CN113073475B - 一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法 - Google Patents

一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法 Download PDF

Info

Publication number
CN113073475B
CN113073475B CN202110349936.5A CN202110349936A CN113073475B CN 113073475 B CN113073475 B CN 113073475B CN 202110349936 A CN202110349936 A CN 202110349936A CN 113073475 B CN113073475 B CN 113073475B
Authority
CN
China
Prior art keywords
polymer
coating
fiber
oil phase
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110349936.5A
Other languages
English (en)
Other versions
CN113073475A (zh
Inventor
黄才利
程泉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110349936.5A priority Critical patent/CN113073475B/zh
Publication of CN113073475A publication Critical patent/CN113073475A/zh
Application granted granted Critical
Publication of CN113073475B publication Critical patent/CN113073475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明涉及一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法,属于涂层制备技术领域。本发明制备方法包括:(1)将聚合物和聚合物表面活性剂溶于油相,将端基化纳米粒子分散于水相,所述端基化纳米粒子能够与所述聚合物表面活性剂发生静电相互作用;(2)将基材浸入所述油相,在基材的表面形成具有聚合物和聚合物表面活性剂的液膜;(3)将基材再浸入水相,即可在基材表面形成均匀的聚合物涂层。本发明有效解决了基材表面因瑞利不稳定形成的不均匀涂层,溶液加工过程中减材制造、受限于制备规模小、方法复杂、条件苛刻等问题,极大提高了材料的利用效率,并且可大规模制备,在涂层制备技术领域有较大的应用前景。

Description

一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法
技术领域
本发明属于涂层制备技术领域,具体涉及一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法。
背景技术
聚合物涂层主要是以有机高分子聚合物为材料制成的涂层,随着工业和科技的发展,聚合物涂层的应用领域不断扩大。不同结构成分的聚合物涂层因其具有不同特性而在各个不同领域具有广泛的应用前景,可以应用于柔性电子器件,有机半导体器件,作为分离膜材料,保护涂层材料,光学涂层材料和各种功能性涂层材料等。
聚合物涂层通常采用溶液基的加工技术制备,将目标聚合物溶解于选定的溶剂,随后在基材上通过不同方法进行涂覆,溶剂挥发后形成聚合物涂层,其中旋涂法是目前研究中最常用的涂层技术。由于旋涂工艺简单实用,在小规模生产中具有优势,但该技术是一种减材制造的方法,浪费材料,并且因其只能小规模批量生产而限制了生产能力和工业上的应用。此外,旋涂法在涂层过程中不产生均匀的剪切应力分布,可能使控制涂层的形貌变得困难。
弯液面牵引涂层也是一种常用的溶液基加工涂层技术,“弯液面牵引”是指弯液面借助于涂覆头或粘性力在基材上平移,从而有效地引导和控制涂层的沉积。常见的弯液面引导涂层的方法包括浸涂,刮涂,溶液剪切等。与旋涂工艺不同,旋涂工艺会浪费90%左右的材料,而弯液面引导涂层的方法可使材料利用率达到99%以上。然而,在聚合物溶液加工涂层的过程中,通常会出现瑞利不稳定现象。由于瑞利不稳定现象的存在,在溶液加工过程中含有聚合物的液膜破裂或者在基材表面分布不均匀,因此,制备均匀平整的超薄聚合物涂层很困难。因此,抑制溶液加工过程中液膜的瑞利不稳定则为制备均匀的聚合物超薄涂层提供了新方法。
Schott等采用利用叶片刮涂法,通过加热基材表面加速聚合物溶液中溶剂在基材表面的蒸发抑制聚合物液膜在其表面的瑞利不稳定(Charge-transport anisotropy in auniaxially aligned diketopyrrolopyrrole-based copolymer.Advanced Materials,2015,27,7356),由于叶片对聚合物溶液的单向剪切,可以使液膜中缠绕的聚合物链进行排列,制备高分子链有序排列的聚合物涂层。
Giri等人通过溶液剪切的方法(Tuning charge transport in solution-sheared organic semiconductors using lattice strain.Nature,2011,480,504),在溶液剪切过程中,利用剪切板将半导体溶液拖曳到加热的基材上,同时维持剪切板和基材之间的大部分溶液,只有聚合物半导体溶液的蒸发前沿暴露出来,控制加工过程中剪切板的剪切速度,成功制备出不同表面形貌的聚合物涂层;但是以上两种方法的缺点是均需给底部基材以辅热加速聚合物溶液中溶剂的挥发,使聚合物涂层材料制备复杂化,并且在涂层基材的选择上受限。之前大部分的文献都是通过加热基底加速液膜中溶剂的挥发,从而抑制液膜的瑞利不稳定得到均匀涂层,基材选择受限、制备过程复杂,严重阻碍聚合物涂层的进一步发展和应用。Guan采用同轴拉伸的方法牵引纤维通过连续注入液晶和聚合物溶液的圆筒(Responsive liquid-crystal-clad fibers for advanced textiles and wearablesensors.Advanced Materials,2019,31,1902168);拉伸牵引纤维的过程中,随着聚合物溶液中的溶剂蒸发,外层聚合物涂层由于溶剂快速挥发***,从而抑制了纤维表面内层液晶的瑞利不稳定性,制备出均匀的具有响应性液晶涂层纤维。尽管该方法可以制备出均匀的涂层,但是其涂层厚度尺寸是微米级,不能得到纳米级、亚微米级的超薄聚合物涂层材料。
综上,尽管目前有大量的工作致力于聚合物涂层的研究,制备均匀厚度可控的超薄聚合物涂层仍然困难重重,因此研究简单具有高普适性的方法制备厚度可控的超薄聚合物涂层具有重要的意义。
发明内容
本发明解决了现有技术中制备均匀的聚合物涂层过程中制备条件苛刻、过程繁琐、规模小、减材制造和基材选择受限等技术问题,本发明的目的在于提供一种简单而且有效的利用抑制瑞利不稳定制备厚度可控且均匀的聚合物超薄涂层的方法,本发明通过同轴拉伸纤维牵引涂覆的溶液加工手段,拉伸纤维先浸入油相在其表面形成具有聚合物和聚合物表面活性剂的油膜;再浸入分散有端基化纳米粒子的水相,在合适的pH范围内,由于端基化纳米粒子与聚合物表面活性剂的界面静电相互作用,使油水界面堵塞,可以抑制基材表面液膜的瑞利不稳定现象而得到均匀液膜,通过溶剂挥发从而在纤维表面形成均匀的聚合物超薄涂层。
按照本发明的目的,提供了一种通过抑制瑞利不稳定制备聚合物涂层的方法,包括以下步骤:
(1)将聚合物和聚合物表面活性剂溶于油相,将端基化纳米粒子分散于水相,所述端基化纳米粒子能够与所述聚合物表面活性剂发生静电相互作用;
(2)将基材浸入所述油相,在基材的表面形成具有聚合物和聚合物表面活性剂的液膜;
(3)将基材再浸入所述水相,由于所述端基化纳米粒子与所述聚合物表面活性剂的界面静电相互作用,通过抑制液膜的瑞利不稳定,即可在基材表面形成均匀的聚合物涂层。
作为优选,所述聚合物表面活性剂为氨基化聚合物或聚乙烯基吡啶类聚合物,优选的,所述聚合物表面活性剂为氨基化聚苯乙烯(PS-NH2)、氨基化聚二甲基硅氧烷(PDMS-NH2)、聚苯乙烯-聚(2-乙烯基吡啶)(PS-b-P2VP)和聚苯乙烯-聚(4-乙烯基吡啶)(PS-b-P4VP)中的任意一种。
作为优选,所述端基化纳米粒子为羧基化二氧化硅(SiO2-COOH)、羧基化聚苯乙烯(PS-COOH)、磺酸化纤维素纳米晶(CNC-OHSO3)、羧基化碳纳米管和氧化石墨烯中的任意一种。
作为优选,所述油相为不与水互溶的有机溶剂中的任意一种,优选的,所述有机溶剂为甲苯、四氯化碳、氯仿和二氯甲烷中的任意一种。
作为优选,所述聚合物为能溶解在所述油相的任何一种聚合物,优选的,所述聚合物为聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)和聚乳酸(PLA)中的任意一种。
作为优选,所选基材为高分子纤维、金属纤维、玻纤和光纤的任意一种。
作为优选,所述步骤(1)中聚合物与聚合物表面活性剂溶解是利用漩涡混合仪实现的。
作为优选,步骤(1)中所述端基化纳米粒子在水中分散是利用细胞粉碎机实现的。
作为优选,步骤(3)中采用同轴拉伸纤维牵引涂覆制备涂层,通过控制涂覆速率和聚合物在油相中的质量分数实现表面涂层厚度可控,其厚度公式为:
Figure BDA0003002130180000041
其中r为纤维半径,V为牵引速率,γ为表面张力,η为油相粘度。
本发明还保护前面所述的通过抑制瑞利不稳定制备聚合物涂层的方法制备而成的聚合物涂层。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
(1)本发明通过油相中聚合物表面活性剂与水相中端基化纳米粒子的界面静电相互作用,使油水界面堵塞,进而抑制基材表面液膜的瑞利不稳定,制备厚度可控且均匀的聚合物超薄涂层。该方法制备过程简单,增材制造,可大规模连续制备,不需对得到的涂层材料进行后处理,为制备聚合物涂层的过程中液膜在基材表面存在瑞利不稳定的问题提供了有效的解决方案,在涂层制备领域展现出巨大的潜力,具有工业化潜能。
(2)本发明中涂层的聚合物选择广泛,可以根据表面基材需要的涂层功能来选择涂覆的聚合物,涂层的聚合物既可以选择油溶性的,通过转换油水两相拉伸顺序,也可以是水溶性的,适合于各种可溶性聚合物的涂层,为涂层材料提供了广阔的选择空间,因此该方法具有很强的实用性。
(3)本发明中采用同轴拉伸纤维牵引涂覆的方法,在合适的pH范围内,抑制瑞利不稳定,制备厚度可控的均匀聚合物涂层,不需要其他辅助手段抑制液膜的瑞利不稳定,通过选择功能化的纳米粒子可赋予聚合物涂层该纳米粒子所具有的部分特性,为制备多功能聚合物涂层提供了新思路。
(4)本发明中选择的聚合物质量分数为0.1wt%~20wt%,牵引速率度为0.1mm/s~100mm/s,聚合物液膜厚度的公式为:
Figure BDA0003002130180000051
其中r为纤维半径,V为牵引速率,γ为表面张力,η为油相粘度,油相的粘度由油相中聚合物质量分数决定;因此,在选定基材的情况下,可以通过控制聚合物的质量分数和牵引速率来控制液膜厚度,进而控制聚合物涂层的厚度,实现基材表面涂层厚度可控。
附图说明
图1为1v/v%PDMS-NH2/CHCl3与10mg/mlCNC-OHSO3/H2O在不同pH值的界面张力图。
图2为纤维拉伸速度为10mm/s,9wt%PMMA/1v/v%PDMS-NH2/CHCl3与10mg/mlCNC-OHSO3/H2O在不同pH值的液膜形貌图。
图3为纤维拉伸速度为10mm/s,拉伸纤维通过油水两相,水相pH为2,油相为9wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为不同质量体积浓度CNC-OHSO3/H2O,在水相中的形貌图。
图4为纤维直径为125um,拉伸纤维仅通过油相,拉伸速度为3mm/s,油相为1wt%PMMA/1v/v%PDMS-NH2/CHCl3的纤维表面扫面电子显微镜图;图5为纤维直径为125um,拉伸纤维通过油水两相,拉伸速度为3mm/s,油相为1wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维表面扫面电子显微镜图。
图6为纤维直径为184um,拉伸纤维通过油水两相,拉伸速度为10mm/s,水相中pH为2,油相为1wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维表面扫面电子显微镜图;图7为纤维直径为184um,拉伸纤维通过油水两相,拉伸速度为10mm/s,水相中pH为2,油相为3wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维表面扫面电子显微镜图;图8为纤维直径为184um,拉伸纤维通过油水两相,拉伸速度为10mm/s,水相中pH为2,油相为5wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维表面扫面电子显微镜图;图9为纤维直径为184um,拉伸纤维通过油水两相,拉伸速度为10mm/s,水相中pH为2,油相为7wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维表面扫面电子显微镜图。
图10为纤维直径为125um,拉伸纤维通过油水两相,拉伸速度为3mm/s,水相中pH为2,油相为3wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维截面扫面电子显微镜图;
图11为纤维直径为125um,拉伸纤维通过油水两相,拉伸速度为3mm/s,水相中pH为2,油相为9wt%PMMA/1v/v%PDMS-NH2/CHCl3,水相为10mg/ml CNC-OHSO3/H2O的纤维截面扫面电子显微镜图。
图12为液膜的相对厚度h/r与毛细数Ca的关系图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明的氨基化聚苯乙烯(PS-NH2)、氨基化聚二甲基硅氧烷(PDMS-NH2)、聚苯乙烯-聚(2-乙烯基吡啶)(PS-b-P2VP)和聚苯乙烯-聚(4-乙烯基吡啶)(PS-b-P4VP)、羧基化二氧化硅(SiO2-COOH)、羧基化聚苯乙烯(PS-COOH)、磺酸化纤维素纳米晶(CNC-OHSO3)、羧基化碳纳米管和氧化石墨烯、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)和聚乳酸(PLA)均于市场购买。
实施例1
(1)称取100ul的PDMS-NH2于装有10ml CHCl3的试剂瓶中,利用漩涡混合仪,在转速为800转/分的条件下,搅拌混合5min,得到的溶液为1v/v%PDMS-NH2/CHCl3
(2)称取1g的CNC-OHSO3于装有100ml去离子水的烧杯中,利用细胞粉碎机分散均匀,细胞粉碎机频率为60%,工作时间为10min~20min,得到的分散液为10mg/ml的CNC-OHSO3/H2O。
(3)将步骤(2)中得到的分散液利用0.1mol/L的盐酸与0.1mol/L的氢氧化钠溶液调配pH分别为:2.02,3.18,4.94,7.38,11.03。
(4)将步骤(1)分别与步骤(3)中配置好的5种不同pH溶液利用界面粘弹测量仪测试两相的表面张力。
表面张力如图1所示。pH为2.02和3.18的CNC-OHSO3/H2O与1v/v%PDMS-NH2/CHCl3的界面张力均低于10mN/m,表明两相界面组装速度极快;pH为4.94的CNC-OHSO3/H2O与1v/v%PDMS-NH2/CHCl3的界面张力在500s从25mN/m降到10mN/m,而pH为7.38和11.03的CNC-OHSO3/H2O与1v/v%PDMS-NH2/CHCl3的界面张力较高,表明pH高于4.94,两相界面组装速度较慢。
实施例2
(1)将上述实施例1中得到的1v/v%PDMS-NH2/CHCl3,加入PMMA(Mw=350k),利用漩涡混合仪,在转速为800转/分的条件下,搅拌混合溶解30min,得到的溶液为9wt%PMMA/1v/v%PDMS-NH2/CHCl3
(2)将步骤(1)中的9wt%PMMA/1v/v%PDMS-NH2/CHCl3溶液和上述实例1步骤(3)中不同pH的10mg/mlCNC-OHSO3/H2O分散液分别装入两个石英槽中,拉伸纤维先通过油相,再通过水相,通过界面粘弹测量仪观察纤维在水相中的形貌。
如图2所示。pH为2.02和3.18时,纤维表面均匀,无瑞利不稳定现象,而pH为4.94,7.38和11.03时,纤维表面液膜呈现纺锤结构,为瑞利不稳定的表现。表明pH在为2.02和3.18时,两相界面由于静电相互作用组装抑制了液膜的瑞利不稳定。
实施例3
(1)按照上述实例1配置质量体积分数分别为2mg/ml,3mg/ml,5mg/ml和10mg/ml的CNC-OHSO3/H2O,均分别用0.1mol/L盐酸调配pH为2。
(2)按照上述实例2中相同步骤,拉伸纤维先通过油相(9wt%PMMA/1v/v%PDMS-NH2/CHCl3),再通过水相(CNC-OHSO3/H2O),通过界面粘弹测量仪观察纤维在水相中的形貌。
如图3所示。CNC-OHSO3/H2O在5mg/ml和10mg/ml时,纤维表面均匀,无瑞利不稳定现象,为2mg/ml和3mg/ml时,纤维表面液膜呈现一定的纺锤结构,为瑞利不稳定的表现。表明较高浓度CNC-OHSO3/H2O两相界面组装快,可以很快抑制液膜的瑞利不稳定。
实施例4
拉伸纤维以3mm/s的速度依次通过上述实例2步骤(1)中配置的9wt%/PMMA/1v/v%PDMS-NH2/CHCl3溶液和上述实例1步骤(3)中配置的pH为2.02的10mg/mlCNC-OHSO3/H2O分散液,溶剂完全挥发后照扫描电子显微镜。
如图5所示,纤维先通过油相(PMMA/1v/v%PDMS-NH2/CHCl3)再通过水相(10mg/mlCNC-OHSO3/H2O),溶剂挥发后纤维表面平整均匀,表明油水两相的界面相互作用抑制了纤维表面聚合物液膜的瑞利不稳定现象形成均匀液膜,溶剂挥发后形成均匀纤维涂层。
实施例5:纤维表面的扫描电子显微镜图
按上述实例2步骤(1)中方法分别配置1wt%,3wt%,5wt%和7wt%的PMMA/1v/v%PDMS-NH2/CHCl3溶液,按上述实例1步骤(3)中方法配置pH为2的10mg/mlCNC-OHSO3/H2O溶液。再按照上述实例2中相同步骤,原始纤维直径为184um,拉伸纤维速度为10mm/s,先通过油相(PMMA/1v/v%PDMS-NH2/CHCl3),再通过水相(10mg/mlCNC-OHSO3/H2O),溶剂完全挥发后照扫描电子显微镜。
如图6-9所示,均在纤维表面得到均匀平整涂层。图6所示,涂层纤维为188um;图7所示,涂层纤维为197um;图8所示,纤维涂层为200um;图9所示,纤维涂层为204um。原始纤维直径为184um,因此纤维牵引速率为10mm/s时,纤维涂层表面厚度受聚合物浓度控制,表现出正相关的关系。
实施例6:纤维截面的扫描电子显微镜图
按上述实例2步骤(1)中方法分别配置3wt%和9wt%的PMMA/1v/v%PDMS-NH2/CHCl3溶液,按上述实例1步骤(3)中方法配置pH为2的10mg/mlCNC-OHSO3/H2O溶液。再按照上述实例2中相同步骤,原始纤维直径为125um,拉伸纤维速度均为3mm/s,先通过油相(PMMA/1v/v%PDMS-NH2/CHCl3),再通过水相(10mg/mlCNC-OHSO3/H2O),溶剂完全挥发后,垂直切段所得到涂层的纤维,照扫描电子显微镜。
如图10所示。PMMA质量分数为3wt%时,纤维表面涂层很薄,为纳米级聚合物涂层。如图11所示。PMMA质量分数为9wt%时,纤维表面有明显聚合物涂层包裹,其厚度为微米级。同时也表明,纤维直径和拉伸速率一定时,纤维涂层表面厚度受聚合物浓度控制,表现出正相关的关系。综上所述,该发明技术既可以制备纳米级聚合物涂层,又可以制备微米级聚合物涂层。
实施例7:相对厚度h/r与毛细数Ca的关系
按上述实例2步骤(1)中方法分别配置1wt%、3wt%、5wt%、7wt%、9wt%和11wt%的PMMA/1v/v%PDMS-NH2/CHCl3溶液,按上述实例1步骤(3)中方法配置pH为2的10mg/mlCNC-OHSO3/H2O溶液。再按照上述实例2中相同步骤,原始纤维直径为125um,每组浓度聚合物溶液拉伸纤维速率分别为1mm/s、3mm/s、5mm/s、7mm/s、9mm/s、10mm/s、30mm/s、50mm/s、70mm/s和90mm/s,先通过油相(PMMA/1v/v%PDMS-NH2/CHCl3),再通过水相(10mg/mlCNC-OHSO3/H2O),通过高速CCD原位拍纤维在水相中的实物图,利用软件Imagej计算出每组浓度和速率对应的液膜厚度,已知毛细数
Figure BDA0003002130180000101
液膜膜厚
Figure BDA0003002130180000102
其中a为常数,r为纤维半径,V为牵引速率,γ为表面张力,η为油相粘度。
如图12所示。已知纤维半径为62.5um,通过计算每组浓度和速率对应的液膜厚度和Ca值,拟合得到常数a=2.88,因此液膜膜厚公式为
Figure BDA0003002130180000103
对比例1
拉伸纤维以3mm/s的速度通过上述实例2步骤(1)中配置的9wt%/PMMA/1v/v%PDMS-NH2/CHCl3溶液至空气中,溶剂完全挥发后照扫描电子显微镜。
如图4所示。纤维仅通过油相进入空气相中,溶剂挥发后表面有明显的纺锤节构,为瑞利不稳定的表现。
综上所述,本发明中通过油相中聚合物表面活性剂与水相中端基化纳米粒子的界面相互作用使油水界面堵塞,进而抑制瑞利不稳定,制备厚度可控的均匀聚合物涂层,不需要其他辅助手段抑制液膜的瑞利不稳定,通过选择功能化的纳米粒子可赋予聚合物涂层该纳米粒子所具有的部分特性,为制备多功能聚合物涂层提供了新思路。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种通过抑制瑞利不稳定制备聚合物涂层的方法,其特征在于,包括以下步骤:
(1)将聚合物和聚合物表面活性剂溶于油相,将端基化纳米粒子分散于水相,调配pH值,所述端基化纳米粒子能够与所述聚合物表面活性剂发生静电相互作用;
(2)将基材浸入所述油相,在基材的表面形成具有聚合物和聚合物表面活性剂的液膜;
(3)将基材再浸入所述水相,由于所述端基化纳米粒子与所述聚合物表面活性剂的界面静电相互作用,通过抑制液膜的瑞利不稳定,即可在基材表面形成均匀的聚合物涂层;所述聚合物表面活性剂为氨基化聚合物或聚乙烯基吡啶类聚合物,所述端基化纳米粒子为羧基化二氧化硅、羧基化聚苯乙烯、磺酸化纤维素纳米晶、羧基化碳纳米管和氧化石墨烯中的任意一种。
2.根据权利要求1所述的方法,其特征在于,所述聚合物表面活性剂为氨基化聚苯乙烯、氨基化聚二甲基硅氧烷、聚苯乙烯-聚(2-乙烯基吡啶)和聚苯乙烯-聚(4-乙烯基吡啶)中的任意一种。
3.根据权利要求1所述的方法,其特征在于,所述油相为不与水互溶的有机溶剂中的任意一种。
4.根据权利要求3所述的方法,其特征在于,所述有机溶剂为甲苯、四氯化碳、氯仿和二氯甲烷中的任意一种。
5.根据权利要求3所述的方法,其特征在于,所述聚合物为能溶解在所述油相的任何一种聚合物。
6.根据权利要求5所述的方法,其特征在于,所述聚合物为聚苯乙烯、聚甲基丙烯酸甲酯和聚乳酸中的任意一种。
7.根据权利要求1所述的方法,其特征在于,所选基材为高分子纤维、金属纤维、玻纤和光纤的任意一种。
8.根据权利要求1所述的方法,其特征在于,所述步骤(1)中聚合物与聚合物表面活性剂溶解是利用漩涡混合仪实现的。
9.根据权利要求1所述的方法,其特征在于,步骤(1)中所述端基化纳米粒子在水中分散是利用细胞粉碎机实现的。
10.根据权利要求1所述的方法,其特征在于,步骤(3)中采用同轴拉伸纤维牵引涂覆制备涂层,通过控制涂覆速率和聚合物在油相中的质量分数实现表面涂层厚度可控,其厚度公式为:
Figure DEST_PATH_IMAGE001
,其中h为涂层厚度,r为纤维半径,V为牵引速率,
Figure 863705DEST_PATH_IMAGE002
为表面张力,
Figure DEST_PATH_IMAGE003
为油相粘度。
11.一种聚合物涂层,其特征在于,根据权利要求1-10任一项所述的通过抑制瑞利不稳定制备聚合物涂层的方法制备而成的聚合物涂层。
CN202110349936.5A 2021-03-31 2021-03-31 一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法 Active CN113073475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110349936.5A CN113073475B (zh) 2021-03-31 2021-03-31 一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110349936.5A CN113073475B (zh) 2021-03-31 2021-03-31 一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法

Publications (2)

Publication Number Publication Date
CN113073475A CN113073475A (zh) 2021-07-06
CN113073475B true CN113073475B (zh) 2022-03-18

Family

ID=76614214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110349936.5A Active CN113073475B (zh) 2021-03-31 2021-03-31 一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法

Country Status (1)

Country Link
CN (1) CN113073475B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245796B (zh) * 2022-07-05 2023-04-21 华中科技大学 一种制备微纳米尺度的全液相流体通道的方法
CN115337877A (zh) * 2022-07-27 2022-11-15 华中科技大学 一种通过纳米粒子聚合物协同组装制备乳液凝胶的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239612A (zh) * 2020-09-02 2021-01-19 深圳大学 3d打印多相油墨及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201619696D0 (en) * 2016-11-22 2017-01-04 Univ Durham A method for forming olephobic-hydrophillic coatings including paritcles and/or nano-particles, a coating formed thereby and an article to which the coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239612A (zh) * 2020-09-02 2021-01-19 深圳大学 3d打印多相油墨及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于纤维素纳米晶油水界面自组装及结构化液滴的制备;李亚男;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》;20200615(第6期);第B020-591页 *

Also Published As

Publication number Publication date
CN113073475A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN113073475B (zh) 一种通过抑制瑞利不稳定制备聚合物超薄涂层的方法
US7655164B2 (en) Method for obtaining macroscopic fibres and strips from colloidal particles and in particular carbon nanotubes
CN102493009B (zh) 一种多孔纳米纤维的制备方法
US9217211B2 (en) Method for fabricating nanofibers
Sain et al. Synthesis and characterization of PMMA‐cellulose nanocomposites by in situ polymerization technique
Qiu et al. Carboxymethyl cellulose sizing repairs carbon fiber surface defects in epoxy composites
CN101229918A (zh) 一种碳纳米管的氧化改性方法
Wang et al. Preparation of polymeric nanofibers via immersion electrospinning
Sharifzadeh et al. Direct and reverse desymmetrization process in O/W Pickering emulsions to produce hollow graphene oxide Janus micro/nano-particles
CN105734696A (zh) 一种聚苯乙烯-聚偏氟乙烯同轴静电纺丝纤维的制备方法
Qiu et al. Environmentally friendly water-soluble epoxy emulsions nano sphere improved the interfacial performance of high modulus carbon fiber reinforced epoxy composites based on robust van der Waals force
Hulsey et al. Comparative study of polymer dissolution techniques for electrospinning
Shen et al. Acidified ZnCl2 molten salt hydrate systems as hydrolytic media for cellulose I and II nanocrystal production: from rods to spheres
Qiu et al. Interfacial strengthening of carbon fiber/epoxy composites through a sulfonated high-epoxy-value sizing agent
CN1257224C (zh) 一种纳米结构材料模板的制作方法
WO2013172831A1 (en) Apparatus and methods for fabricating nanofibers from sheared solutions under continuous flow
CN110565193A (zh) 一种CdSe/CdS纳米片杂化纤维及其制备方法
Gao et al. Influence of alcohols on stability and mechanical properties of polyacrylate coating material
Brioude et al. Role of cellulose nanocrystals on the microstructure of maleic anhydride plasma polymer thin films
Ji et al. Revisit to the self-assembled hybrid acrylate/silica core-shell structured particles in the presence of unmodified silica particles
Meng et al. Preparation of ultrashort composite nanotubes by twin-screw extruder
Fahmi et al. Organisation of designed nanofibres assembled in filaments via flow alignment
Xi et al. Construction of hierarchically hollow micro-nanostructured surface on polyester via in-situ chlorosilane polymerization and its superhydrophobicity
US3038870A (en) Process of preparing and extruding an aqueous gel of polytetrafluoroethylene
Wang et al. Preparation of a rough hydrophobic surface on jute fibers via silica hydrosol modification and properties of fiber-reinforced polylactic acid composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant