CN113091513A - Real-time dynamic calibration method, system and medium for ship-based missile weapon system - Google Patents

Real-time dynamic calibration method, system and medium for ship-based missile weapon system Download PDF

Info

Publication number
CN113091513A
CN113091513A CN202110235770.4A CN202110235770A CN113091513A CN 113091513 A CN113091513 A CN 113091513A CN 202110235770 A CN202110235770 A CN 202110235770A CN 113091513 A CN113091513 A CN 113091513A
Authority
CN
China
Prior art keywords
real time
ship
data
aerial vehicle
unmanned aerial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110235770.4A
Other languages
Chinese (zh)
Other versions
CN113091513B (en
Inventor
高王升
刘丽龙
刘钊
王澜涛
时维科
杨毅钧
陈本军
张明府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Electromechanical Engineering
Original Assignee
Shanghai Institute of Electromechanical Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Electromechanical Engineering filed Critical Shanghai Institute of Electromechanical Engineering
Priority to CN202110235770.4A priority Critical patent/CN113091513B/en
Publication of CN113091513A publication Critical patent/CN113091513A/en
Application granted granted Critical
Publication of CN113091513B publication Critical patent/CN113091513B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/26Apparatus for testing or checking

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

The invention provides a real-time dynamic calibration method, a system and a medium for a ship-based missile weapon system, wherein the method comprises the following steps: the guidance device is used for receiving feedback signals, the antenna is used for receiving reference signals, the computer component comprises a GPS/Beidou receiving device and a computer device, the GPS/Beidou receiving device is used for receiving longitude, latitude and height of the unmanned aerial vehicle and the computer component, and the computer device is used for receiving data transmitted by the guidance device and the antenna, resolving in real time and generating various performance indexes of weapon system guidance. The method can be used for taking the calibrated data as the basis for judging the reliability of the weapon system, and the guidance state and the guidance precision of the weapon system can be quickly judged through the calibrated data, so that a preliminary conclusion can be made on the overall state and the performance of the weapon system.

Description

Real-time dynamic calibration method, system and medium for ship-based missile weapon system
Technical Field
The invention relates to the technical field of air-defense missile weapons, in particular to a real-time dynamic calibration method, a real-time dynamic calibration system and a real-time dynamic calibration medium for a ship-based missile weapon system.
Background
The ship-based missile weapon system has higher precision requirement, and in order to avoid the situation that the guidance precision is reduced due to the long-term execution of a ship, the ship-based missile weapon system needs to be periodically calibrated to ensure the guidance precision requirement of the missile weapon system, so that the fighting capacity of the missile weapon system is ensured.
Generally, static calibration can only detect that a missile weapon system is checked on the installation levelness and calibration error of a naval vessel, traditional dynamic calibration can only check one device, the guidance control precision of the whole missile weapon system from a front-end sensor to a weapon control system and then to a launching execution device and the overall check of the guidance precision of a guidance device on a target cannot be realized, and the guidance and guidance precision of the naval missile weapon system cannot be integrally embodied.
Patent document CN110989677A (application number: CN201911329203.4) discloses a telemetry parabolic antenna electric axis dynamic calibration method based on an unmanned aerial vehicle, a reference antenna and a direction finding antenna of an RTK reference end are placed in the same horizontal plane with the telemetry antenna site center, the length of three sides of a triangle is measured, and an included angle OB1B2 is obtained through calculation; adjusting the installation position of an antenna feed source, rotating an antenna to stabilize the self-tracking unmanned aerial vehicle, and reading the horizontal actual miss distance and the vertical actual miss distance of the unmanned aerial vehicle in a calibration television; calculating to obtain the theoretical miss distance in the horizontal direction and the theoretical miss distance in the vertical direction of the unmanned aerial vehicle; calculating the difference value between the theoretical miss distance and the actual miss distance in the horizontal direction and the difference value between the theoretical miss distance and the actual miss distance in the vertical direction; and completing dynamic calibration of the electric shaft until the difference value between the theoretical miss distance and the actual miss distance in the vertical direction reaches a set threshold value.
Disclosure of Invention
Aiming at the defects in the prior art, the invention aims to provide a real-time dynamic calibration method, a real-time dynamic calibration system and a real-time dynamic calibration medium for a ship-based missile weapon system.
The real-time dynamic calibration method of the ship-based missile weapon system provided by the invention comprises the following steps:
s1, enabling the unmanned aerial vehicle to fly around the ship, enabling the ship-based missile weapon system to track the unmanned aerial vehicle in real time, and sending tracking data of the unmanned aerial vehicle to computer equipment in real time;
s2, the antenna receives direct wave signals transmitted by the ship-based missile weapon system in real time, the guiding device receives echo signals transmitted by the ship-based missile weapon system and reflected by the unmanned aerial vehicle in real time, and both signal data are transmitted to the computer device in real time;
s3, the computer equipment calculates the guiding precision of the guiding equipment in real time according to the two paths of signal data;
s4, remotely controlling and sending longitude, latitude and altitude data of the unmanned aerial vehicle to a GPS/Beidou receiving device in real time, and monitoring the longitude, latitude and altitude data of the naval vessel by the GPS/Beidou receiving device in real time;
s5, the GPS/Beidou receiving device sends longitude, latitude and altitude data of the unmanned aerial vehicle and the ship to the computer equipment in real time, and the computer equipment calculates a true value of relative position data from the unmanned aerial vehicle to the ship in real time;
and S6, the computer equipment carries out real-time resolving together with the true value of the relative position data according to the tracking data of the unmanned aerial vehicle sent by the ship-based weapon system to obtain the guidance precision of the ship-based missile weapon system and generate a calibration report.
Preferably, the computer device is a data comprehensive processing center, receives signal data directly received by the antenna and signal data reflected by the unmanned aerial vehicle and sent by the guiding device in real time, and automatically processes the data in real time to generate index parameters of system errors, fluctuation errors and root mean square.
Preferably, the computer device receives data and network message data sent by the unmanned aerial vehicle in a remote control mode in real time, and automatically processes index data of tracking errors, root mean square and dispersion.
The invention provides a real-time dynamic calibration system of a ship-based missile weapon system, which comprises:
the module M1 is used for enabling the unmanned aerial vehicle to fly around a ship, and the carrier-borne missile weapon system tracks the unmanned aerial vehicle in real time and sends tracking data of the unmanned aerial vehicle to computer equipment in real time;
the module M2 and the antenna receive direct wave signals transmitted by the ship-based missile weapon system in real time, the guide device receives echo signals transmitted by the ship-based missile weapon system and reflected by the unmanned aerial vehicle in real time, and both signal data are transmitted to the computer device in real time;
the module M3 and the computer equipment calculate the guiding precision of the guiding equipment in real time according to the two paths of signal data;
the module M4 remotely controls and sends longitude, latitude and altitude data of the unmanned aerial vehicle to the GPS/Beidou receiving device in real time, and the GPS/Beidou receiving device monitors the longitude, latitude and altitude data of the naval vessel in real time;
the module M5 and the GPS/Beidou receiving device send longitude, latitude and altitude data of the unmanned aerial vehicle and the ship to the computer equipment in real time, and the computer equipment calculates a true value of relative position data from the unmanned aerial vehicle to the ship in real time;
and the module M6 and the computer equipment perform real-time calculation according to the tracking data of the unmanned aerial vehicle sent by the ship-based weapon system and the relative position data true value to obtain the guidance precision of the ship-based missile weapon system and generate a calibration report.
Preferably, the computer device is a data comprehensive processing center, receives signal data directly received by the antenna and signal data reflected by the unmanned aerial vehicle and sent by the guiding device in real time, and automatically processes the data in real time to generate index parameters of system errors, fluctuation errors and root mean square.
Preferably, the computer device receives data and network message data sent by the unmanned aerial vehicle in a remote control mode in real time, and automatically processes index data of tracking errors, root mean square and dispersion.
According to the present invention, a computer-readable storage medium is provided, in which a computer program is stored, which, when being executed by a processor, carries out the steps of the method as described above.
Compared with the prior art, the invention has the following beneficial effects:
(1) the guidance precision of the ship-based missile weapon system can be analyzed through the comparison of signals received by the guidance equipment and the antenna, and the guidance control precision of the ship-based missile weapon system can be analyzed through data obtained by resolving target tracking data of network messages and numerical values transmitted back by targets in real time;
(2) the method can comprehensively check the guidance control precision of the whole ship-based missile weapon system from the front end sensor to the weapon control system and then to the launching execution device and the guidance precision of the guidance device to the target, and integrally embody the shooting capability of the ship-based missile weapon system.
Drawings
Other features, objects and advantages of the invention will become more apparent upon reading of the detailed description of non-limiting embodiments with reference to the following drawings:
fig. 1 is a flow chart of the method for dynamically calibrating the carrier-based weapon system of the invention.
Detailed Description
The present invention will be described in detail with reference to specific examples. The following examples will assist those skilled in the art in further understanding the invention, but are not intended to limit the invention in any way. It should be noted that it would be obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit of the invention. All falling within the scope of the present invention.
Example (b):
referring to fig. 1, the method for dynamically calibrating a ship-based weapon system of the present invention includes the following steps:
s1, the unmanned aerial vehicle flies around the ship, the tracking radar of the ship-based missile weapon system tracks the unmanned aerial vehicle in real time, relative position tracking data of the target relative to the ship is generated, and the tracking data of the unmanned aerial vehicle is sent to the computer equipment in real time.
And S2, receiving direct wave signal data transmitted by an irradiation radar of the ship-based missile weapon system in real time by the antenna, and transmitting the signal to computer equipment. Meanwhile, the guiding device receives echo signal data which are emitted by a ship-based missile weapon system and reflected by the unmanned aerial vehicle in real time, and transmits the echo signal data to the computer device.
And S3, the computer equipment automatically resolves the guiding precision of the guiding equipment in real time according to the received two paths of signal data, wherein the guiding precision comprises index parameters such as system error, fluctuation error, root mean square and the like, and stores the data to the local.
S4, remotely controlling and sending the longitude, latitude and altitude data of the unmanned aerial vehicle to the GPS/Beidou receiving device in real time, and monitoring the longitude, latitude and altitude data of the naval vessel in real time by the GPS/Beidou receiving device.
And S5, sending longitude, latitude and altitude data of the unmanned aerial vehicle and the naval vessel to computer equipment by the GPS/Beidou receiving device, calculating a true value of relative position data from the unmanned aerial vehicle to the naval vessel in real time by the computer equipment, and storing the true value locally.
And S6, the computer equipment carries out real-time resolving together with the true value of the relative position data according to the tracking data of the unmanned aerial vehicle sent by the ship-based weapon system to obtain the guidance precision of the ship-based missile weapon system, wherein the guidance precision comprises index data such as tracking error, root mean square, dispersion and the like.
The invention provides a real-time dynamic calibration system of a ship-based missile weapon system, which comprises:
the module M1 is used for enabling the unmanned aerial vehicle to fly around a ship, and the carrier-borne missile weapon system tracks the unmanned aerial vehicle in real time and sends tracking data of the unmanned aerial vehicle to computer equipment in real time;
the module M2 and the antenna receive direct wave signals transmitted by the ship-based missile weapon system in real time, the guide device receives echo signals transmitted by the ship-based missile weapon system and reflected by the unmanned aerial vehicle in real time, and both signal data are transmitted to the computer device in real time;
the module M3 and the computer equipment calculate the guiding precision of the guiding equipment in real time according to the two paths of signal data;
the module M4 remotely controls and sends longitude, latitude and altitude data of the unmanned aerial vehicle to the GPS/Beidou receiving device in real time, and the GPS/Beidou receiving device monitors the longitude, latitude and altitude data of the naval vessel in real time;
the module M5 and the GPS/Beidou receiving device send longitude, latitude and altitude data of the unmanned aerial vehicle and the ship to the computer equipment in real time, and the computer equipment calculates a true value of relative position data from the unmanned aerial vehicle to the ship in real time;
and the module M6 and the computer equipment perform real-time calculation according to the tracking data of the unmanned aerial vehicle sent by the ship-based weapon system and the relative position data true value to obtain the guidance precision of the ship-based missile weapon system and generate a calibration report.
Preferably, the computer device is a data comprehensive processing center, receives signal data directly received by the antenna and signal data reflected by the unmanned aerial vehicle and sent by the guiding device in real time, and automatically processes the data in real time to generate index parameters of system errors, fluctuation errors and root mean square.
Preferably, the computer device receives data and network message data sent by the unmanned aerial vehicle in a remote control mode in real time, and automatically processes index data of tracking errors, root mean square and dispersion.
According to the present invention, a computer-readable storage medium is provided, in which a computer program is stored, which, when being executed by a processor, carries out the steps of the method as described above.
In summary, the method for dynamically calibrating the ship-based missile weapon system can analyze the guidance accuracy of the ship-based missile weapon system by comparing the signals received by the guidance equipment and the antenna, and can analyze the guidance control accuracy of the ship-based missile weapon system by the data calculated by the target tracking data and the real value of the relative position value of the target. The method can comprehensively check the guidance control precision of the whole ship-based missile weapon system from the front end sensor to the weapon control system and then to the launching execution device and the guidance precision of the guidance device to the target, has a comprehensive detection range, and can comprehensively describe the guidance control and guidance precision of the ship-based missile weapon system and detect the shooting capability of the ship-based missile weapon system by using the method for calibration. The result reliability is high, the applicability is wide, and the method can be used in each period of naval vessel navigation.
Those skilled in the art will appreciate that, in addition to implementing the systems, apparatus, and various modules thereof provided by the present invention in purely computer readable program code, the same procedures can be implemented entirely by logically programming method steps such that the systems, apparatus, and various modules thereof are provided in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, embedded microcontrollers and the like. Therefore, the system, the device and the modules thereof provided by the present invention can be considered as a hardware component, and the modules included in the system, the device and the modules thereof for implementing various programs can also be considered as structures in the hardware component; modules for performing various functions may also be considered to be both software programs for performing the methods and structures within hardware components.
The foregoing description of specific embodiments of the present invention has been presented. It is to be understood that the present invention is not limited to the specific embodiments described above, and that various changes or modifications may be made by one skilled in the art within the scope of the appended claims without departing from the spirit of the invention. The embodiments and features of the embodiments of the present application may be combined with each other arbitrarily without conflict.

Claims (7)

1. A real-time dynamic calibration method for a ship-based missile weapon system is characterized by comprising the following steps:
s1, enabling the unmanned aerial vehicle to fly around the ship, enabling the ship-based missile weapon system to track the unmanned aerial vehicle in real time, and sending tracking data of the unmanned aerial vehicle to computer equipment in real time;
s2, the antenna receives direct wave signals transmitted by the ship-based missile weapon system in real time, the guiding device receives echo signals transmitted by the ship-based missile weapon system and reflected by the unmanned aerial vehicle in real time, and both signal data are transmitted to the computer device in real time;
s3, the computer equipment calculates the guiding precision of the guiding equipment in real time according to the two paths of signal data;
s4, remotely controlling and sending longitude, latitude and altitude data of the unmanned aerial vehicle to a GPS/Beidou receiving device in real time, and monitoring the longitude, latitude and altitude data of the naval vessel by the GPS/Beidou receiving device in real time;
s5, the GPS/Beidou receiving device sends longitude, latitude and altitude data of the unmanned aerial vehicle and the ship to the computer equipment in real time, and the computer equipment calculates a true value of relative position data from the unmanned aerial vehicle to the ship in real time;
and S6, the computer equipment carries out real-time resolving together with the true value of the relative position data according to the tracking data of the unmanned aerial vehicle sent by the ship-based weapon system to obtain the guidance precision of the ship-based missile weapon system and generate a calibration report.
2. The method for real-time dynamic calibration of a ship-based missile weapon system of claim 1, wherein the computer device is a data comprehensive processing center, receives signal data directly received by the antenna and signal data reflected by the unmanned aerial vehicle and transmitted by the guidance device in real time, and automatically processes the data in real time to generate index parameters of system errors, fluctuation errors and root mean square.
3. The method for dynamically calibrating the shipboard missile weapon system of claim 1, wherein the computer device receives data and network message data sent by the unmanned aerial vehicle in real time and automatically processes index data of tracking error, root mean square and dispersion.
4. A real-time dynamic calibration system of a ship-based missile weapon system is characterized by comprising:
the module M1 is used for enabling the unmanned aerial vehicle to fly around a ship, and the carrier-borne missile weapon system tracks the unmanned aerial vehicle in real time and sends tracking data of the unmanned aerial vehicle to computer equipment in real time;
the module M2 and the antenna receive direct wave signals transmitted by the ship-based missile weapon system in real time, the guide device receives echo signals transmitted by the ship-based missile weapon system and reflected by the unmanned aerial vehicle in real time, and both signal data are transmitted to the computer device in real time;
the module M3 and the computer equipment calculate the guiding precision of the guiding equipment in real time according to the two paths of signal data;
the module M4 remotely controls and sends longitude, latitude and altitude data of the unmanned aerial vehicle to the GPS/Beidou receiving device in real time, and the GPS/Beidou receiving device monitors the longitude, latitude and altitude data of the naval vessel in real time;
the module M5 and the GPS/Beidou receiving device send longitude, latitude and altitude data of the unmanned aerial vehicle and the ship to the computer equipment in real time, and the computer equipment calculates a true value of relative position data from the unmanned aerial vehicle to the ship in real time;
and the module M6 and the computer equipment perform real-time calculation according to the tracking data of the unmanned aerial vehicle sent by the ship-based weapon system and the relative position data true value to obtain the guidance precision of the ship-based missile weapon system and generate a calibration report.
5. The system of claim 4, wherein the computer device is a data processing center, receives signal data directly received by the antenna and signal data reflected by the drone and sent by the guidance device in real time, and automatically processes the data in real time to generate index parameters of system errors, fluctuation errors and root mean square.
6. The system for real-time dynamic calibration of a ship-based missile weapon system of claim 4, wherein the computer device receives data and network message data sent by the unmanned aerial vehicle in real time and automatically processes index data of tracking error, root mean square and dispersion.
7. A computer-readable storage medium, in which a computer program is stored which, when being executed by a processor, carries out the steps of the method of any one of claims 1 to 3.
CN202110235770.4A 2021-03-03 2021-03-03 Real-time dynamic calibration method, system and medium for ship-based missile weapon system Active CN113091513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110235770.4A CN113091513B (en) 2021-03-03 2021-03-03 Real-time dynamic calibration method, system and medium for ship-based missile weapon system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110235770.4A CN113091513B (en) 2021-03-03 2021-03-03 Real-time dynamic calibration method, system and medium for ship-based missile weapon system

Publications (2)

Publication Number Publication Date
CN113091513A true CN113091513A (en) 2021-07-09
CN113091513B CN113091513B (en) 2023-02-28

Family

ID=76666299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110235770.4A Active CN113091513B (en) 2021-03-03 2021-03-03 Real-time dynamic calibration method, system and medium for ship-based missile weapon system

Country Status (1)

Country Link
CN (1) CN113091513B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232456A (en) * 1977-06-30 1980-11-11 Martin Marietta Corporation Weapons system simulator and method including ranging system
GB201701783D0 (en) * 2016-02-05 2017-03-22 Bayern-Chemi Ges Für Flugchemische Device and system for controlling missiles and kill vehicles operated with gel-like fuels
CN107757919A (en) * 2017-10-26 2018-03-06 牟正芳 Armed drones' optronic fire control system and method
CN207763580U (en) * 2017-12-15 2018-08-24 四川汉科计算机信息技术有限公司 Missile intercept system based on unmanned plane
CN109032153A (en) * 2018-05-31 2018-12-18 中国科学院西安光学精密机械研究所 Unmanned aerial vehicle autonomous landing method and system based on photoelectric-inertial combined guidance
CN109612456A (en) * 2018-12-28 2019-04-12 东南大学 A kind of low altitude coverage positioning system
EP3495762A1 (en) * 2017-12-11 2019-06-12 MBDA Deutschland GmbH System and method for coordinated target identification of a guided missile
CN110487300A (en) * 2019-08-29 2019-11-22 南京航空航天大学 Vibration absorber influences test method to the performance of inertial navigation system
EP3712551A1 (en) * 2019-03-21 2020-09-23 NEXTER Systems Method for targeting and acquiring a target for a platform, nacelle and device enabling the implementation of said method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232456A (en) * 1977-06-30 1980-11-11 Martin Marietta Corporation Weapons system simulator and method including ranging system
GB201701783D0 (en) * 2016-02-05 2017-03-22 Bayern-Chemi Ges Für Flugchemische Device and system for controlling missiles and kill vehicles operated with gel-like fuels
CN107757919A (en) * 2017-10-26 2018-03-06 牟正芳 Armed drones' optronic fire control system and method
EP3495762A1 (en) * 2017-12-11 2019-06-12 MBDA Deutschland GmbH System and method for coordinated target identification of a guided missile
CN207763580U (en) * 2017-12-15 2018-08-24 四川汉科计算机信息技术有限公司 Missile intercept system based on unmanned plane
CN109032153A (en) * 2018-05-31 2018-12-18 中国科学院西安光学精密机械研究所 Unmanned aerial vehicle autonomous landing method and system based on photoelectric-inertial combined guidance
CN109612456A (en) * 2018-12-28 2019-04-12 东南大学 A kind of low altitude coverage positioning system
EP3712551A1 (en) * 2019-03-21 2020-09-23 NEXTER Systems Method for targeting and acquiring a target for a platform, nacelle and device enabling the implementation of said method
CN110487300A (en) * 2019-08-29 2019-11-22 南京航空航天大学 Vibration absorber influences test method to the performance of inertial navigation system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIRI HOLTHE MATHISEN; THOR I. FOSSEN; TOR A. JOHANSEN: "Non-linear model predictive control for guidance of a fixed-wing UAV in precision deep stall landing", 《2015 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS)》, 12 June 2015 (2015-06-12) *
张记华,韦亚利,李智,***: "弹载单基测角被动定位滤波算法研究", 《空天防御》, 31 March 2020 (2020-03-31) *

Also Published As

Publication number Publication date
CN113091513B (en) 2023-02-28

Similar Documents

Publication Publication Date Title
EP3296760B1 (en) Method and system for testing radar systems
US11762099B2 (en) System and methods for countering satellite-navigated munitions
Seo et al. Effect of spoofing on unmanned aerial vehicle using counterfeited GPS signal
US7425918B2 (en) System and method for the measurement of full relative position and orientation of objects
CN107710010A (en) The misalignment estimation of vehicle radar system
US20190137603A1 (en) Controlled radar stimulation
US8340936B2 (en) Methods and systems for locating targets
EP3055638B1 (en) Missile system including ads-b receiver
CN105467366A (en) Mobile platform cooperative locating device and mobile platform cooperative locating system
CN103558591A (en) Ground testing method under satellite-borne microwave radar non-darkroom condition
CN113091513B (en) Real-time dynamic calibration method, system and medium for ship-based missile weapon system
CN113485460B (en) Method and device for calibrating transmitting cylinder and flying equipment
KR102560439B1 (en) Apparatus and method for detecting and tracking the targets in the dual-band radar system
JP2018091713A (en) Tracking device and multi-sensor system
RU2504725C2 (en) Method of rocket launching for mobile launchers
Kutsenko et al. Parameters numerical values of errors distribution law in coordinate measuring process at the difference-distancemeasuring passive location method
Muradov et al. Determining the location of the UAV equipped with a homing device based on radio beacons
KR102325953B1 (en) Method for hitting rate, apparatus for hitting rate and surface vehicle
RU2645006C1 (en) Method of testing the protection systems of objects from precision-guided munition
US9574851B1 (en) Gun alignment technique
KR102252061B1 (en) Apparatus and method to test location tracking system
Guo et al. Construction of shipborne navigation equipment's comprehensive effectiveness evaluation index system based on improved ADC model
RU171427U1 (en) Radar control system simulator
CN113608432B (en) Ship-borne two-degree-of-freedom servo system high dynamic loop parameter adjusting method and system
RU2628303C1 (en) Mobile complex of providing tests and evaluating efficiency of protection systems functioning of objects against hazardous weapons

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant