CN113096964B - Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress - Google Patents

Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress Download PDF

Info

Publication number
CN113096964B
CN113096964B CN202110267410.2A CN202110267410A CN113096964B CN 113096964 B CN113096964 B CN 113096964B CN 202110267410 A CN202110267410 A CN 202110267410A CN 113096964 B CN113096964 B CN 113096964B
Authority
CN
China
Prior art keywords
electrode
expandable graphite
adhesive
preparation
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110267410.2A
Other languages
Chinese (zh)
Other versions
CN113096964A (en
Inventor
陈元振
信燕飞
吕光军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110267410.2A priority Critical patent/CN113096964B/en
Publication of CN113096964A publication Critical patent/CN113096964A/en
Application granted granted Critical
Publication of CN113096964B publication Critical patent/CN113096964B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses an electrode preparation method for realizing adhesive fibrosis based on expansion micro stress, which aims to solve the technical problem of low active substance loading capacity of electrode preparation under laboratory conditions. The preparation method of the electrode comprises the following steps: the electrode with the filamentous adhesive winding and wrapping the active substance is prepared by in-situ fiberization of the adhesive and uniform wrapping of the active substance and the conductive agent through the micro stress generated by the thermal expansion of the expandable graphite. In the method for realizing the fiberization of the adhesive based on the expansion micro-stress, the preparation of the electrode with large loading capacity can be realized by the participation of the expandable graphite; compared with the common method, the preparation method has shorter time and more convenient and simpler operation.

Description

Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress
Technical Field
The invention belongs to the technical field of electrode preparation, relates to the technical field of laboratory electrode preparation, and particularly relates to an electrode preparation method for realizing adhesive fibrosis based on expansion micro-stress.
Background
The super capacitor is used as a novel energy storage device, and has the advantages of high power density, long cycle life, wide application range and the like, thereby attracting wide attention; compared with a battery, the super capacitor has lower energy density but higher power density, so that the super capacitor has wide application prospect in occasions with higher power density requirements. Under the vigorous development of the new energy industry, the trend of mutually supplementing a composite system formed by a super capacitor and a battery is inevitable, and the super capacitor has a wider market prospect.
The current mature and commercialized product is organic system super capacitor, the active material is carbon material, and the main problem is still lower energy density. The water system mixed super capacitor uses the pseudo capacitor material as the anode, the carbon material as the cathode, and has better safety and higher energy density; when the hybrid supercapacitor is formed, the mass of the negative carbon material is usually 3-5 times that of the positive material due to the difference of the capacities of the positive electrode and the negative electrode. In laboratory research, a general electrode preparation method is to mix active substances, adhesives and conductive agents in a certain proportion to form slurry, and then coat the slurry on a current collector such as nickel foam and the like and dry the slurry; the drying process of the preparation method generally lasts for more than 12 hours, and the amount of the electrode active substance prepared at one time is generally about 5-20 mg. The industrial electrode preparation adopts a method similar to the battery production, wherein the novel method is to use the methods of rolling, high-speed shearing and the like to directly bond the adhesive with other materials, thus reducing the use of solvents and simplifying the process, but the method is difficult to realize under the laboratory conditions. Therefore, the preparation of the electrode with the ultra-large active material loading under the laboratory condition becomes a difficult point, so that the active material loading of the formed hybrid supercapacitor is difficult to increase, and further, the hybrid supercapacitor is difficult to form a large device for further research and exploration.
It is also becoming more common today to conduct laboratory studies and tests of pouch cells. The research scale of devices in laboratories can give better guidance to industrial production when the devices are close to industrialization regardless of supercapacitors or batteries, and under the condition that anode and cathode materials are sufficient, how to improve the active substance loading capacity and production efficiency of electrodes is an important issue.
Disclosure of Invention
The invention aims to provide an electrode preparation method for realizing adhesive fibrosis based on expansion micro stress, which aims to solve the technical problem of low active material loading of electrode preparation under existing laboratory conditions. In the method for realizing the fiberization of the adhesive based on the expansion micro stress, the preparation of the electrode with large loading capacity can be realized by the participation of the expandable graphite.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention relates to a preparation method of an electrode for realizing adhesive fibrosis based on expansion micro-stress, which comprises the following steps:
the electrode with the filamentous adhesive winding and wrapping the active substance is prepared by in-situ fiberization of the adhesive and uniform wrapping of the active substance and the conductive agent through the micro stress generated by the thermal expansion of the expandable graphite.
The invention is further improved in that the temperature range required by the thermal expansion of the expandable graphite to generate micro stress is 150-350 ℃.
The invention is further improved in that the adhesive is one or a mixture of several of polytetrafluoroethylene, polyvinylidene fluoride, polyether ether ketone, polyimide and polybenzimidazole.
The invention is further improved in that the step of in-situ fiberizing the adhesive and uniformly coating the active substance and the conductive agent by the micro stress generated by the thermal expansion of the expandable graphite specifically comprises the following steps:
mixing an active material, a binder, expandable graphite and a conductive agent to obtain a mixture; dispersing the mixture in an organic solvent to obtain a uniform reactant solution;
placing the uniform reactant solution in an environment with the temperature of 150-350 ℃, reacting for 1-3 h, and cooling to room temperature to obtain a heated product;
and (3) coating the heated product on foamed nickel, copper foil or aluminum foil, and pressing by using a tablet press to finish the preparation.
The invention is further improved in that the particle size of the expandable graphite is 100-300 meshes.
The further improvement of the invention is that the pressure provided by the tablet press is 6-10 MPa.
The invention is further improved in that the mass ratio of the mass of the organic solvent to the mass of the mixture is (0.2-1): 1.
the invention is further improved in that in the process of generating micro stress by the thermal expansion of the expandable graphite, the adopted heating equipment is one or a combination of a plurality of tubular furnaces, muffle furnaces, heating tables, microwave ovens and screw extruders with heating functions.
The electrode prepared by the electrode preparation method provided by the invention.
Compared with the prior art, the invention has the following beneficial effects:
the invention provides a preparation method of a large-capacity electrode for realizing adhesive fibrosis based on expansion micro stress, which utilizes the property that expandable graphite and adhesives such as Polytetrafluoroethylene (PTFE) and the like generate interaction in a certain temperature range to carry out in-situ fibrosis on the adhesives such as PTFE and the like through the expansion micro stress of the expandable graphite and uniformly wrap active substances, conductive agents and other additives, so that the electrode with the active substances wrapped and wrapped by filamentous adhesives can be prepared. Compared with the common method, the preparation method disclosed by the invention has the advantages of shorter time and more convenient and simpler operation.
The further preferable temperature range of the invention is 150-350 ℃; wherein, the temperature is too low, and the expandable graphite is not fully expanded; too high a temperature leads to excessive fiberization of the binder and the binder filaments become very fine and lack strength.
In the preparation method of the invention, the electrode has excellent plasticity, and the thickness and the shape of the electrode during pressing can be adjusted freely according to the situation.
In the electrode prepared by the invention, the adhesive such as Polytetrafluoroethylene (PTFE) is in-situ fibrillated under the action of thermal expansion of the expandable graphite to form filaments which uniformly bond all substances, the adhesive is more uniformly dispersed, and the negative influence of the adhesive on the electrode performance is reduced.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art are briefly introduced below; it is obvious that the drawings in the following description are some embodiments of the invention, and that for a person skilled in the art, other drawings can be derived from them without inventive effort.
FIG. 1 is a schematic block flow diagram of a method for preparing a high capacity electrode for binder fiberization based on expansive microstress in accordance with an embodiment of the present invention;
FIG. 2 is an SEM photograph of an activated carbon electrode of a supercapacitor prepared in example 1 of the present invention;
FIG. 3 is an SEM photograph of an activated carbon electrode of a supercapacitor prepared in example 1 of the present invention;
FIG. 4 is a graph showing the specific capacity versus current density of a series of electrodes in example 1 of the present invention;
FIG. 5 is a schematic representation of a portion of the product produced in example 2 of the instant invention;
FIG. 6 is an SEM photograph of a product prepared in example 2 of the present invention.
Detailed Description
In order to make the purpose, technical effect and technical solution of the embodiments of the present invention clearer, the following clearly and completely describes the technical solution of the embodiments of the present invention with reference to the drawings in the embodiments of the present invention; it is to be understood that the described embodiments are only some of the embodiments of the present invention. Other embodiments, which can be derived by one of ordinary skill in the art from the disclosed embodiments without inventive faculty, are intended to be within the scope of the invention.
The embodiment of the invention provides a preparation method of a large-load super capacitor electrode for realizing adhesive fibrosis based on expansion micro stress, which comprises the following steps:
the adhesive realizes in-situ fibrosis through the micro stress generated by the thermal expansion of the expandable graphite, and uniformly coats the active substance and the conductive agent to prepare the electrode with the filamentous adhesive winding and coating the active substance.
According to the method of the embodiment of the invention, the electrode with the filamentous adhesive winding and wrapping the active substance can be prepared by utilizing the property that the expandable graphite interacts with the adhesive such as Polytetrafluoroethylene (PTFE) in a certain temperature range, and the adhesive such as PTFE is in-situ fibrillated under the expansion micro-stress action of the expandable graphite and uniformly wraps the active substance, the conductive agent and other additives.
The method provided by the embodiment of the invention is mainly used for preparing the large-capacity super capacitor or battery electrode in a laboratory.
Referring to fig. 1, a method for preparing a large-capacity supercapacitor electrode based on expansion micro stress to achieve binder fiberization according to an embodiment of the present invention is specifically completed according to the following steps:
firstly, preparing a uniform reactant solution: mixing active substance, adhesive, expandable graphite and conductive agent, and dispersing in absolute ethyl alcohol or other organic solvent by ultrasonic or magnetic stirring; wherein the active substance accounts for more than 30 percent of the total mass of the mixture; the mass of the adhesive accounts for 2-10% of the total mass of the mixture; the particle size of the expandable graphite is 100-300 meshes and accounts for 5-30% of the total mass of the mixture; the mass of the conductive agent accounts for 10-30% of the total mass of the mixture.
Secondly, heat treatment: and (3) placing the container containing the mixed solution into heating equipment such as a tubular furnace and the like for heating, wherein the reaction temperature is 150-350 ℃, the reaction time is 1-3 h, and naturally cooling to room temperature after the reaction is finished.
Thirdly, pressing an electrode: and (3) directly coating the heated product on foamed nickel or copper foil or aluminum foil, and pressing by using a tablet press under the pressure of 6-10 MPa to obtain the super capacitor or battery electrode which can be directly used.
The method of the embodiment of the invention has the following effects:
(1) in the electrode prepared by the invention, the adhesive such as Polytetrafluoroethylene (PTFE) is in-situ fibrillated under the action of the thermal expansion of the expandable graphite to form filaments which are uniformly bonded with various substances, so that the adhesive is more uniformly dispersed and the negative influence of the adhesive on the electrode performance is reduced;
(2) compared with the common method, the preparation method disclosed by the invention has the advantages that the time is shorter, and the operation is more convenient and simpler;
(3) the electrode prepared by the invention has excellent plasticity, and the thickness and the shape of the electrode during pressing can be adjusted freely according to the situation.
The active material loading capacity of the electrode preparation under laboratory conditions is low, generally about 5-20 mg. Too much active substance will require manual application techniques, which are time-consuming, costly, and time-consuming and labor-intensive. The electrode with large loading capacity prepared by the corrosion-resistant wood can contain more than 100 g of active substances at one time, the one-time preparation amount of the electrode can be adjusted at will according to the size of the reaction container, and the method is simple and easy to implement, low in cost and short in required time.
Example 1
Referring to fig. 1 to 4, a method for preparing a large-capacity supercapacitor activated carbon electrode based on expansion micro-stress to achieve binder fiberization according to an embodiment of the present invention includes the following steps:
firstly, preparing a uniform reactant solution: and testing the electrochemical performance of the supercapacitor electrode prepared by the method by using an orthogonal design method. The trial preparation of the electrode with small load capacity is carried out on the premise of saving the test cost. Wherein the mass of the activated carbon is 5mg, and 60 wt.% of the mass of the PTFE aqueous solution, the mass of the expandable graphite and the mass of the acetylene black are shown in figure 4. Ultrasonically dispersing the above materials in ethanol for 5 min; secondly, heat treatment: and (3) putting the container containing the mixed solution into a tubular furnace, introducing nitrogen, heating at the reaction temperature of 250 ℃ for 2 hours, and naturally cooling to room temperature after the reaction is finished. Thirdly, pressing an electrode: and (3) directly coating the heated product on foamed nickel or copper foil or aluminum foil, and pressing by using a tablet press under the pressure of 6MPa to obtain the directly-used supercapacitor electrode.
FIGS. 2 and 3 are SEM photographs of the supercapacitor activated carbon electrode prepared in example 1, from which it can be seen that a filamentous binder enwraps a solid substance such as an active material, demonstrating that the binder is indeed fiberized in situ under the action of high temperature and expandable graphite; FIG. 4 is a graph of specific capacity versus current density for a series of electrodes of example 1, from which it can be seen that the electrodes prepared by this method have better rate capability without a substantial capacity drop, relative to the laboratory conventional wet coating method; and the less the amount of the binder is, the more the conductive agent is, and the better the performance of the electrode is. The electrochemical performance of the expandable graphite is poor, and the mass specific capacity of the electrode can be reduced by excessive expandable graphite. Therefore, the ratio of each substance needs to be carefully adjusted to meet the requirements of electrode formation and electrochemical performance.
Example 2
Referring to fig. 1, 5 and 6, a method for preparing a high-capacity electrode based on expansion micro-stress to achieve binder fiberization according to an embodiment of the present invention includes the following steps:
firstly, preparing a uniform reactant solution: stirring and dispersing 125g of coal powder, 5g of 60 wt.% PTFE aqueous solution, 10g of expandable graphite and 10g of acetylene black in ethanol; secondly, heat treatment: and (3) placing the beaker containing the mixed solution in a muffle furnace for heating, wherein the reaction temperature is 280 ℃, preserving the heat for 2 hours, and naturally cooling to room temperature after the reaction is finished.
Fig. 5 is a whole picture of a part of the product prepared in example 2, and fig. 6 is an SEM picture of the product prepared in example 2, and it can be seen from the figure that the method can prepare a bulk electrode having strength and ability to remain intact under the action of gravity.
Example 3
According to the preparation method of the large-capacity electrode with the participation of the expandable graphite, the method can be used for producing the super capacitor electrode or the battery electrode with the active substance capacity of more than 1 gram at one time; the adhesive is in-situ fiberized under the drive of the expansion of the expandable graphite, has a special filamentous adhesive structure, and can reduce the influence of the massive adhesive on the electrochemical performance of the electrode.
The expandable graphite is one of different commercial or homemade meshes.
The adhesive is one or a mixture of several of Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyether ether ketone (PEEK), Polyimide (PI) and Polybenzimidazole (PBI).
Example 4
The preparation method of the large-capacity electrode with the participation of the expandable graphite comprises the following steps:
firstly, preparing a uniform reactant solution: mixing active substance, adhesive, expandable graphite and conductive agent, and dispersing in absolute ethyl alcohol or other organic solvent by ultrasonic or magnetic stirring; wherein the active substance accounts for more than 30 percent of the total mass of the mixture; the mass of the adhesive accounts for 2-10% of the total mass of the mixture; the particle size of the expandable graphite is 100-300 meshes and accounts for 5-30% of the total mass of the mixture; the mass of the conductive agent accounts for 10-30% of the total mass of the mixture. Secondly, heat treatment: and (3) placing the container containing the mixed solution into heating equipment such as a tubular furnace and the like for heating, wherein the reaction temperature is 150-350 ℃, the reaction time is 1-3 h, and naturally cooling to room temperature after the reaction is finished. Thirdly, pressing an electrode: and (3) directly coating the heated product on foamed nickel or copper foil or aluminum foil, and pressing by using a tablet press under the pressure of 6-10 MPa to obtain the super capacitor or battery electrode which can be directly used.
The ratio of the mass of the organic solvent to the total mass of the solid matters in the first step is (0.2-1): 1.
and the heating equipment in the step two is one or combination of a plurality of tubular furnaces, muffle furnaces, heating tables, microwave ovens and screw extruders with heating functions.
The adhesive is a mixture of Polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF).
Example 5
The preparation method of the electrode for realizing the fiberization of the adhesive based on the expansion micro-stress comprises the following steps:
fibrillating the adhesive in situ and uniformly wrapping the active substance and the conductive agent by using micro stress generated by the thermal expansion of the expandable graphite, and preparing the electrode with the filamentous adhesive wrapping the active substance; wherein, the temperature range required by the micro stress generated by the thermal expansion of the expandable graphite is 150 ℃; the adhesive is polytetrafluoroethylene; the particle size of the expandable graphite is 100 meshes.
Example 6
The preparation method of the electrode for realizing the fiberization of the adhesive based on the expansion micro-stress comprises the following steps:
fibrillating the adhesive in situ and uniformly wrapping the active substance and the conductive agent by using micro stress generated by the thermal expansion of the expandable graphite, and preparing the electrode with the filamentous adhesive wrapping the active substance; wherein the temperature range required by the micro stress generated by the thermal expansion of the expandable graphite is 300 ℃; the adhesive is a mixture of polyvinylidene fluoride and polyether ether ketone; the particle size of the expandable graphite is 200 meshes.
Example 7
The preparation method of the electrode for realizing the fiberization of the adhesive based on the expansion micro-stress comprises the following steps:
fibrillating the adhesive in situ and uniformly wrapping the active substance and the conductive agent by using micro stress generated by the thermal expansion of the expandable graphite, and preparing the electrode with the filamentous adhesive wrapping the active substance; wherein, the temperature range required by the micro stress generated by the thermal expansion of the expandable graphite is 350 ℃; the binder is polyvinylidene fluoride; the particle size of the expandable graphite is 300 meshes.
Example 8
The preparation method of the large-capacity electrode with the participation of the expandable graphite comprises the following steps:
firstly, preparing a uniform reactant solution: mixing active substance, adhesive, expandable graphite and conductive agent, and dispersing in absolute ethyl alcohol or other organic solvent by ultrasonic or magnetic stirring; wherein the active substance accounts for 30 percent of the total mass of the mixture; the mass of the adhesive accounts for 10 percent of the total mass of the mixture; the particle size of the expandable graphite is 100 meshes and accounts for 30 percent of the total mass of the mixture; the mass of the conductive agent accounts for 30% of the total mass of the mixture, and other optional additives such as carbon nanotubes, graphene, various dispersing agents and the like can be added. Secondly, heat treatment: and (3) placing the container containing the mixed solution in a heating device such as a tubular furnace and the like for heating, wherein the reaction temperature is 150 ℃, the reaction time is 3 hours, and naturally cooling to room temperature after the reaction is finished. Thirdly, pressing an electrode: and (3) directly coating the heated product on foamed nickel or copper foil or aluminum foil, and pressing by using a tablet press under the pressure of 6MPa to obtain the super capacitor or battery electrode which can be directly used. The mass ratio of the organic solvent to the total mass of the solid matters in the first step is 0.2: 1.
example 9
The preparation method of the large-capacity electrode with the participation of the expandable graphite comprises the following steps:
firstly, preparing a uniform reactant solution: mixing active substance, adhesive, expandable graphite and conductive agent, and dispersing in absolute ethyl alcohol or other organic solvent by ultrasonic or magnetic stirring; wherein the active substance accounts for 40% of the total mass of the mixture; the mass of the adhesive accounts for 8 percent of the total mass of the mixture; the particle size of the expandable graphite is 180 meshes and accounts for 22 percent of the total mass of the mixture; the mass of the conductive agent accounts for 20% of the total mass of the mixture; optionally, other additives II and heat treatment: and (3) placing the container containing the mixed solution in a heating device such as a muffle furnace and the like for heating, wherein the reaction temperature is 280 ℃, the reaction time is 2 hours, and naturally cooling to room temperature after the reaction is finished. Thirdly, pressing an electrode: and (3) directly coating the heated product on foamed nickel or copper foil or aluminum foil, and pressing by using a tabletting machine under the pressure of 8MPa to obtain the directly-used super capacitor or battery electrode. The ratio of the mass of the organic solvent to the total mass of the solid matters in the first step is 0.5: 1.
example 10
The preparation method of the large-capacity electrode with the participation of the expandable graphite comprises the following steps:
firstly, preparing a uniform reactant solution: mixing active substance, adhesive, expandable graphite and conductive agent, and dispersing in absolute ethyl alcohol or other organic solvent by ultrasonic or magnetic stirring; wherein the active substance accounts for 80% of the total mass of the mixture; the mass of the adhesive accounts for 2 percent of the total mass of the mixture; the particle size of the expandable graphite is 300 meshes and accounts for 5 percent of the total mass of the mixture; the mass of the conductive agent accounts for 10% of the total mass of the mixture; optionally, other additives II and heat treatment: and (3) placing the container containing the mixed solution in a heating device such as a tubular furnace and the like for heating, wherein the reaction temperature is 350 ℃, the reaction time is 1h, and naturally cooling to room temperature after the reaction is finished. Thirdly, pressing an electrode: and (3) directly coating the heated product on foamed nickel or copper foil or aluminum foil, and pressing by a tabletting machine under the pressure of 10MPa to obtain the directly-used super capacitor or battery electrode. The mass ratio of the organic solvent to the total mass of the solid matters in the first step is 1: 1.
to sum up, the embodiment of the invention discloses a preparation method of a large-capacity electrode for realizing adhesive fibrosis based on expansion micro-stress, which is a preparation method of an electrode containing an in-situ fibrosis adhesive by utilizing micro-stress generated by thermal expansion of expandable graphite. The electrode prepared by the invention has a fibrous filamentous structure of the adhesive; the preparation method comprises the following steps: firstly, preparing a precursor mixed solution; secondly, heat treatment; and thirdly, pressing to obtain the electrode with the active substance wrapped by the filamentous adhesive in a winding way. The method is mainly used for preparing the electrode of the super capacitor or the battery with large capacity in a laboratory.
Although the present invention has been described in detail with reference to the above embodiments, those skilled in the art can make modifications and equivalents to the embodiments of the present invention without departing from the spirit and scope of the present invention, which is set forth in the claims of the present application.

Claims (10)

1. A preparation method of an electrode for realizing adhesive fibrosis based on expansion micro stress is characterized by comprising the following steps:
the electrode with the filamentous adhesive winding and wrapping the active substance is prepared by in-situ fiberization of the adhesive and uniform wrapping of the active substance and the conductive agent through the micro stress generated by the thermal expansion of the expandable graphite.
2. The method of claim 1, wherein the expandable graphite is expanded by heating to generate a micro stress at a temperature in a range of 150 ℃ to 350 ℃.
3. The method of claim 1, wherein the binder is a mixture of one or more of polytetrafluoroethylene, polyvinylidene fluoride, polyetheretherketone, polyimide, and polybenzimidazole.
4. The method for preparing the electrode according to claim 1, wherein the step of in-situ fiberizing the binder and uniformly wrapping the active material and the conductive agent by the micro stress generated by the thermal expansion of the expandable graphite specifically comprises the following steps:
mixing an active material, a binder, expandable graphite and a conductive agent to obtain a mixture; dispersing the mixture in an organic solvent to obtain a uniform reactant solution;
placing the uniform reactant solution in an environment with the temperature of 150-350 ℃, reacting for 1-3 h, and cooling to room temperature to obtain a heated product;
and (3) coating the heated product on foamed nickel, copper foil or aluminum foil, and pressing by using a tablet press to finish the preparation.
5. The method for preparing an electrode according to claim 4, wherein the particle size of the expandable graphite is 100 to 300 mesh.
6. The method for preparing an electrode according to claim 4, wherein the tablet press provides a pressure ranging from 6 to 10 MPa.
7. The method for preparing the electrode according to claim 4, wherein the mass ratio of the organic solvent to the mixture is (0.2-1): 1.
8. the method for preparing the electrode according to claim 1, wherein in the process of generating the micro stress by the expandable graphite expanding under heat, the heating equipment is one or a combination of a tube furnace, a muffle furnace, a heating table, a microwave oven and a screw extruder with a heating function.
9. The method for preparing an electrode according to claim 1, wherein the method is used for preparing an electrode of a super capacitor or a battery in a laboratory.
10. An electrode prepared by the electrode preparation method of claim 1.
CN202110267410.2A 2021-03-11 2021-03-11 Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress Active CN113096964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110267410.2A CN113096964B (en) 2021-03-11 2021-03-11 Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110267410.2A CN113096964B (en) 2021-03-11 2021-03-11 Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress

Publications (2)

Publication Number Publication Date
CN113096964A CN113096964A (en) 2021-07-09
CN113096964B true CN113096964B (en) 2021-12-28

Family

ID=76667417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110267410.2A Active CN113096964B (en) 2021-03-11 2021-03-11 Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress

Country Status (1)

Country Link
CN (1) CN113096964B (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE321653T1 (en) * 1997-12-11 2006-04-15 Bill D Horton FIRE-RETARDANT, THERMAL AND SOUND-INSULATING MATERIAL
CN101318839B (en) * 2008-07-03 2011-06-29 上海交通大学 Silicon carbide ceramic and method for manufacturing composite drawing mould of diamond
TWI482349B (en) * 2012-08-16 2015-04-21 Ind Tech Res Inst Method for modifying the surface of metal polar plate and polar plate for fuel cell
CN103258655B (en) * 2013-05-10 2016-02-24 渤海大学 A kind of preparation method of electric field activated form ultracapacitor
CN105236982B (en) * 2015-09-14 2017-06-27 西安交通大学 The enhanced graphite-base composite material of aluminium nitride and preparation technology
US9899672B2 (en) * 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
WO2020093388A1 (en) * 2018-11-09 2020-05-14 Jiangsu Jitri Micro-Nano Automation Institute Co., Ltd. Self-healable conductive nanofibrillated-cellulose-based thread
WO2020183945A1 (en) * 2019-03-13 2020-09-17 株式会社クラレ Space filling material and space filling structure, and methods for using those
CN110120498A (en) * 2019-04-26 2019-08-13 中国航发北京航空材料研究院 A kind of graphene flexible electrical pole piece and the preparation method and application thereof
CN111441106A (en) * 2020-05-07 2020-07-24 西安交通大学 Method for preparing high-quality graphene fibers by high-energy microwave irradiation

Also Published As

Publication number Publication date
CN113096964A (en) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2021027100A1 (en) Nitrogen-doped porous carbon material, preparation method therefor and use thereof
CN111009421A (en) Lamellar bimetallic organic framework compound and preparation method and application thereof
CN110098374B (en) Flexible electrode film and preparation method and application thereof
CN113201809B (en) Hierarchical porous carbon-based composite supercapacitor electrode material and preparation method thereof
CN107188171A (en) Porous carbon materials and its preparation method and the porous carbon-based electrode material for ultracapacitor prepared using the porous carbon materials
CN106033696B (en) A kind of electrode and preparation method thereof
CN105405681A (en) Preparation method of graphene-activated carbon composite electrode material
CN109698330B (en) Lithium ion battery
CN108963237B (en) Preparation method of sodium ion battery negative electrode material
CN111508720B (en) polyaniline-Co3O4Composite nanofiber supercapacitor electrode material and preparation method thereof
CN113072066B (en) Porous carbon material, preparation method thereof and supercapacitor
CN113096964B (en) Electrode preparation method for realizing adhesive fibrosis based on expansion micro stress
CN111017908B (en) Method for preparing biomass base membrane by using strip-shaped graphene oxide as binder
CN103086350B (en) Mesoporous carbon electrode material and preparation method thereof
CN112786869A (en) Preparation method of ferric oxide/spiral carbon nanofiber composite anode material
CN112820549A (en) Phosphorus-doped heterogeneous nickel-cobalt sulfide composite material and preparation method and application thereof
CN107680826A (en) A kind of preparation method of layering porous active carbon electrode material for ultracapacitor
CN108878172B (en) Preparation method of electrode for supercapacitor
CN113178562B (en) Fabric-like carbon-coated silicon dioxide composite material and application thereof
CN108439364A (en) A kind of preparation method of situ Nitrogen Doping porous carbon microsphere
CN111916681B (en) Method for simply producing silicon-carbon negative electrode plate of power lithium battery by spherical graphite
CN114551112B (en) Cobalt-based composite electrode material based on anion exchange technology and preparation thereof
CN116168959B (en) Low-gas-yield dry electrode plate, super capacitor and preparation method
CN106158404B (en) A kind of ternary oxide/conductive agent/carbon/polypyrrole combination electrode material, pole piece and ultracapacitor
CN112897498B (en) Preparation method of silicon-carbon negative electrode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant