权利要求1至6中任一项所述的红外探测器的制备方法,其特征在于,p-型窄带隙磁性半导体材料FePSe3的制备为,高纯铁粉,高纯Se粉和高纯红磷按比例混合均匀后,放置在高温炉中烧制;烧制过程为:经过6小时升温至750℃,保温4小时后,经过80小时降至710℃,最后自然冷却。
CN202110400291.3A 2021-04-14 2021-04-14 一种窄带隙二维磁性薄膜异质结非制冷红外探测器 Active CN113130681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110400291.3A CN113130681B (zh) 2021-04-14 2021-04-14 一种窄带隙二维磁性薄膜异质结非制冷红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110400291.3A CN113130681B (zh) 2021-04-14 2021-04-14 一种窄带隙二维磁性薄膜异质结非制冷红外探测器

Publications (2)

Publication Number Publication Date
CN113130681A CN113130681A (zh) 2021-07-16
CN113130681B true CN113130681B (zh) 2022-10-18

Family

ID=76776275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110400291.3A Active CN113130681B (zh) 2021-04-14 2021-04-14 一种窄带隙二维磁性薄膜异质结非制冷红外探测器

Country Status (1)

Country Link
CN (1) CN113130681B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952385A (zh) * 2020-08-21 2020-11-17 中国科学院长春光学精密机械与物理研究所 一种二维材料极化激元与异质结结合的红外光探测器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU766260B2 (en) * 1997-01-09 2003-10-09 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7138697B2 (en) * 2004-02-24 2006-11-21 International Business Machines Corporation Structure for and method of fabricating a high-speed CMOS-compatible Ge-on-insulator photodetector
CN103262210B (zh) * 2010-09-10 2017-09-08 维尔雷思科技有限公司 使用与半导体施主分离的层来制造光电装置的方法和由该方法制成的装置
CN105590985B (zh) * 2015-12-31 2017-11-10 南京大学 基于二维层材料p‑i‑n异质结光电子器件
CN105489693B (zh) * 2015-12-31 2017-09-29 南京大学 基于二维层状薄膜材料p‑g‑n异质结光电子器件
US11028271B2 (en) * 2017-12-07 2021-06-08 Alliance For Sustainable Energy, Llc Functionalized metal chalcogenides of partially it crystalline phase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952385A (zh) * 2020-08-21 2020-11-17 中国科学院长春光学精密机械与物理研究所 一种二维材料极化激元与异质结结合的红外光探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
不同衬底上层状MoS_2薄膜制备及应用的研究进展;陶化文等;《半导体技术》;20201003(第10期);第737-759页 *

Also Published As

Publication number Publication date
CN113130681A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
Ma et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity
Yu et al. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors
Huangfu et al. Visible or near-infrared light self-powered photodetectors based on transparent ferroelectric ceramics
Raghavendra et al. Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors
Lee et al. High‐detectivity flexible near‐infrared photodetector based on chalcogenide Ag2Se nanoparticles
Mao et al. Conformal MoS2/silicon nanowire array heterojunction with enhanced light trapping and effective interface passivation for ultraweak infrared light detection
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
Li et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
Zhang et al. Spray‐stencil lithography enabled large‐scale fabrication of multispectral colloidal quantum‐dot infrared detectors
Meena et al. Investigation of grown ZnS film on HgCdTe substrate for passivation of infrared photodetector
CN114702960A (zh) 红外量子点层及其制备方法、红外探测器及其制备方法
Ling et al. Highly Sensitive and Stable Self‐Powered UV Photodetector Based on Amorphous ZnGa2O4/NiO Type‐II p–n Heterojunction via Low‐Temperature and Band Alignment
Li et al. Circularly Polarized Light-Dependent Pyro-Phototronic Effect from 2D Chiral–Polar Double Perovskites
Zhao et al. A spectrally selective self-powered photodetector utilizing a ZnO/Cu2O heterojunction
CN113130681B (zh) 一种窄带隙二维磁性薄膜异质结非制冷红外探测器
Li et al. In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging
US20200357939A1 (en) Ultrasensitive photodetectors
Sun et al. Enhanced performance of MgZnO flexible ultraviolet photodetectors
Rani et al. Advancements in transition metal dichalcogenides (TMDCs) for self-powered photodetectors: challenges, properties, and functionalization strategies
KR20180069607A (ko) 광전 소자 및 그 제조 방법
Stavarache et al. Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties
Ling et al. Comprehensive enhancement of ZnGa2O4-based solar blind photodetector performance by suppressing defects in oxygen-rich atmosphere
Wan et al. Self-powered polarization-sensitive photodetection and imaging based on Sb2Se3 microbelt/Si van der Waals heterojunction with MXene transmittance window
Behera et al. Lead free perovskite based heterojunction photodetectors: A mini review
Wang et al. High-performance UV light detector using layered perovskites and textured silicon heterojunction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant