CN113083267B - 一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法 - Google Patents

一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法 Download PDF

Info

Publication number
CN113083267B
CN113083267B CN202110344206.6A CN202110344206A CN113083267B CN 113083267 B CN113083267 B CN 113083267B CN 202110344206 A CN202110344206 A CN 202110344206A CN 113083267 B CN113083267 B CN 113083267B
Authority
CN
China
Prior art keywords
tio
batio
film material
preparation
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110344206.6A
Other languages
English (en)
Other versions
CN113083267A (zh
Inventor
刘志锋
乔祯祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN202110344206.6A priority Critical patent/CN113083267B/zh
Publication of CN113083267A publication Critical patent/CN113083267A/zh
Application granted granted Critical
Publication of CN113083267B publication Critical patent/CN113083267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种用于光电催化降解罗丹明B的TiO2/Ce‑BaTiO3复合薄膜材料的制备方法。该方法首先采用水热法制备TiO2薄膜,然后将TiO2薄膜作为反应基底,采用水热法进行原位转化将掺Ce的BaTiO3纳米晶粒负载到TiO2薄膜上,最终得到Ce掺杂的TiO2/Ce‑BaTiO3复合薄膜材料。所制备的复合薄膜材料提升了TiO2的可见光吸收及载流子分离效率,促进了光电催化性能的提高,制备方法简单易操作,整体成本低廉。

Description

一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材 料的制备方法
技术领域
本发明属于光电催化薄膜材料制备技术领域,具体为一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法。
背景技术
当今社会,环境和能源问题已经引起越来越多人的关注。随着工业的不断发展,工业废水的随意排放,导致水污染和空气污染日益严重,给人类的健康带来巨大的威胁。因此,亟需寻找一种高效的降解污染物的催化剂用于环境的治理。自二氧化钛(TiO2)电极上的光电催化分解水以来,由于在太阳能的能量转换和催化降解方面的独特性能,同时TiO2廉价、无毒无害、化学性质稳定,使其成为当之无愧的最传统的光电催化半导体材料。但是,TiO2的带隙(~3.2eV)较宽,不能够有效地利用太阳光,这将极大地限制其应用;与此同时,TiO2激发产生的电子和空穴很容易复合,使得光生载流子的量子效率降低,从而降低了光电催化效率。因此,为了提高光电催化效率,多相光电催化的发展进入了新时代。
钛酸钡(BaTiO3)是一种典型的铁电材料,具有热释电性、压电性、线性电光效应和非线性光学等效应,广泛用于光电子技术领域。然而在光电催化降解污染物方面的研究不是很多。在此,通过20~50℃的冷热交替来激发BaTiO3的热电效应,进而产生极化电场驱动TiO2载流子的分离和转移,提升TiO2的催化效率。但是BaTiO3对可见光的利用效率仍不能令人满意,而Ce的掺入可以有效调节BaTiO3的费米能级,降低导带的位置,拓宽光吸收范围,提升TiO2复合薄膜的催化效率。
发明内容
为了解决TiO2纳米棒在光电催化降解方面的上述问题,本发明的目的在于提供一种光电催化复合薄膜材料的制备方法,能够提升TiO2的光电催化降解性能。
为了达到上述目的,本发明提供光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法包括按顺序进行的下列步骤:
(1)将稀盐酸与去离子水按1∶1的比例混合均匀后,将钛酸四丁酯溶液滴入混合液中搅拌均匀,制备TiO2前驱体反应液。将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在一定温度下水热反应一定时间后,将反应后的样品进行干燥处理。再将样品放到坩埚中,转移到马弗炉中处理,制得附在FTO 导电玻璃上的棒状结构的TiO2薄膜。
(2)将二乙二醇、异丙醇、四丁基氢氧化铵溶液加入到去离子水中配制混合溶剂,将八水合氢氧化钡和氢氧化铈按比例溶于配制好的溶液中,采用水热法进行原位转化将掺Ce的BaTiO3纳米晶粒负载到TiO2薄膜上,再经过马沸炉退火处理,制得 Ce掺杂BaTiO3纳米晶粒包裹的TiO2/Ce-BaTiO3复合薄膜材料。
在步骤(1)中,所述的钛酸四丁酯的体积为0.500~1.000mL,水热反应的温度和时间分别为160~180℃和18~24h,干燥箱中干燥2~4h,再将FTO放到坩埚中热处理2h,温度为500~600℃。
在步骤(2)中,所述的八水合氢氧化钡溶度为0.500~1.000mM,氢氧化铈的掺入比例2~10%,水热反应的温度和时间分别为180~200℃和6~10h,干燥箱中干燥 1h,再将FTO放入到坩埚中热处理2h,温度为450~550℃。
本发明提供的一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法具有如下有益效果:
(1)本发明能够有效拓宽可见光吸收范围。
(2)热电效应产生的极化场可以驱动光生电子-空穴对的分离。
(3)本发明的制备方法简单易操作,整体成本低廉。
(4)本发明所制得的TiO2/Ce-BaTiO3复合薄膜材料可见光吸收优异,光电催化性能较高。
附图说明
图1为实施例中所得TiO2/Ce-BaTiO3薄膜复合材料对罗丹明B的降解率。
具体实施方式
下面的实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法,包括如下步骤:
(1)将10mL稀盐酸与去离子水按1∶1的比例混合均匀后,将0.5mL钛酸四丁酯溶液滴入混合液中搅拌均匀,将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在160℃下水热反应18h后,将反应后的样品进行干燥处理。再将样品放到坩埚中,转移到马弗炉中500℃退火处理2h,制得附在FTO导电玻璃上的棒状结构的TiO2薄膜。
(2)将5mL二乙二醇、5mL异丙醇、3mL四丁基氢氧化铵溶液加入到5mL去离子水中配制混合溶剂,将0.5mM八水合氢氧化钡和0.05mM氢氧化铈按比例溶于配制好的溶液中,磁力搅拌溶液0.5h,将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在180℃下水热反应10h后,干燥箱中干燥1h,再将FTO置入到方舟中550℃热处理2h,制得含10%的Ce掺杂BaTiO3纳米晶粒包裹的 TiO2/Ce-BaTiO3复合薄膜材料。
实施例2
一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法,包括如下步骤:
(1)将10mL稀盐酸与去离子水按1∶1的比例混合均匀后,将0.8mL钛酸四丁酯溶液滴入混合液中搅拌均匀,将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在180℃下水热反应16h后,将反应后的样品进行干燥处理。再将样品放到坩埚中,转移到马弗炉中550℃退火处理2h,制得附在FTO导电玻璃上的棒状结构的TiO2薄膜。
(2)将5mL二乙二醇、5mL异丙醇、3mL四丁基氢氧化铵溶液加入到5mL去离子水中配制混合溶剂,将0.5mM八水合氢氧化钡和0.025mM氢氧化铈按比例溶于配制好的溶液中,磁力搅拌溶液0.5h,将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在200℃下水热反应8h后,干燥箱中干燥1h,再将FTO置入到坩埚中500℃热处理2h,制得含5%的Ce掺杂BaTiO3纳米晶粒包裹的 TiO2/Ce-BaTiO3复合薄膜材料。
实施例3
一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法,包括如下步骤:
(1)将10mL稀盐酸与去离子水按1∶1的比例混合均匀后,将1.0mL钛酸四丁酯溶液滴入混合液中搅拌均匀,将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在180℃下水热反应20h后,将反应后的样品进行干燥处理。再将样品放到坩埚中,转移到马弗炉中600℃退火处理2h,制得附在FTO导电玻璃上的棒状结构的TiO2薄膜。
(2)将5mL二乙二醇、5mL异丙醇、3mL四丁基氢氧化铵溶液加入到5mL去离子水中配制混合溶剂,将0.5mM八水合氢氧化钡和0.01mM氢氧化铈按比例溶于配制好的溶液中,磁力搅拌溶液0.5h,将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在200℃下水热反应10h后,干燥箱中干燥1h,再将FTO置入到坩埚中450℃热处理2h,制得含2%的Ce掺杂BaTiO3纳米晶粒包裹的 TiO2/Ce-BaTiO3复合薄膜材料。
以上通过实施例对本发明进行了详细说明,但所述内容仅为本发明的示例性实施例,不能被认为用于限定本发明的实施范围。本发明的保护范围由权利要求书限定。凡利用本发明所述的技术方案,或本领域的技术人员在本发明技术方案的启发下,在本发明的实质和保护范围内,设计出类似的技术方案而达到上述技术效果的,或者对申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖保护范围之内。应当注意,为了清楚的进行表述,本发明的说明中省略了部分与本发明的保护范围无直接明显的关联但本领域技术人员已知的部件和处理的表述。

Claims (3)

1.一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法, 其特征在于:所述的制备方法包括按顺序进行的下列步骤:
(1)将稀盐酸与去离子水按1∶1的比例混合均匀后,将钛酸四丁酯溶液滴入混合液中搅拌均匀,制备TiO2前驱体反应液; 将FTO导电玻璃以导电面朝下的方式放入到已加入反应液的反应釜内胆中,在一定温度下水热反应一定时间后,将反应后的样品进行干燥处理;再将样品放到坩埚中,转移到马弗炉中处理,制得附在FTO导电玻璃上的棒状结构的TiO2薄膜;
(2)将二乙二醇、异丙醇、四丁基氢氧化铵溶液加入到去离子水中配制混合溶剂,将八水合氢氧化钡和氢氧化铈按比例溶于配制好的溶液中,采用水热法进行原位转化将掺Ce的BaTiO3纳米晶粒负载到TiO2薄膜上,再经过马弗 炉退火处理,制得Ce掺杂BaTiO3纳米晶粒包裹的TiO2/Ce-BaTiO3复合薄膜材料。
2.根据权利要求1所述的用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法,其特征在于:在步骤(1)中,所述的钛酸四丁酯的体积为0.500~1.000mL,水热反应的温度和时间分别为160~180℃和18~24h,干燥箱中干燥2~4h,再将FTO放入到坩埚中热处理2h,温度为500~600℃。
3.根据权利要求1所述的用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法,其特征在于:在步骤(2)中,所述的八水合氢氧化钡溶度为0.500~1.000mM,氢氧化铈的掺入比例2~10%,通过水热法将TiO2原位转化为BaTiO3纳米晶粒,制备掺入一定量Ce的TiO2/Ce-BaTiO3复合薄膜材料。
CN202110344206.6A 2021-03-31 2021-03-31 一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法 Active CN113083267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110344206.6A CN113083267B (zh) 2021-03-31 2021-03-31 一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110344206.6A CN113083267B (zh) 2021-03-31 2021-03-31 一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN113083267A CN113083267A (zh) 2021-07-09
CN113083267B true CN113083267B (zh) 2022-06-03

Family

ID=76671493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110344206.6A Active CN113083267B (zh) 2021-03-31 2021-03-31 一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN113083267B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245851A (ja) * 1988-03-25 1989-10-02 Res Dev Corp Of Japan 酸素欠陥型ペロブスカイト触媒
CN104607172A (zh) * 2015-01-11 2015-05-13 北京工业大学 一种铈掺杂等离子体催化剂的制备方法
CN106390982A (zh) * 2016-09-26 2017-02-15 常州大学 一种稀土掺杂BaTiO3纳米管阵列光催化剂及其制备方法
CN106430295A (zh) * 2016-09-12 2017-02-22 天津城建大学 一种微纳米分级结构BaTiO3晶体及其制备方法
CN107583455A (zh) * 2017-09-27 2018-01-16 湖北工业大学 一种空气净化用沸石/TiO2/SrTiO3复合材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352529A1 (en) * 2014-06-05 2015-12-10 Zahra Nazarpoor Influence of Type of Support Oxide on Stability of Copper-Manganese Zero-PGM Catalyst
US11473193B2 (en) * 2019-04-30 2022-10-18 King Fahd University Of Petroleum And Minerals Fabrication, characterization and photoelectrochemical properties of CeO2-TiO2 thin film electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245851A (ja) * 1988-03-25 1989-10-02 Res Dev Corp Of Japan 酸素欠陥型ペロブスカイト触媒
CN104607172A (zh) * 2015-01-11 2015-05-13 北京工业大学 一种铈掺杂等离子体催化剂的制备方法
CN106430295A (zh) * 2016-09-12 2017-02-22 天津城建大学 一种微纳米分级结构BaTiO3晶体及其制备方法
CN106390982A (zh) * 2016-09-26 2017-02-15 常州大学 一种稀土掺杂BaTiO3纳米管阵列光催化剂及其制备方法
CN107583455A (zh) * 2017-09-27 2018-01-16 湖北工业大学 一种空气净化用沸石/TiO2/SrTiO3复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ce掺杂TiO_2纳米复合薄膜的制备及光催化活性;康俊龙等;《人工晶体学报》;20130430;第42卷(第4期);671-676 *

Also Published As

Publication number Publication date
CN113083267A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN101587779B (zh) 掺杂非金属的染料敏化TiO2纳晶薄膜光电极的制备方法
CN110565111B (zh) 一种六角柱型WO3/Bi2WO6复合光电极薄膜的制备方法
CN105664808B (zh) 一种低温制备稳定纳米锐钛矿型二氧化钛醇相溶胶的方法
CN105731820A (zh) 一种原位电极二硫化钼的溶剂热制备方法
CN108855187B (zh) 一种氟改性硼碳氮光催化材料及其在高效还原二氧化碳中的应用
Hao et al. Efficient light harvesting and charge collection of dye-sensitized solar cells with (001) faceted single crystalline anatase nanoparticles
CN101502795B (zh) 能量转换光催化纳米材料及其制备方法
CN101567271A (zh) 纳米晶Fe掺杂介孔TiO2厚膜电极的制备方法
CN102065589B (zh) 一种耐高温透明电热膜的制作方法
CN101465215B (zh) 纳米晶介孔TiO2厚膜材料的制备方法
CN104071833A (zh) 一种锐钛矿型TiO2纳米片的制备方法及应用
CN113083267B (zh) 一种用于光电催化降解罗丹明B的TiO2/Ce-BaTiO3复合薄膜材料的制备方法
JP2007044657A (ja) チタニアペーストの製造方法及びチタニア多孔質層の製造方法並びに光触媒層
CN104226320A (zh) 钒硼共掺杂二氧化钛与氧化镍复合光催化剂的制备方法
CN103894163A (zh) 一种高性能纳米TiO2光催化剂材料及其制备方法
CN109289887A (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
JP2003264304A (ja) 光電変換素子
CN108714424A (zh) 一种铁掺杂三斜-六方复合晶相三氧化钨薄膜的制备方法
CN111996540B (zh) 一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法及其产品
CN113593919A (zh) 一种制备二氧化钛/钛酸铋复合光阳极的方法
CN113101932A (zh) 微波-紫外光催化剂的制备方法及应用
KR101266514B1 (ko) 염료 감응형 태양전지용 광전극 및 이의 제조방법
CN112079576A (zh) 一种氮化碳材料及其原位制备方法和在钙钛矿太阳能电池中的应用
CN101656154B (zh) 碘掺杂钛基薄膜材料及其制备方法
CN110937662A (zh) 一种Tm掺杂改性钼酸铋光电极、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant