CN113097032B - 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法 - Google Patents

长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法 Download PDF

Info

Publication number
CN113097032B
CN113097032B CN202110443718.8A CN202110443718A CN113097032B CN 113097032 B CN113097032 B CN 113097032B CN 202110443718 A CN202110443718 A CN 202110443718A CN 113097032 B CN113097032 B CN 113097032B
Authority
CN
China
Prior art keywords
graphite
micro
column array
cathode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110443718.8A
Other languages
English (en)
Other versions
CN113097032A (zh
Inventor
程军
刘文元
柯昌凤
霍艳坤
陈昌华
孙钧
张贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute of Nuclear Technology
Original Assignee
Northwest Institute of Nuclear Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute of Nuclear Technology filed Critical Northwest Institute of Nuclear Technology
Priority to CN202110443718.8A priority Critical patent/CN113097032B/zh
Publication of CN113097032A publication Critical patent/CN113097032A/zh
Application granted granted Critical
Publication of CN113097032B publication Critical patent/CN113097032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J25/42Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and with a magnet system producing an H-field crossing the E-field
    • H01J25/46Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and with a magnet system producing an H-field crossing the E-field the backward travelling wave being utilised

Abstract

本发明涉及一种微波激射器,具体涉及一种微波激射器用长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法。本发明的目的是解决现有微柱石墨阴极结构存在凸起发射结构消耗严重,甚至完全失去凸起发射结构,从而失去稳定发射电子束流的作用,并且石墨材料自身的多孔结构经电子束轰击后易释气,导致***的真空度下降、束波的耦合效率降低以及***器件绝缘性下降的技术问题。该阴极结构包括微柱阵列石墨阴极,该微柱阵列石墨阴极包括刀口状环形石墨阴极基体,以及阵列式设置于刀口状环形石墨阴极基体刀口处表面的多个石墨微柱,其改进之处在于:所述刀口状环形石墨阴极基体的表面以及各个石墨微柱的顶端和侧壁都均匀粘附有金属涂层,所述金属涂层采用难熔金属。

Description

长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法
技术领域
本发明涉及一种微波激射器,具体涉及一种微波激射器用长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法。
背景技术
重复频率相对论返波管是极具发展潜力的高功率微波源。相对论返波管的阴极是其关键部件,主要用于在高功率脉冲的驱动下发射产生强流电子束。随着高功率微波器件朝着更高平均功率方向的发展,要求阴极具有电流发射密度大、寿命长、电子束流上升时间短、等离子膨胀速度低、发射电子束流稳定性好等特性(国防科技大学2019年华叶的学位论文《碳化物改性石墨材料的强流电子束发射和收集特性研究》中提到)。为了满足更高的应用需求,现有技术采用微柱阵列石墨阴极结构,该结构的阴极表面为柱状石墨柱阵列结构,圆柱的直径在数十微米到数百微米量级(王刚、苏建仓、刘文元等在2018年南京“2018年全国高电压与放电等离子体学术会议”的论文集中发表的“微柱石墨阴极气体开关击穿特性研究”中提到)。在高功率脉冲的驱动下,微柱结构有效提升了阴极发射电子束流稳定性、缩短了电子束流的上升时间。然而,由于微柱石墨阴极结构中构造的凸起点(即微柱结构的顶端)为电子束发射点,其高发射束流密度使得发射点处的电流密度非常高,进而使得微柱石墨阴极结构中凸起发射点消耗非常严重,甚至因发射电子过程中产生的微***冲击而脱落,最终导致微柱石墨阴极表面完全失去凸起发射结构,失去稳定发射电子束流的作用。此外,石墨材料自身的多孔结构使其经电子束轰击后易释气,导致***的真空度下降、束波的耦合效率降低以及***器件的绝缘性下降(唐运生、陈昌华和刘文元等于2020年在期刊《现代应用物理》的11卷2期020801发表的文章“沉积温度对TiC涂层微观形貌及导电性能的影响”中提到)。
发明内容
本发明的目的是解决现有微柱石墨阴极结构存在凸起发射结构消耗严重,甚至完全失去凸起发射结构,从而失去稳定发射电子束流的作用,并且石墨材料自身的多孔结构经电子束轰击后易释气,导致***的真空度下降、束波的耦合效率降低以及***器件绝缘性下降的技术问题,提供一种长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法。
为解决上述技术问题,本发明提供的技术解决方案如下:
本发明还提供一种长寿命微柱阵列石墨和金属的复合阴极结构,包括微柱阵列石墨阴极,该微柱阵列石墨阴极包括刀口状环形石墨阴极基体,以及阵列式设置于刀口状环形石墨阴极基体刀口处表面的多个石墨微柱;所述刀口状是指环形的厚度非常窄;其特殊之处在于:
所述刀口状环形石墨阴极基体的表面以及各个石墨微柱的顶端和侧壁都均匀粘附有金属涂层,所述金属涂层采用难熔金属。
进一步地,所述金属涂层的材料为Mo、W、Hf、Ta、Zr、Ti、Cr、V中的一种或多种。
进一步地,所述金属涂层的厚度在0.01~50μm范围内。
进一步地,所述金属涂层的厚度在1~10μm范围内。
进一步地,所述石墨微柱的直径为5μm~300μm,高度与直径的比为1:1~20:1,相邻石墨微柱轴线的距离为20μm~500μm。
进一步地,所述微柱阵列石墨阴极上的石墨微柱阵列由紫外激光刻蚀刀口状环形石墨阴极基体刀口处表面得到。
本发明还提供一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特殊之处在于,如图3所示,包括以下步骤:
1)将石墨加工成如图1所示的刀口状环形石墨阴极基体,将其清洗并烘干;
2)通过紫外激光刻蚀方式,在烘干后的刀口状环形石墨阴极基体刀口处a表面构筑石墨微柱阵列,得到如图2所示的微柱阵列石墨阴极,将其清洗并烘干;
3)将烘干后的微柱阵列石墨阴极极置于化学气相沉积炉中,以恒定升温速率将炉膛温度升至300~1200℃;
4)向化学气相沉积炉的炉膛内通入氢气作为还原性气体,将炉膛压力保持在0.1~20kPa;
5)将难熔金属的金属化合物加热至完全气化,并以恒定流速通入炉膛,进行还原反应0.5~10h;
6)停止通入氢气,自然降温后,得到长寿命微柱阵列石墨和金属的复合阴极结构。
进一步地,步骤3)中,所述升温速率为5~10℃/min;
将炉膛温度升至500~800℃。
进一步地,步骤5)中,所述金属化合物为金属氯化物;
所述金属化合物中的金属为Mo、W、Hf、Ta、Zr、Ti、Cr、V中的一种或多种。
进一步地,步骤5)中,所述还原反应的时长为2~5h。
本发明相比现有技术具有的有益效果如下:
1、本发明提供的长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法,包括刀口状环形石墨阴极基体,阵列式设置于刀口状环形石墨阴极基体刀口处表面的多个石墨微柱,以及在刀口状环形石墨阴极基体的表面与各个石墨微柱的顶端和侧壁都均匀粘附的金属涂层。在高功率脉冲的驱动下,由于电子发射位置均在微柱的顶端,且发射过程对微柱表面形貌影响不大,该复合阴极结构的石墨微柱阵列能够稳定、均匀地发射电子,不仅解决了常规石墨阴极电子发射位置随机变化、波动性大的问题,而且解决了微柱在高发射束流密度下寿命较短的难题。此外,该复合阴极结构可有效降低阴极表面等离子体的产生,提升高功率微波***长时间稳定工作的能力。
2、本发明提供的长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法,采用了激光刻蚀结合化学气相沉积法的制备途径。首先将石墨加工为所需形状的石墨阴极,而后利用紫外激光刻蚀方法在阴极表面刻蚀出一定规格的微柱阵列,再将微柱阵列石墨阴极置于化学气相沉积炉中,在一定条件下制得金属涂层,最终得到微柱阵列石墨和金属的复合阴极结构。本发明制备的微柱阵列石墨和金属复合阴极结构,在高功率脉冲的驱动下,每个微柱都能够有效发射电子,束流稳定性好、波动性小、均一性好,束流上升时间短,且兼具金属的高韧性、高强度、高熔点特点,在电子发射过程中,能够有效抑制石墨微柱崩裂、脱落以及石墨材料释气,能够保证阴极在高电压发射过程中长时稳定运行。
3、本发明提供的长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法,金属涂层是通过化学气相沉积法制得,与石墨微柱结合性能好,在使用过程中不易脱落。
4、本发明提供的长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法,得益于化学气相沉积法的沉积特点,金属在微柱顶部周围的沉积速率低于微柱底部周围的沉积速率,使得石墨和金属复合微柱的长径比适中,能够有效避免微柱因较大长径比(高度与直径的比值)而断裂,保证了发射束流的均一性。
5、本发明提供的长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法,采用石墨和难熔金属,难熔金属的等离子体膨胀速度低,质量损失小。
6、本发明提供的长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法,金属涂层的厚度一般在0.01~50μm范围内,优选地可控制在涂层厚度为1~10μm范围内,可使得寿命较长。
附图说明
图1为本发明中刀口状环形石墨阴极基体的剖面图,a为刀口处;
图2为本发明中微柱阵列石墨阴极的示意图,图中仅示出了刀口处微柱阵列;
图3为本发明长寿命微柱阵列石墨和金属的复合阴极结构制备方法流程图;
图4为本发明实施例1所得微柱阵列石墨阴极的扫描电镜图;
图5为本发明实施例1所得长寿命微柱阵列石墨和MO的复合阴极结构的扫描电镜图;
图6为本发明实施例1所得长寿命微柱阵列石墨和MO的复合阴极结构的表面分析EDS图。
具体实施方式
下面结合附图和实施例对本发明作进一步地说明。
实施例1
1)将石墨加工成刀口状环形石墨阴极基体,刀口状环形石墨阴极基体的外径(即外环直径)为50mm,壁厚(即外环半径减去内环半径)为1mm;将其在乙醇中超声清洗并置于烘箱中干燥备用;
2)通过紫外激光刻蚀方式,在烘干后的刀口状环形石墨阴极基体刀口处表面构筑石墨微柱阵列,石墨微柱的直径为20μm,高度与直径的比为6:1,相邻石墨微柱轴线的距离为60μm,得到微柱阵列石墨阴极,将其在乙醇中低功率超声清洗,除去石墨微柱周围的碎屑,并置于烘箱中干燥备用;
3)将烘干后的微柱阵列石墨阴极极置于化学气相沉积炉中,以10℃/min的升温速率将炉膛温度升至600℃;
4)向化学气相沉积炉的炉膛内,以100mL/min的流速,通入氢气作为还原性气体,将炉膛压力保持在5kPa,;
5)将MoCl5加热至300℃完全气化,并以30mL/min的流速通入炉膛,进行还原反应3h;
6)停止通入氢气,自然降温后,得到长寿命微柱阵列石墨和Mo的复合阴极结构。
图4为微柱阵列石墨阴极的扫描电镜图,图5为长寿命微柱阵列石墨和Mo复合阴极结构的扫描电镜图,图6为长寿命微柱阵列石墨和Mo复合阴极结构的表面分析EDS图,测试表明:Mo涂层均匀粘附在刀口状环形石墨阴极基体的表面以及各个石墨微柱的顶端和侧壁上。
实施例2
1)将石墨加工成刀口状环形石墨阴极基体,刀口状环形石墨阴极基体的外径(即外环直径)为100mm,壁厚(即外环半径减去内环半径)为1.5mm;将其在乙醇中超声清洗并置于烘箱中干燥备用;
2)通过紫外激光刻蚀方式,在烘干后的刀口状环形石墨阴极基体刀口处表面构筑石墨微柱阵列,石墨微柱的直径为40μm,高度与直径的比为5:1,相邻石墨微柱轴线的距离为100μm,得到微柱阵列石墨阴极,将其在乙醇中低功率超声清洗,除去石墨微柱周围的碎屑,并置于烘箱中干燥备用;
3)将烘干后的微柱阵列石墨阴极极置于化学气相沉积炉中,以10℃/min的升温速率将炉膛温度升至700℃;
4)向化学气相沉积炉的炉膛内,以150mL/min的流速,通入氢气作为还原性气体,将炉膛压力保持在1kPa;
5)将WCl6加热至350℃完全气化,并以50mL/min的流速通入炉膛,进行还原反应2h;
6)停止通入氢气,自然降温后,得到长寿命微柱阵列石墨和W的复合阴极结构。
实施例3
1)将石墨加工成刀口状环形石墨阴极基体,刀口状环形石墨阴极基体的外径(即外环直径)为50mm,壁厚(即外环半径减去内环半径)为1mm;将其在乙醇中超声清洗并置于烘箱中干燥备用;
2)通过紫外激光刻蚀方式,在烘干后的刀口状环形石墨阴极基体刀口处表面构筑石墨微柱阵列,石墨微柱的直径为5μm,高度与直径的比为20:1,相邻石墨微柱轴线的距离为20μm,得到微柱阵列石墨阴极,将其在乙醇中低功率超声清洗,除去石墨微柱周围的碎屑,并置于烘箱中干燥备用;
3)将烘干后的微柱阵列石墨阴极极置于化学气相沉积炉中,以5℃/min的升温速率将炉膛温度升至800℃;
4)向化学气相沉积炉的炉膛内,以100mL/min的流速,通入氢气作为还原性气体,将炉膛压力保持在0.1kPa,;
5)将TiCl4加热至完全气化,并以30mL/min的流速通入炉膛,进行还原反应0.5h;
6)停止通入氢气,自然降温后,得到长寿命微柱阵列石墨和Ti的复合阴极结构。
实施例4
1)将石墨加工成刀口状环形石墨阴极基体,刀口状环形石墨阴极基体的外径(即外环直径)为50mm,壁厚(即外环半径减去内环半径)为1mm;将其在乙醇中超声清洗并置于烘箱中干燥备用;
2)通过紫外激光刻蚀方式,在烘干后的刀口状环形石墨阴极基体刀口处表面构筑石墨微柱阵列,石墨微柱的直径为300μm,高度与直径的比为1:1,相邻石墨微柱轴线的距离为500μm,得到微柱阵列石墨阴极,将其在乙醇中低功率超声清洗,除去石墨微柱周围的碎屑,并置于烘箱中干燥备用;
3)将烘干后的微柱阵列石墨阴极极置于化学气相沉积炉中,以8℃/min的升温速率将炉膛温度升至1200℃;
4)向化学气相沉积炉的炉膛内,以100mL/min的流速,通入氢气作为还原性气体,将炉膛压力保持在20kPa,;
5)将ZrCl4加热至完全气化,并以30mL/min的流速通入炉膛,进行还原反应10h;
6)停止通入氢气,自然降温后,得到长寿命微柱阵列石墨和Zr的复合阴极结构。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制,对于本领域的普通专业技术人员来说,可以对前述各实施例所记载的具体技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明所保护技术方案的范围。

Claims (9)

1.一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,所述长寿命微柱阵列石墨和金属的复合阴极结构,包括微柱阵列石墨阴极,该微柱阵列石墨阴极包括刀口状环形石墨阴极基体,以及阵列式设置于刀口状环形石墨阴极基体刀口处表面的多个石墨微柱;所述刀口状环形石墨阴极基体的表面以及各个石墨微柱的顶端和侧壁都均匀粘附有金属涂层,所述金属涂层采用难熔金属;
其特征在于,方法包括以下步骤:
1)将石墨加工成刀口状环形石墨阴极基体,将其清洗并烘干;
2)通过紫外激光刻蚀方式,在烘干后的刀口状环形石墨阴极基体刀口处表面构筑石墨微柱阵列,得到微柱阵列石墨阴极,将其清洗并烘干;
3)将烘干后的微柱阵列石墨阴极极置于化学气相沉积炉中,以恒定升温速率将炉膛温度升至300~1200℃;
4)向化学气相沉积炉的炉膛内通入氢气作为还原性气体,将炉膛压力保持在0.1~20kPa;
5)将难熔金属的金属化合物加热至完全气化,并以恒定流速通入炉膛,进行还原反应0.5~10h;
6)停止通入氢气,自然降温后,得到长寿命微柱阵列石墨和金属的复合阴极结构。
2.根据权利要求1所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
步骤3)中,所述升温速率为5~10℃/min;
将炉膛温度升至500~800℃。
3.根据权利要求2所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
步骤5)中,所述金属化合物为金属氯化物;
所述金属化合物中的金属为Mo、W、Hf、Ta、Zr、Ti、Cr、V中的一种或多种。
4.根据权利要求3所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
步骤5)中,所述还原反应的时长为2~5h。
5.根据权利要求4所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
所述金属涂层的厚度在0.01~50μm范围内。
6.根据权利要求5所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
所述金属涂层的厚度在1~10μm范围内。
7.根据权利要求1至6任一所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
所述金属涂层的材料为Mo、W、Hf、Ta、Zr、Ti、Cr、V中的一种或多种。
8.根据权利要求7所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
所述石墨微柱的直径为5μm~300μm,高度与直径的比为1:1~20:1,相邻石墨微柱轴线的距离为20μm~500μm。
9.根据权利要求8所述的一种长寿命微柱阵列石墨和金属的复合阴极结构制备方法,其特征在于:
所述微柱阵列石墨阴极上的石墨微柱阵列由紫外激光刻蚀刀口状环形石墨阴极基体的刀口处表面得到。
CN202110443718.8A 2021-04-23 2021-04-23 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法 Active CN113097032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110443718.8A CN113097032B (zh) 2021-04-23 2021-04-23 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110443718.8A CN113097032B (zh) 2021-04-23 2021-04-23 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法

Publications (2)

Publication Number Publication Date
CN113097032A CN113097032A (zh) 2021-07-09
CN113097032B true CN113097032B (zh) 2023-10-20

Family

ID=76679644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110443718.8A Active CN113097032B (zh) 2021-04-23 2021-04-23 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法

Country Status (1)

Country Link
CN (1) CN113097032B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178669A (ja) * 2001-12-07 2003-06-27 Nippon Hoso Kyokai <Nhk> 冷陰極装置の作製方法及び冷陰極装置並びにそれを用いた表示装置
CN1479343A (zh) * 2003-09-09 2004-03-03 卫军民 一种大功率四极电子管及其制作方法
CN1581410A (zh) * 2003-08-07 2005-02-16 松下电器产业株式会社 磁控管
WO2011132985A2 (ko) * 2010-04-22 2011-10-27 고려대학교 산학협력단 전자 방출원 및 그 제조 방법
CN102683136A (zh) * 2011-03-07 2012-09-19 西南科技大学 石墨复合阴极材料及其制备方法
CN102683135A (zh) * 2011-03-07 2012-09-19 西南科技大学 天鹅绒复合阴极材料及其制备方法
US8766522B1 (en) * 2010-06-02 2014-07-01 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube fiber cathode
KR101730416B1 (ko) * 2015-11-26 2017-04-27 재단법인대구경북과학기술원 연필 흑연을 이용한 이차전지용 음극과 그 제조방법 및 이를 이용한 리튬이차전지
CN108767660A (zh) * 2018-05-23 2018-11-06 西北核技术研究所 一种微槽结构阴极气体火花开关
CN111105967A (zh) * 2019-12-24 2020-05-05 中国工程物理研究院应用电子学研究所 一种强流重复频率碳纤维—碳纳米管复合冷阴极及制备方法
CN111180292A (zh) * 2020-01-13 2020-05-19 东南大学 一种基于石墨烯/超材料复合纳米结构的场发射阴极及制备方法
US10811211B1 (en) * 2019-07-16 2020-10-20 Tsinghua University Carbon nanotube field emitter and preparation method thereof
CN112563094A (zh) * 2020-12-09 2021-03-26 西北核技术研究所 一种抑制无箔二极管中电子束回流的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178669A (ja) * 2001-12-07 2003-06-27 Nippon Hoso Kyokai <Nhk> 冷陰極装置の作製方法及び冷陰極装置並びにそれを用いた表示装置
CN1581410A (zh) * 2003-08-07 2005-02-16 松下电器产业株式会社 磁控管
CN1479343A (zh) * 2003-09-09 2004-03-03 卫军民 一种大功率四极电子管及其制作方法
WO2011132985A2 (ko) * 2010-04-22 2011-10-27 고려대학교 산학협력단 전자 방출원 및 그 제조 방법
US8766522B1 (en) * 2010-06-02 2014-07-01 The United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube fiber cathode
CN102683135A (zh) * 2011-03-07 2012-09-19 西南科技大学 天鹅绒复合阴极材料及其制备方法
CN102683136A (zh) * 2011-03-07 2012-09-19 西南科技大学 石墨复合阴极材料及其制备方法
KR101730416B1 (ko) * 2015-11-26 2017-04-27 재단법인대구경북과학기술원 연필 흑연을 이용한 이차전지용 음극과 그 제조방법 및 이를 이용한 리튬이차전지
CN108767660A (zh) * 2018-05-23 2018-11-06 西北核技术研究所 一种微槽结构阴极气体火花开关
US10811211B1 (en) * 2019-07-16 2020-10-20 Tsinghua University Carbon nanotube field emitter and preparation method thereof
CN111105967A (zh) * 2019-12-24 2020-05-05 中国工程物理研究院应用电子学研究所 一种强流重复频率碳纤维—碳纳米管复合冷阴极及制备方法
CN111180292A (zh) * 2020-01-13 2020-05-19 东南大学 一种基于石墨烯/超材料复合纳米结构的场发射阴极及制备方法
CN112563094A (zh) * 2020-12-09 2021-03-26 西北核技术研究所 一种抑制无箔二极管中电子束回流的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Research on the Emission Uniformity of Explosive Emission Cathodes in Foilless Diodes;Jun Sun et al;IEEE TRANSACTIONS ON PLASMA SCIENCE;第42卷(第9期);全文 *
向内发射同轴虚阴极振荡器实验研究;杨占峰 等;强激光与粒子束;第15卷(第12期);全文 *

Also Published As

Publication number Publication date
CN113097032A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US6710534B2 (en) Traveling wave tube having multilayer carbon-based emitter
JP3962420B2 (ja) カーボンナノウォールの製造方法、カーボンナノウォールおよび製造装置
Zhao et al. High current density and long-life nanocomposite scandate dispenser cathode fabrication
TW201010525A (en) Plasma treatment apparatus and method for plasma-assisted treatment of substrates
AU2009278058B2 (en) Electron emitter and field emission device provided with electron emitter
JP2006265079A (ja) プラズマ化学気相堆積装置及びカーボンナノチューブの製造方法
US20090214402A1 (en) Microplasma Array
JP4762945B2 (ja) カーボンナノウォール構造体
CN113097032B (zh) 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法
JP4786156B2 (ja) カーボンナノウォールの製造方法
Zhang et al. Pulse field emission characteristics of vertical few-layer graphene cold cathode
CN104934280A (zh) 一种外置式栅控冷阴极阵列电子枪
CN113802113A (zh) 一种改善反应过程中反射功率稳定性的等离子体发生装置
CN101140845B (zh) 微波源阴极及其制造方法
CN105118764B (zh) 一种圆片阵列阴极
Wu et al. Emission uniformity of an annular graphite cathode with a focusing electrode in a high power vacuum diode
JPH11204022A (ja) 冷陰極およびこの冷陰極を用いた素子
CN102683136B (zh) 石墨复合阴极材料及其制备方法
CN100342474C (zh) 一种离子注入提高碳纳米管薄膜电子场发射性能的方法
Kuznetsov Cathodes for electron guns
CN219738906U (zh) 一种利用等离子体激发电磁波的装置
CN102244971A (zh) 一种大气压直流弧放电等离子体发生装置及阴极制作方法
JP2007042352A (ja) 電界電子放出源及びそれを用いたマグネトロン及びマイクロ波応用装置
KR100343557B1 (ko) 카본 나노 튜브 전계 방출 소자를 이용한 전자총
Wang et al. Development of high peak power klystron in IECAS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant