CN113111717A - 一种线性时变***参数辨识方法 - Google Patents

一种线性时变***参数辨识方法 Download PDF

Info

Publication number
CN113111717A
CN113111717A CN202110278767.0A CN202110278767A CN113111717A CN 113111717 A CN113111717 A CN 113111717A CN 202110278767 A CN202110278767 A CN 202110278767A CN 113111717 A CN113111717 A CN 113111717A
Authority
CN
China
Prior art keywords
varying
time
parameter
parameters
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110278767.0A
Other languages
English (en)
Inventor
徐杰
应双双
李辉
吴伟
韩煜
应腾力
张泽良
骆俊
骆豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yuqiong Electronic Technology Co ltd
Original Assignee
Zhejiang Yuqiong Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Yuqiong Electronic Technology Co ltd filed Critical Zhejiang Yuqiong Electronic Technology Co ltd
Priority to CN202110278767.0A priority Critical patent/CN113111717A/zh
Publication of CN113111717A publication Critical patent/CN113111717A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Complex Calculations (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种线性时变***参数辨识方法,属于线性***辨识领域。它解决了传统辨识方法存在估计延迟,估计精度较低的问题。一种线性时变***参数辨识方法,步骤为:一建立线性时变***的回归方程;二确定二次型代价函数,通过优化代价函数获得时变参数的估计值;步骤三对步骤二中确定的参数估计值进行补偿,消除由噪声引起的参数估计偏差;步骤四通过迭代方式对参数值进行循环估计,不断提高估计精度。本线性时变***参数辨识方法,对参数的估计精度较高,且相对于现有方法,不存在估计延迟。

Description

一种线性时变***参数辨识方法
技术领域
本发明属于线性***辨识领域,具体涉及一种线性时变***参数辨识方法。
背景技术
随着现代社会的不断进步,工业***的分析、监测、控制等越来越依赖于***的精确模型。参数辨识是***建模的一个关键步骤,线性时不变***的辨识方法以最小二乘方法为基础取得了较大发展。线性时变参数广泛存在于工业***中,例如装配生产线上的机器人、焊接机、光刻机等。如何实现线性时变参数的辨识,一直是广大学者和工程师面临的一个重大挑战。
最小二乘方法是最为基础和成熟,也是应用最为广泛的一种参数辨识方法,但是其收敛速度较低,如果直接应用于时变参数的辨识,无法跟踪参数的实时变化,存在较为严重的估计延迟。虽然通过引入遗忘因子可以提高参数的收敛速度,但是遗忘因子太大将使算法的收敛速度降低,太小将会影响参数的估计精度。虽然变遗忘因子方法,较好的权衡了精度和跟踪速度两个重要指标,但是往往达不到令人满意的结果,主要表现为无法完全跟踪时变参数的变化,存在估计延迟。
发明内容
本发明的目的是提供一种线性时变***参数辨识方法,是为了解决传统辨识方法存在估计延迟,估计精度较低的问题。
本发明的目的可通过下列技术方案来实现:
一种线性时变***参数辨识方法,所述线性时变***在有限时间间隔内可反复多次运行,尽管***参数是时变的,但是同一时刻的参数在***每次运行时不发生改变,即***参数不随运行次数而发生变化。
它包括以下步骤:
步骤一:建立线性时变***的回归方程;
步骤二:确定二次型代价函数,通过优化代价函数获得时变参数的估计值;
步骤三:对步骤二中确定的参数估计值进行补偿,消除由噪声引起的参数估计偏差;
步骤四:通过迭代方式对参数值进行循环估计,不断提高估计精度。
所述的一种线性时变***参数辨识方法,它的步骤为:
步骤一:建立线性时变***的回归方程。
考虑如下形式的线性时变***:
Figure BDA0002974640490000021
其中u(k)、y(k)分别为***的输入与输出,v(k)为量测噪声。A(k,z)、B(k,z)为包含***未知参数的互质多项式,且
A(k,z)=1+a1(k)z-1+...+an(k)z-n
B(k,z)=b1(k)z-1+...+bn(k)z-m
z-1为单位后移算子。定义参数向量θ(k)、信息向量
Figure BDA0002974640490000022
和噪声向量ψ(k)分别如下所示:
Figure BDA0002974640490000023
Figure BDA0002974640490000024
Figure BDA0002974640490000025
在有限时间间隔[0N]内可反复多次运行,尽管***参数是时变的,但是同一时刻的参数在***每次运行时不发生改变,即***参数不随运行次数而发生变化,即θ(k)=θ1(k)=θ2(k)=...=θj(k),1,2,...,j表示迭代次数。
第j次迭代***的回归方程可表示为:
Figure BDA0002974640490000026
其中
Figure BDA0002974640490000027
ψj(k)=[vj(k-1)...vj(k-n)0...0]
步骤二:获得基于二次型优化的迭代学习辨识算法。
考虑1~j次迭代,沿迭代轴构造信息矩阵Φj(k)、噪声矩阵Ψj(k)、输出矢量Yj(k)、噪声矢量Vj(k)分别为:
Figure BDA0002974640490000028
Figure BDA0002974640490000029
Figure BDA00029746404900000210
Figure BDA00029746404900000211
取代价函数如下:
Figure BDA00029746404900000212
其中W1=w1Ij×j>0,W2=w2I(n+m)×(n+m)>0为正定加权矩阵,
Figure BDA00029746404900000213
通过优化代价函数,可得如下迭代辨识算法:
Figure BDA00029746404900000214
Figure BDA00029746404900000215
Figure BDA00029746404900000216
Figure BDA0002974640490000031
步骤三:补偿由噪声引起的参数估计偏差。
Figure BDA0002974640490000032
进行偏差补偿,可得时变参数的无偏估计值为:
Figure BDA0002974640490000033
其中
Figure BDA0002974640490000034
Figure BDA0002974640490000035
为噪声方差估计值,按下式获得:
Figure BDA0002974640490000036
代价函数按下式进行迭代更新:
Figure BDA0002974640490000037
步骤四:按如下过程,通过迭代实验估计时变参数。
(1)初始化;置迭代次数j=0;为各时刻的参数估计值
Figure BDA0002974640490000038
P0(k)赋初值;确定权重系数w1、w2
(2)j+1;运行***,采集***输入输出数据,构造
Figure BDA0002974640490000039
计算
Figure BDA00029746404900000310
Figure BDA00029746404900000311
(3)更新估计值
Figure BDA00029746404900000312
Figure BDA00029746404900000313
Figure BDA00029746404900000314
(4)估计噪声方差
Figure BDA00029746404900000315
Figure BDA00029746404900000316
Figure BDA00029746404900000317
(5)更经偏差补偿之后的参数估计值
Figure BDA0002974640490000041
Figure BDA0002974640490000042
(6)当迭代次数j达到最大允许次数或
Figure BDA0002974640490000043
达到一个较小的满意值,停止迭代,否者转到(2)。
与现有技术相比,本发明的优点是:本线性时变***参数辨识方法采用迭代学习思想,而非传统的递推思想,对时变参数而言,估计精度较高,且不存在估计延迟。
附图说明
图1迭代学习方法与遗忘因子最小二乘方法参数估计结果比较;
图2迭代学习方法与遗忘因子最小二乘方法参数估计误差比较。
具体实施方式
以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一
以如下***为例,说明本方法的具体实施方式。考虑二阶线性时变***:
Figure BDA0002974640490000044
其中
Figure BDA0002974640490000045
Figure BDA0002974640490000046
输入信号u(k),选取为[-0.5 0.5]上均匀分布的随机变量,vj(k)取为服从正态分布的随机白噪声,即
Figure BDA0002974640490000047
其中噪声方差选取为σ2=0.02。
定义参数向量θ(k)、信息向量
Figure BDA0002974640490000048
和噪声向量ψ(k)分别如下所示:
Figure BDA0002974640490000049
Figure BDA00029746404900000410
Figure BDA00029746404900000411
第j次迭代***的回归方程可表示为:
Figure BDA00029746404900000412
其中
Figure BDA0002974640490000051
ψj(k)=[vj(k-1) vj(k-2) 0 0]
实施例二
考虑1~j次迭代,沿迭代轴构造信息矩阵Φj(k)、噪声矩阵Ψj(k)、输出矢量Yj(k)、噪声矢量Vj(k)分别为:
Figure BDA0002974640490000052
Figure BDA0002974640490000053
Figure BDA0002974640490000054
Figure BDA0002974640490000055
取代价函数如下:
Figure BDA0002974640490000056
其中W1=w1Ij×j>0,W2=w2I4×4>0为正定加权矩阵,
Figure BDA0002974640490000057
通过优化代价函数,可得如下迭代辨识算法:
Figure BDA0002974640490000058
Figure BDA0002974640490000059
Figure BDA00029746404900000510
Figure BDA00029746404900000511
实施例三
Figure BDA00029746404900000512
进行偏差补偿,可得时变参数的无偏估计值为:
Figure BDA00029746404900000513
其中
Figure BDA00029746404900000514
Figure BDA00029746404900000515
为噪声方差估计值,按下式获得:
Figure BDA00029746404900000516
代价函数按下式进行迭代更新:
Figure BDA00029746404900000517
实施例四
按如下过程,通过迭代实验估计时变参数。
(1)初始化;置迭代次数j=0;为各时刻的参数估计值
Figure BDA0002974640490000061
P0(k)赋初值;确定权重系数w1、w2
(2)j+1。运行***,采集***输入输出数据,构造
Figure BDA0002974640490000062
计算
Figure BDA0002974640490000063
Figure BDA0002974640490000064
(3)更新估计值
Figure BDA0002974640490000065
Figure BDA0002974640490000066
Figure BDA0002974640490000067
(4)估计噪声方差
Figure BDA0002974640490000068
Figure BDA0002974640490000069
Figure BDA00029746404900000610
(5)更经偏差补偿之后的参数估计值
Figure BDA00029746404900000611
Figure BDA00029746404900000612
(6)当迭代次数j达到最大允许次数或
Figure BDA00029746404900000613
达到一个较小的满意值,停止迭代,否者转到(2)
图1给出了本方法经过500次迭代后四个时变参数的估计值与遗忘因子最小二乘方法估计值的比较,图2给出了参数估计误差
Figure BDA00029746404900000614
的比较,明显可以看出所提出的方法,估计延迟较小,精度较高。

Claims (6)

1.一种线性时变***参数辨识方法,其特征在于,所述线性时变***在有限时间间隔内可反复多次运行,尽管***参数是时变的,但是同一时刻的参数在***每次运行时不发生改变,即***参数不随运行次数而发生变化。
2.根据权利要求1所述的一种线性时变***参数辨识方法,其特征在于,它包括以下步骤:
步骤一:建立线性时变***的回归方程;
步骤二:确定二次型代价函数,通过优化代价函数获得时变参数的估计值;
步骤三:对步骤二中确定的参数估计值进行补偿,消除由噪声引起的参数估计偏差;
步骤四:通过迭代方式对参数值进行循环估计,不断提高估计精度。
3.根据权利要求2所述的一种线性时变***参数辨识方法,其特征在于,所述步骤一中,考虑如下形式的线性时变***:
Figure FDA0002974640480000011
其中u(k)、y(k)分别为***的输入与输出,v(k)为量测噪声。A(k,z)、B(k,z)为包含***未知参数的互质多项式,且
A(k,z)=1+a1(k)z-1+...+an(k)z-n
B(k,z)=b1(k)z-1+...+bn(k)z-m
z-1为单位后移算子。定义参数向量θ(k)、信息向量
Figure FDA00029746404800000110
和噪声向量ψ(k)分别如下所示:
Figure FDA0002974640480000012
Figure FDA0002974640480000013
Figure FDA0002974640480000014
第j次迭代***的回归方程可表示为:
Figure FDA0002974640480000015
其中
Figure FDA0002974640480000016
ψj(k)=[vj(k-1) ... vj(k-n) 0 ... 0]
4.根据权利要求2所述的一种线性时变***参数辨识方法,其特征在于,所述步骤二中,考虑1~j次迭代,沿迭代轴构造信息矩阵Φj(k)、噪声矩阵Ψj(k)、输出矢量Yj(k)、噪声矢量Vj(k)分别为:
Figure FDA0002974640480000017
Figure FDA0002974640480000018
Figure FDA0002974640480000019
Figure FDA0002974640480000021
取代价函数如下:
Figure FDA0002974640480000022
其中W1=w1Ij×j>0,W2=w2I(n+m)×(n+m)>0为正定加权矩阵,
Figure FDA0002974640480000023
通过优化代价函数,可得如下迭代辨识算法:
Figure FDA0002974640480000024
Figure FDA0002974640480000025
Figure FDA0002974640480000026
Figure FDA0002974640480000027
5.根据权利要求2所述的一种线性时变***参数辨识方法,其特征在于,所述步骤三中,对
Figure FDA0002974640480000028
进行偏差补偿,得到的时变参数的无偏估计值为:
Figure FDA0002974640480000029
其中
Figure FDA00029746404800000210
Figure FDA00029746404800000211
为噪声方差估计值,按下式获得:
Figure FDA00029746404800000212
代价函数按下式进行迭代更新:
Figure FDA00029746404800000213
6.根据权利要求2所述的一种线性时变***参数辨识方法,其特征在于,所述步骤四中,按如下过程,通过迭代实验循环估计时变参数;
(1)初始化;置迭代次数j=0;为各时刻的参数估计值
Figure FDA00029746404800000214
P0(k)赋初值;确定权重系数w1、w2
(2)j+1;运行***,采集***输入输出数据,构造
Figure FDA00029746404800000215
按权利要求4中的方法计算Lj(k)与Pj(k);
(3)按权利要求4中的方法更新估计值
Figure FDA00029746404800000216
(4)按权利要求5中的方法更新代价函数估计值Jj(k),估计噪声方差
Figure FDA00029746404800000217
(5)按权利要求5中的方法更新经偏差补偿之后的参数估计值
Figure FDA0002974640480000031
(6)当迭代次数j达到最大允许次数或
Figure FDA0002974640480000032
达到一个较小的满意值,停止迭代,否者转到(2)。
CN202110278767.0A 2021-03-13 2021-03-13 一种线性时变***参数辨识方法 Pending CN113111717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110278767.0A CN113111717A (zh) 2021-03-13 2021-03-13 一种线性时变***参数辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110278767.0A CN113111717A (zh) 2021-03-13 2021-03-13 一种线性时变***参数辨识方法

Publications (1)

Publication Number Publication Date
CN113111717A true CN113111717A (zh) 2021-07-13

Family

ID=76711493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110278767.0A Pending CN113111717A (zh) 2021-03-13 2021-03-13 一种线性时变***参数辨识方法

Country Status (1)

Country Link
CN (1) CN113111717A (zh)

Similar Documents

Publication Publication Date Title
Li et al. A novel nonlinear optimization method for fitting a noisy Gaussian activation function
CN111178385B (zh) 一种鲁棒在线多传感器融合的目标跟踪方法
CN112115419B (zh) ***状态估计方法、***状态估计装置
KR20160021209A (ko) 동적 모델 식별을 모니터링 및 가변 구조 또는 가변 동작 조건을 가진 동적 기기의 제어 방법 및 시스템
CN107451102A (zh) 一种改进自训练算法的半监督高斯过程回归软测量建模方法
CN110907835B (zh) 一种具有噪声免疫特性的电池模型参数辨识与soc估计方法
CN110826021B (zh) 一种非线性工业过程鲁棒辨识和输出估计方法
CN116088303B (zh) 一种不确定复杂动态网络状态时变递推估计方法
Bi et al. Parameter estimation of fractional‐order Hammerstein state space system based on the extended Kalman filter
JP2009277226A (ja) プロセスモデルの状態量のリアルタイム計算方法およびシミュレータ
CN108021095B (zh) 一种基于置信域算法的多维空间轮廓误差估计方法
Li et al. A wiener-based remaining useful life prediction method with multiple degradation patterns
CN111208425A (zh) 高精度异步电机***状态模型的构建方法及异步电机状态检测方法
CN113111717A (zh) 一种线性时变***参数辨识方法
CN109582915B (zh) 应用于纯方位跟踪的改进非线性可观测度自适应滤波方法
Pu et al. Expectation maximization algorithm for time-delay output-error models based on finite impulse response method
CN116527515A (zh) 基于轮询协议的远程状态估计方法
CN115688924A (zh) 一种多样本联合多元自适应回归样条模型
Zheng et al. A filtering‐based recursive extended least squares algorithm and its convergence for finite impulse response moving average systems
Qin et al. Strong tracking filter-based fault diagnosis of networked control system with multiple packet dropouts and parameter perturbations
Moravej Khorasani et al. Identification of EIV models by compensated PEM
CN117057159B (zh) 一种周期调度协议下基于三轮车运动模型的状态估计方法
Ping et al. Parameters-transfer identification for dynamic systems and recursive form
CN109992907A (zh) 基于粒子群的连续搅拌釜反应器维纳非线性模型辨识方法
Wang et al. The identification of multivariable systems based on a new two-stage hierarchical least-squares iterative algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210713