CN113105654B - 一种高含量聚苯胺基导电水凝胶材料及其应用 - Google Patents

一种高含量聚苯胺基导电水凝胶材料及其应用 Download PDF

Info

Publication number
CN113105654B
CN113105654B CN202110391708.4A CN202110391708A CN113105654B CN 113105654 B CN113105654 B CN 113105654B CN 202110391708 A CN202110391708 A CN 202110391708A CN 113105654 B CN113105654 B CN 113105654B
Authority
CN
China
Prior art keywords
polyaniline
acrylamide
hydrogel
solution
based conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110391708.4A
Other languages
English (en)
Other versions
CN113105654A (zh
Inventor
李月琴
龚强
刘晓慧
钱昌浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202110391708.4A priority Critical patent/CN113105654B/zh
Publication of CN113105654A publication Critical patent/CN113105654A/zh
Application granted granted Critical
Publication of CN113105654B publication Critical patent/CN113105654B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种高含量聚苯胺基导电水凝胶材料及其应用。本发明通过羧甲基纤维素钠为模板介导苯胺单体的原位聚合,获得高浓度聚苯胺的预凝胶分散液。在分散液中引入聚乙烯亚胺、丙烯酰胺单体、交联剂N,N‑亚甲基双丙烯酰和引发剂2,2‑偶氮二(2‑甲基丙基咪)二盐酸盐和电解质磷酸,进行原位氧化聚合实现凝胶化。通过调节组分添加量,最终获得机械性能和电活性协同增强的导电聚苯胺水凝胶复合材料。本发明中高含量的聚苯胺赋予材料优异的电化学活性,作为电极材料,能实现全凝胶态的超级电容器。

Description

一种高含量聚苯胺基导电水凝胶材料及其应用
技术领域
本发明属于导电水凝胶制备领域,具体涉及一种高含量聚苯胺基导电水凝胶材料及其应用。
背景技术
导电水凝胶作为新兴的功能材料,因具有高度的柔韧性和出色的导电性被广泛应用于柔性超级电容器或柔性传感器中。通过掺杂可控的导电填料(例如导电聚合物、纳米金属颗粒和纳米碳材料)已经实现了导电水凝胶的较高的导电率。其中,具有低成本和出色电容性能的导电聚合物被认为是制备导电水凝胶的极有希望的材料。基于导电聚合物的导电水凝胶通常都是通过从导电聚合物纳米填料悬浮液中凝胶化或在预制的水凝胶中原位聚合导电聚合物来制备的。然而大多数导电水凝胶仍具有较差的机械性能,尤其是在酸性介质中进行原位聚合时,预制的水凝胶基质的机械强度会随着水凝胶***或溶胀而大大降低。而利用分子自组装,羧甲基纤维素链上含有大量的活性功能基团,可以调控聚苯胺的原位聚合生成分子链缠结的纳米结构,实现高负载聚苯胺分散体系。
另一方面,为了克服固有的脆性并获得坚韧的导电水凝胶,在水凝胶基质构建物理与化学交联的多种聚合物网络能获得优异的机械性能。其中,具有高效拓扑微观结构和共价交联作用的双网络水凝胶作为导电填料的支架已显示出极高的应用价值。包含物理交联的脆性第一网络和化学交联的第二网络的双网络水凝胶表现出极好的机械性能、极佳的可拉伸性、回弹性和抗疲劳性。因此,利用聚乙烯亚胺作为第一网络,并引入具有链顺应性和可调节交联度的聚丙烯酰胺作为第二网络来调节双网络水凝胶的机械性能。在高负载聚苯胺分散体系加入聚乙烯亚胺和丙烯酰胺的单体,通过第二次原位氧化聚合,实现多重网络的构筑,从而实现用于柔性电子的功能材料。
发明内容
本发明的目的是,针对现有导电水凝胶材料难以同时获得较优异的机械性能和导电性能的问题,提供一种高含量聚苯胺基导电水凝胶材料。
本发明提供以下技术方案实现:
一种高含量聚苯胺基导电水凝胶材料,该材料是以羧甲基纤维素钠、苯胺、丙烯酰胺、聚乙烯亚胺、磷酸等作为主要原料经过两步原位氧化聚合制得机械性能和电活性协同增强的导电聚合物水凝胶复合材料。
其制备方法是在羧甲基纤维素钠加入溶液中加入苯胺单体、过硫酸铵和浓盐酸,进行第一次原位聚合得到聚苯胺/羧甲基纤维素钠预凝胶分散液;该分散液经过透析后,加入浓磷酸、聚乙烯亚胺、丙烯酰胺、N,N-亚甲基双丙烯酰和2,2-偶氮二(2-甲基丙基咪)二盐酸盐,并转移至模具中进行第二次原位聚合,得到高含量聚苯胺基导电水凝胶材料。
上述技术方案中,在进行第一次原位聚合时,羧甲基纤维素钠为1wt%,苯胺的浓度为0.1~1mol/L,浓盐酸为1mol/L,过硫酸铵与苯胺单体的摩尔比为1∶1,反应温度为0℃,反应温度为12小时。
进一步的,进行第二次原位聚合时,依次添加聚苯胺/羧甲基纤维素钠预凝胶分散液、浓磷酸、聚乙烯亚胺、丙烯酰胺,四者重量比为:1∶1∶0.04∶0.4~1∶1∶0.1∶1;N,N-亚甲基双丙烯酰胺的添加量为丙烯酰胺的0.06wt%~0.2wt%,2,2-偶氮二(2-甲基丙基咪)二盐酸盐添加量为丙烯酰胺的2.5wt%,模具置于60℃水浴中保温1h形成聚苯胺基导电水凝胶。
采用该方法制得的聚苯胺水凝胶,该材料聚苯胺的含量高达2.2~6.5mg/cm3,具有优异的拉伸性能和导电性能,断裂伸长率最大可达750%,电导率最大可达1.46S/cm。且采用该方法制备所述的水凝胶材料,在第二次原位聚合过程中,可以通过改变丙烯酰胺的添加量,以及丙烯酰胺/N,N-亚甲基双丙烯酰胺的比例实现对导电水凝胶导电性能与机械性能的调控;在所述混合物溶液范围内,随着聚苯胺含量的不断提高,水凝胶的电导率不断提高,断裂伸长率增加。
本发明还提供了通过上述制备方法制得的聚苯胺基导电水凝胶材料制备三明治结构的全凝胶态超级电容器:将两片聚苯胺基导电水凝胶电极(1.0×1.0×0.1cm3)与相同制备方法不含聚苯胺的水凝胶电解质(1.1×1.1×0.1cm3)组装成三明治结构,然后以碳布作为集流体贴至电极材料上就可以形成柔性超级电容器,不需要其他的封装材料,器件在室温下能保持很好的循环稳定性及耐高/低温的极端环境。
有益效果
相对现有技术,本发明具有以下优点:
(1)同时以羧甲基纤维素钠、苯胺、丙烯酰胺、聚乙烯亚胺、磷酸等作为主要原料经过两步原位氧化聚合制得机械性能和电活性协同增强的导电聚合物水凝胶复合材料,该材料同时具有优异的力学和导电性能;
(2)聚苯胺/羧甲基纤维素钠分散液非常稳定,能确保聚苯胺高浓度负载于水凝胶中;
(3)使用聚乙烯亚胺作为凝胶骨架的第一网络,提供了更多的物理相互作用,从而使水凝胶具有了更强的界面粘合力,在组装器件时增加了与集流体的界面结合能力;
(4)在第二次原位聚合过程中,可以通过改变丙烯酰胺的添加量,以及丙烯酰胺/N,N-亚甲基双丙烯酰胺的比例实现对导电水凝胶导电性能与机械性能的调控;在所述混合物溶液范围内,随着聚苯胺含量的不断提高,水凝胶的电导率不断提高,断裂伸长率增加
(5)由于聚苯胺的高负载量,所组装的超级电容器表现出高比电容670mF/cm2,器件在在室温下能保持很好的循环稳定性,5000次循环电容衰减只有4%,且电化学性能在高/低温的极端环境下能保持稳定。
附图说明
图1为苯胺单体浓度为0.8mol/L制备的聚苯胺基导电水凝胶的拉伸效果。
图2为不同苯胺浓度(0.3,0.6,0.8mol/L)制备的聚苯胺基导电水凝胶组装的超级电容器在10mV/s的循环伏安曲线。
图3为不同苯胺浓度(0.3,0.6,0.8mol/L)制备的聚苯胺基导电水凝胶组装的超级电容器在0.5mA/cm2的充放电曲线。
图4为苯胺单体浓度为0.8mol/L制备聚苯胺基导电水凝胶的组装的超级电容器的循环稳定性曲线。
图5为苯胺单体浓度为0.8mol/L制备聚苯胺基导电水凝胶的组装的超级电容器的在-30~100℃下的循环伏安曲线。
图6为苯胺单体浓度为0.8mol/L制备聚苯胺基导电水凝胶的组装的超级电容器的在-30~100℃下的充放电曲线。
具体实施方式
下面结合具体的实施例对本发明做进一步详细的说明,但不限于这些实施例。
实施例1
先将羧甲基纤维素钠加入到去离子水中并在90℃下搅拌溶解形成透明的羧甲基纤维素钠溶液(39g;1wt%)。将一定量的过硫酸铵(与苯胺单体的摩尔比为1∶1)和浓盐酸(4.3g;1M)加入到羧甲基纤维素溶液中室温下搅拌至溶液均一后在冰浴条件下搅拌30min至溶液温度降至0℃。然后将提前预冷的苯胺(1.11g,0.012mol)单体加入到上述溶液中,快速搅拌并在冰浴条件下反应12h。随后将溶液透析3h后再保存在4℃的冰箱中备用,标记为CMC-PANI0.3M
将CMC-PANI0.3M溶液(2g)、浓磷酸(2g)、聚乙烯亚胺(0.08g)、丙烯酰胺(0.8g)和N,N-亚甲基双丙烯酰胺(1.2mg)依次混合形成均匀溶液。随后,将引发剂2,2-偶氮二(2-甲基丙基咪)二盐酸盐(0.02g)加入上述溶液中以形成预凝胶溶液,并将该溶液转移到模具中在60℃下保温1h形成水凝胶。
将该水凝胶进行机械性能测试,断裂伸长率为400%。将该水凝胶切成尺寸为1.0×1.0×0.1cm3电极片,四探针法测试电导率,为0.86S/cm;将两片电极与相同情况下制备的无聚苯胺的水凝胶电解质(1.1×1.1×0.1cm3)组装夹心结构形成柔性超级电容器,并搭载在碳布上通过CHI760E电化学工作站对其的电化学性能进行测试和评估,获得215mF/cm2的比电容。
实施例2
先将羧甲基纤维素钠加入到去离子水中并在90℃下搅拌溶解形成透明的羧甲基纤维素钠溶液(39g;1wt%)。将一定量的过硫酸铵(与苯胺单体的摩尔比为1∶1)和浓盐酸(4.3g;1M)加入到羧甲基纤维素溶液中室温下搅拌至溶液均一后在冰浴条件下搅拌30min至溶液温度降至0℃。然后将提前预冷的苯胺(2.22g,0.024mol)单体加入到上述溶液中,快速搅拌并在冰浴条件下反应12h。随后将溶液透析3h后再保存在4℃的冰箱中备用,标记为CMC-PANI0.6M
将CMC-PANI0.3M溶液(2g)、浓磷酸(2g)、聚乙烯亚胺(0.08g)、丙烯酰胺(0.8g)和N,N-亚甲基双丙烯酰胺(1.4mg)依次混合形成均匀溶液。随后,将引发剂2,2-偶氮二(2-甲基丙基咪)二盐酸盐(0.02g)加入上述溶液中以形成预凝胶溶液,并将该溶液转移到模具中在60℃下保温1h形成水凝胶。
将该水凝胶进行机械性能测试,断裂伸长率为550%。将该水凝胶切成尺寸为1.0×1.0×0.1cm3电极片,四探针法测试电导率,为1.12S/cm;将两片电极与相同情况下制备的无聚苯胺的水凝胶电解质(1.1×1.1×0.1cm3)组装夹心结构形成柔性超级电容器,并搭载在碳布上通过CHI760E电化学工作站对其的电化学性能进行测试和评估,获得462mF/cm2的比电容。
实施例3
先将羧甲基纤维素钠加入到去离子水中并在90℃下搅拌溶解形成透明的羧甲基纤维素钠溶液(39g;1wt%)。将一定量的过硫酸铵(与苯胺单体的摩尔比为1∶1)和浓盐酸(4.3g;1M)加入到羧甲基纤维素溶液中室温下搅拌至溶液均一后在冰浴条件下搅拌30min至溶液温度降至0℃。然后将提前预冷的苯胺(2.98g,0.032mol)单体加入到上述溶液中,快速搅拌并在冰浴条件下反应12h。随后将溶液透析3h后再保存在4℃的冰箱中备用,标记为CMC-PANI0.8M
将CMC-PANI0.8M溶液(2g)、浓磷酸(2g)、聚乙烯亚胺(0.08g)、丙烯酰胺(0.8g)和N,N-亚甲基双丙烯酰胺(1.4mg)依次混合形成均匀溶液。随后,将引发剂2,2-偶氮二(2-甲基丙基咪)二盐酸盐(0.02g)加入上述溶液中以形成预凝胶溶液,并将该溶液转移到模具中在60℃下保温1h形成水凝胶。
将该水凝胶进行机械性能测试,断裂伸长率为750%。将该水凝胶切成尺寸为1.0×1.0×0.1cm3电极片,四探针法测试电导率,为1.46S/cm;将两片电极与相同情况下制备的无聚苯胺的水凝胶电解质(1.1×1.1×0.1cm3)组装夹心结构形成柔性超级电容器,并搭载在碳布上通过CHI760E电化学工作站对其的电化学性能进行测试和评估,获得670mF/cm2的比电容。
实施例4
先将羧甲基纤维素钠加入到去离子水中并在90℃下搅拌溶解形成透明的羧甲基纤维素钠溶液(39g;1wt%)。将一定量的过硫酸铵(与苯胺单体的摩尔比为1∶1)和浓盐酸(4.3g;1M)加入到羧甲基纤维素溶液中室温下搅拌至溶液均一后在冰浴条件下搅拌30min至溶液温度降至0℃。然后将提前预冷的苯胺(2.98g,0.032mol)单体加入到上述溶液中,快速搅拌并在冰浴条件下反应12h。随后将溶液透析3h后再保存在4℃的冰箱中备用,标记为CMC-PANI0.8M
将CMC-PANI0.8M溶液(2g)、浓磷酸(2g)、聚乙烯亚胺(0.08g)、丙烯酰胺(1.0g)和N,N-亚甲基双丙烯酰胺(2.0mg)依次混合形成均匀溶液。随后,将引发剂2,2-偶氮二(2-甲基丙基咪)二盐酸盐(0.02g)加入上述溶液中以形成预凝胶溶液,并将该溶液转移到模具中在60℃下保温1h形成水凝胶。
将该水凝胶进行机械性能测试,断裂伸长率为650%。将该水凝胶切成尺寸为1.0×1.0×0.1cm3电极片,四探针法测试电导率,为1.42S/cm;将两片电极与相同情况下制备的无聚苯胺的水凝胶电解质(1.1×1.1×0.1cm3)组装夹心结构形成柔性超级电容器,并搭载在碳布上通过CHI760E电化学工作站对其的电化学性能进行测试和评估,获得636mF/cm2的比电容。
实施例5
先将羧甲基纤维素钠加入到去离子水中并在90℃下搅拌溶解形成透明的羧甲基纤维素钠溶液(39g;1wt%)。将一定量的过硫酸铵(与苯胺单体的摩尔比为1∶1)和浓盐酸(4.3g;1M)加入到羧甲基纤维素溶液中室温下搅拌至溶液均一后在冰浴条件下搅拌30min至溶液温度降至0℃。然后将提前预冷的苯胺(3.72g,0.04mol)单体加入到上述溶液中,快速搅拌并在冰浴条件下反应12h。随后将溶液透析3h后再保存在4℃的冰箱中备用,标记为CMC-PANI1.0M
将CMC-PANI1.0M溶液(2g)、浓磷酸(2g)、聚乙烯亚胺(0.08g)、丙烯酰胺(1.0g)和N,N-亚甲基双丙烯酰胺(2.0mg)依次混合形成均匀溶液。随后,将引发剂2,2-偶氮二(2-甲基丙基咪)二盐酸盐(0.02g)加入上述溶液中以形成预凝胶溶液,并将该溶液转移到模具中在60℃下保温1h形成水凝胶。
将该水凝胶进行机械性能测试,断裂伸长率为600%。将该水凝胶切成尺寸为1.0×1.0×0.1cm3电极片,四探针法测试电导率,为1.24S/cm;将两片电极与相同情况下制备的无聚苯胺的水凝胶电解质(1.1×1.1×0.1cm3)组装夹心结构形成柔性超级电容器,并搭载在碳布上通过CHI760E电化学工作站对其的电化学性能进行测试和评估,获得605mF/cm2的比电容。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (4)

1.一种聚苯胺基导电水凝胶材料,其特征在于,该材料是以羧甲基纤维素钠、苯胺、丙烯酰胺、聚乙烯亚胺、浓磷酸作为主要原料经过两步原位氧化聚合制得机械性能和电活性协同增强的导电聚合物水凝胶复合材料;该材料的制备方法是在羧甲基纤维素钠溶液中加入苯胺单体、过硫酸铵和浓盐酸,进行第一次原位聚合得到聚苯胺/羧甲基纤维素钠预凝胶分散液;该分散液经过透析后,加入浓磷酸、聚乙烯亚胺、丙烯酰胺、N,N-亚甲基双丙烯酰胺和2,2-偶氮二(2-甲基丙基脒)二盐酸盐,并转移至模具中进行第二次原位聚合,得到高含量聚苯胺基导电水凝胶材料;其中,聚苯胺的含量为2.2~6.5 mg/cm3
2.根据权利要求1所述的聚苯胺基导电水凝胶材料,其特征在于,进行第一次原位聚合时,羧甲基纤维素钠溶液的浓度为1wt%,苯胺的浓度为0.1~1 mol/L,浓盐酸为1 mol/L,过硫酸铵与苯胺单体的摩尔比为1∶1,反应温度为0 ℃,反应温度为12小时。
3.根据权利要求1所述的聚苯胺基导电水凝胶材料,其特征在于,进行第二次原位聚合时,依次添加聚苯胺/羧甲基纤维素钠预凝胶分散液、浓磷酸、聚乙烯亚胺、丙烯酰胺,四者重量比为:1∶1∶0.04∶0.4~1∶1∶0.1∶1;N,N-亚甲基双丙烯酰胺的添加量为丙烯酰胺的0.06wt%~0.2wt%,2,2-偶氮二(2-甲基丙基脒)二盐酸盐添加量为丙烯酰胺的2.5wt%,模具置于60℃水浴中保温1h形成聚苯胺基导电水凝胶。
4.如权利要求1-3任一项所述的聚苯胺基导电水凝胶材料,其特征在于,该材料具有优异的拉伸性能和导电性能,断裂伸长率最大为750%,电导率最大为1.46 S/cm;所述材料在组装的柔性超级电容器中,面积比电容值高达到670 mF/cm2
CN202110391708.4A 2021-04-12 2021-04-12 一种高含量聚苯胺基导电水凝胶材料及其应用 Expired - Fee Related CN113105654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110391708.4A CN113105654B (zh) 2021-04-12 2021-04-12 一种高含量聚苯胺基导电水凝胶材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110391708.4A CN113105654B (zh) 2021-04-12 2021-04-12 一种高含量聚苯胺基导电水凝胶材料及其应用

Publications (2)

Publication Number Publication Date
CN113105654A CN113105654A (zh) 2021-07-13
CN113105654B true CN113105654B (zh) 2022-09-23

Family

ID=76715832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110391708.4A Expired - Fee Related CN113105654B (zh) 2021-04-12 2021-04-12 一种高含量聚苯胺基导电水凝胶材料及其应用

Country Status (1)

Country Link
CN (1) CN113105654B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058030B (zh) * 2021-11-16 2023-04-07 吉林大学 一种聚乙烯亚胺/聚氨酯水凝胶电解质及制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030551A (en) * 1999-04-07 2000-02-29 Conpoly Technology Co., Ltd. Polyaniline-containing solution and method for preparing the same
CN110551353A (zh) * 2019-09-06 2019-12-10 云南师范大学 大体积且不易破碎的晶胶材料及其制备方法与应用
CN110993360A (zh) * 2019-11-25 2020-04-10 广西大学 一体式电极复合材料和柔性超级电容的制备方法

Also Published As

Publication number Publication date
CN113105654A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
Wang et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors
Mawad et al. Conductive polymer hydrogels
Yu et al. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors
Qin et al. Multifunctional supramolecular gel polymer electrolyte for self-healable and cold-resistant supercapacitor
CN108395547B (zh) 一种基于石墨烯/纤维素基的微型聚丙烯酰胺水凝胶及其制备方法
KR101016276B1 (ko) 고분자 전해질과 그 제조방법, 및 전기 화학 소자
CN109897316B (zh) 一种聚苯胺/聚乙烯醇复合导电凝胶的制备方法
CN113337059A (zh) 一种可拉伸自愈合导电聚合物水凝胶、制备方法及其应用
CN109880127B (zh) 一种高强度的三重网络聚吡咯基导电复合水凝胶材料的制备方法
Sun et al. Conductive, stretchable, and self-healing ionic gel based on dynamic covalent bonds and electrostatic interaction
CN110767470B (zh) 一种基于抗冻水凝胶电解质的超级电容器及其制备方法
CN112940353B (zh) 一种纤维素/石墨烯/聚苯胺复合凝胶的自组装制备方法
CN110808175A (zh) 一种电活性生物质/聚吡咯水凝胶及其制备方法和应用
CN113105654B (zh) 一种高含量聚苯胺基导电水凝胶材料及其应用
Yang et al. Polypyrrole doped with redox-active poly (2-methoxyaniline-5-sulfonic acid) for lithium secondary batteries
WO2000002949A1 (en) Polymer gel electrode
CN107698914B (zh) 一种柔性记忆高分子导电复合水凝胶的制备方法
Ma et al. A self-healing hydrogel electrolyte towards all-in-one flexible supercapacitors
Tang et al. 2-Methylimidazole assisted synthesis of nanocrystalline shell reinforced PPy hydrogel with high mechanical and electrochemical performance
Zhang et al. Design of co-continuous structure of cellulose/PAA-based alkaline solid polyelectrolyte for flexible zinc-air battery
CN113185735B (zh) 一种抗冻超分子水凝胶电解质薄膜及其制备和应用
CN108017784B (zh) 杂化导电水凝胶其制备方法和应用
CN107746572B (zh) 分级多孔结构pnma/木质素磺酸杂化水凝胶的制备方法
LU500942B1 (en) A Preparation Method and Application of MAA/PEDOT:PSS Conductive Hydrogel
CN111675797B (zh) 一种基于maa/pedot:pss导电水凝胶的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220923