CN113070027A - 具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用 - Google Patents

具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用 Download PDF

Info

Publication number
CN113070027A
CN113070027A CN202110300145.3A CN202110300145A CN113070027A CN 113070027 A CN113070027 A CN 113070027A CN 202110300145 A CN202110300145 A CN 202110300145A CN 113070027 A CN113070027 A CN 113070027A
Authority
CN
China
Prior art keywords
copper ion
ion adsorption
film
carbon nano
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110300145.3A
Other languages
English (en)
Inventor
张蝶青
邓近远
李双军
邹杭君
李倩
曹海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN202110300145.3A priority Critical patent/CN113070027A/zh
Publication of CN113070027A publication Critical patent/CN113070027A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用,该光热膜由三钛酸盐和碳纳米管复合物抽滤在薄膜基底上形成。本发明制备工艺简单、操作方便,产生的污染少,合成的吸附剂稳定性好,吸附性能极好,循环效率好,易于回收利用。

Description

具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其 制备方法和应用
技术领域
本发明属于光热以及重金属离子吸附技术领域,更具体的说是涉及一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用。
背景技术
由于全球人口增长、饮食结构变化和气候变化等因素,水资源缺乏问题日益明显。太阳能是地球上生物的最终能源,也是可再生能源。利用光热材料的太阳能驱动蒸发是利用丰富的太阳能来源实现海水淡化的有效技术。在各种光热转换材料中,碳基材料便宜丰富,并且在光谱范围内具有优异的光吸收性。
另一方面,重金属作为有毒非生物可降解污染物,在环境中表现出持久性,给人体健康带来严重威胁,治理水体重金属污染迫在眉睫。而吸附法具有低成本、去除效率高、操作稳定等优势,是从水体中取出重金属污染物经济有效的方法。近年来,由于具有吸附性能极好,易回收,环境友好等特点,钛酸盐作为吸附剂吸附去除铜和其它重金属离子已获得广泛关注。
因此,如何提供一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用成为了本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用,制备工艺简单、操作方便,产生的污染少,合成的吸附剂稳定性好,吸附性能极好,循环效率好,易于回收利用。
为了实现上述目的,本发明采用如下技术方案:
一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,该光热膜由三钛酸盐和碳纳米管复合物抽滤在薄膜基底上形成。
进一步地,碳纳米管还可采用其他碳基材料替代,比如石墨烯、石墨等。
进一步地,所述薄膜基底选自聚四氟乙烯薄膜、聚偏氟乙烯薄膜中的一种,优选为聚四氟乙烯薄膜。
一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,包括如下步骤:
(1)、将TiO2和CNTs加入40mL 10M NaOH溶液中,搅拌超声均匀之后进行微波反应,混合物在10min中内微波升温至200℃,并且在800rpm搅拌速率下保持该温度90min;
(2)、冷却至室温后,离心洗涤至PH=7,在80℃下进行干燥,得到复合材料;
(3)、称取一定量的复合材料搅拌超声均匀分散在去离子水中,然后抽滤在薄膜基底上,得具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜。
进一步地,步骤(1)中,TiO2采用P25,加入量为0.15g。
进一步地,步骤(1)中,CNTs的加入量为0.005g、0.01g、0.03g、0.05g或0.07g。
进一步地,步骤(3)中,称取0.05g的复合材料搅拌超声均匀分散在50mL去离子水中。
进一步地,步骤(3)中,所得三钛酸盐和碳纳米管复合光热膜为直径为4cm的薄膜。
一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜在海水淡化中的应用,包括如下步骤:
将三钛酸盐和碳纳米管复合光热膜悬浮于采集的海水水面上,按每160mL海水在300W氙灯光强为2kW/m2照射下蒸发2h的条件处理。
一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜在铜离子吸附中的应用,包括如下步骤:
将三钛酸盐和碳纳米管复合光热膜悬浮于采集的海水水面上,按每160mL海水在300W氙灯光强为2kW/m2照射下蒸发2h的条件处理,在海水蒸发过程中,每隔一段时间取2mL水样。
一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜在铜离子吸附中的应用,应用于海水淡化协同铜离子吸附。
本发明的有益效果在于:
本发明通过一步水热法,制备出三钛酸盐和碳纳米管复合材料,并且将其分散均匀分散于去离子水中抽滤在薄膜基底上形成具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜。
本发明所使用的化学试剂均为常用试剂、廉价易得。与目前需要用各种金属材料、半导体及复合材料作为光热转换材料的海水淡化实验相比,制备工艺简单、操作方便,产生的污染少,合成的吸附剂稳定性好,吸附性能极好,循环效率好,易于回收利用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为实施例1所制得的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的XRD图谱。
图2为实施例1所制得的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的SEM图像。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明提供了一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,该光热膜由三钛酸盐和碳纳米管复合物抽滤在聚四氟乙烯薄膜上形成。
本实施例中,碳纳米管还可采用其他碳基材料替代,比如石墨烯、石墨等。
本实施例中,所述薄膜基底还可采用聚偏氟乙烯薄膜。
本发明一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,包括如下步骤:
(1)、将0.15gTiO2和0.05gCNTs加入40mL 10M NaOH溶液中,搅拌超声均匀之后进行微波反应,混合物在10min中内微波升温至200℃,并且在800rpm搅拌速率下保持该温度90min;
(2)、冷却至室温后,离心洗涤至PH=7,在80℃下进行干燥,得到复合材料;
(3)、称取0.05g的复合材料搅拌超声均匀分散在50mL去离子水中,然后抽滤在聚四氟乙烯薄膜上,得具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,所得三钛酸盐和碳纳米管复合光热膜为直径为4cm的薄膜。
本发明制备的产品通过以下手段进行结构表征:采用在日本理学Rigaku D/Max-RB型X射线衍射仪上测量的X射线衍射进行样品的结构分析;采用日本Hitachi S-4800型扫描电子电镜获得的扫描电镜照片。
图1为实施例1所制得的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的XRD图谱,图中表明三钛酸盐和碳纳米管复合材料具有良好的结晶度;
图2为实施例1所制得的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的SEM图像,图中显示三钛酸盐纳米管和碳纳米管复合材料的成功合成。
取实施例1制得的样品,使三钛酸盐和碳纳米管复合光热膜悬浮于160mL模拟海水的水面上,在300W氙灯光强为2kW/m2照射下蒸发2h。利用分析天平监测模拟海水的质量变化。
取实施例1制得的三钛酸盐和碳纳米管复合光热膜,使其悬浮于160mL模拟海水的水面上,用于吸附海水中的铜离子,在300W氙灯光强为2kW/m2照射下吸附2h,每隔一段时间取2mL水样。用电感耦合等离子体发射光谱仪检测模拟海水中铜离子浓度的变化。
结果表明实施例1所制备的三钛酸盐和碳纳米管复合光热膜在氙灯照射下对于反应器中模拟海水的蒸发速率高达1.80kg/m2h,光热转换效率高达56%;本实施例所制备的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,对铜离子的吸附能力达到5.70mg/g,吸附性能极好。
实施例2
与实施例1不同之处仅在于碳纳米管含量不同,实施例2中CNTs为0.005g。结果表明实施例2所制备的三钛酸盐和碳纳米管复合光热膜在氙灯照射下对于反应器中模拟海水的蒸发速率高达1.53kg/m2h,光热转换效率高达48%;本实施例所制备的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,对铜离子的吸附能力达到4.57mg/g,吸附性能极好。
实施例3
与实施例1不同之处仅在于碳纳米管含量不同,实施例3中CNTs为0.01g。结果表明实施例3所制备的三钛酸盐和碳纳米管复合光热膜在氙灯照射下对于反应器中模拟海水的蒸发速率高达1.59kg/m2h,光热转换效率高达50%;本实施例所制备的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,对铜离子的吸附能力达到4.71mg/g,吸附性能极好。
实施例4
与实施例1不同之处仅在于碳纳米管含量不同,实施例4中CNTs为0.03g。结果表明实施例4所制备的三钛酸盐和碳纳米管复合光热膜在氙灯照射下对于反应器中模拟海水的蒸发速率高达1.69kg/m2h,光热转换效率高达53%;本实施例所制备的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,对铜离子的吸附能力达到5.55mg/g,吸附性能极好。
实施例5
与实施例1不同之处仅在于碳纳米管含量不同,实施例5中CNTs为0.07g,其中以碳纳米管含量为0.07g的样品具有最高蒸发速率和光热转换效率。结果表明实施例5所制备的三钛酸盐和碳纳米管复合光热膜在氙灯照射下对于反应器中模拟海水的蒸发速率高达1.97kg/m2h,光热转换效率高达62%;本实施例所制备的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,对铜离子的吸附能力达到3.62mg/g,吸附性能极好。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,其特征在于,该光热膜由三钛酸盐和碳纳米管复合物抽滤在薄膜基底上形成。
2.根据权利要求1所述的一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜,其特征在于,所述薄膜基底选自聚四氟乙烯薄膜、聚偏氟乙烯薄膜中的一种。
3.一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,其特征在于,包括如下步骤:
(1)、将TiO2和CNTs加入40mL 10M NaOH溶液中,搅拌超声均匀之后进行微波反应,混合物在10min中内微波升温至200℃,并且在800rpm搅拌速率下保持该温度90min;
(2)、冷却至室温后,离心洗涤至PH=7,在80℃下进行干燥,得到复合材料;
(3)、称取一定量的复合材料搅拌超声均匀分散在去离子水中,然后抽滤在薄膜基底上,得具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜。
4.根据权利要求3所述的一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,其特征在于,步骤(1)中,TiO2的加入量为0.15g。
5.根据权利要求3或4所述的一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,其特征在于,步骤(1)中,CNTs的加入量为0.005g、0.01g、0.03g、0.05g或0.07g。
6.根据权利要求3所述的一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,其特征在于,步骤(3)中,称取0.05g的复合材料搅拌超声均匀分散在50mL去离子水中。
7.根据权利要求3所述的一种具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜的制备方法,其特征在于,步骤(3)中,所得三钛酸盐和碳纳米管复合光热膜为直径为4cm的薄膜。
8.一种采用权利要求3-7中任一项所述制备方法所得到的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜在海水淡化中的应用,其特征在于,包括如下步骤:
将三钛酸盐和碳纳米管复合光热膜悬浮于采集的海水水面上,按每160mL海水在300W氙灯光强为2kW/m2照射下蒸发2h的条件处理。
9.一种采用权利要求3-7中任一项所述制备方法所得到的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜在铜离子吸附中的应用,其特征在于,包括如下步骤:
将三钛酸盐和碳纳米管复合光热膜悬浮于采集的海水水面上,按每160mL海水在300W氙灯光强为2kW/m2照射下蒸发2h的条件处理,在海水蒸发过程中,每隔一段时间取2mL水样。
10.一种采用权利要求3-7中任一项所述制备方法所得到的具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜在铜离子吸附中的应用,其特征在于,应用于海水淡化协同铜离子吸附。
CN202110300145.3A 2021-03-22 2021-03-22 具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用 Pending CN113070027A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110300145.3A CN113070027A (zh) 2021-03-22 2021-03-22 具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110300145.3A CN113070027A (zh) 2021-03-22 2021-03-22 具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113070027A true CN113070027A (zh) 2021-07-06

Family

ID=76613094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110300145.3A Pending CN113070027A (zh) 2021-03-22 2021-03-22 具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113070027A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974305A (zh) * 2012-11-20 2013-03-20 天津工业大学 一种高效去除水中重金属离子的方法
CN103700829A (zh) * 2014-01-09 2014-04-02 重庆大学 二氧化钛(b)-石墨烯自卷绕纳米复合材料的制备方法
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
CN105336940A (zh) * 2015-10-20 2016-02-17 深圳先进技术研究院 一种钛酸钠纳米线/石墨烯复合负极材料及其制备方法
CN106000362A (zh) * 2016-05-18 2016-10-12 上海交通大学 兼具光热转换性能和吸附特性的复合薄膜及其制备与应用
CN106492777A (zh) * 2016-12-13 2017-03-15 常州大学 一种具有可见光活性的纳米复合光催化剂及其制备方法
CN110316719A (zh) * 2019-06-24 2019-10-11 武汉工程大学 一种MXene/氮掺杂碳纳米管复合薄膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974305A (zh) * 2012-11-20 2013-03-20 天津工业大学 一种高效去除水中重金属离子的方法
CN103700829A (zh) * 2014-01-09 2014-04-02 重庆大学 二氧化钛(b)-石墨烯自卷绕纳米复合材料的制备方法
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
CN105336940A (zh) * 2015-10-20 2016-02-17 深圳先进技术研究院 一种钛酸钠纳米线/石墨烯复合负极材料及其制备方法
CN106000362A (zh) * 2016-05-18 2016-10-12 上海交通大学 兼具光热转换性能和吸附特性的复合薄膜及其制备与应用
CN106492777A (zh) * 2016-12-13 2017-03-15 常州大学 一种具有可见光活性的纳米复合光催化剂及其制备方法
CN110316719A (zh) * 2019-06-24 2019-10-11 武汉工程大学 一种MXene/氮掺杂碳纳米管复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. CHARINPANITKUL ET AL.: ""Hydrothermal synthesis of titanate nanoparticle/carbon nanotube hybridized material for dye sensitized solar cell application"", 《MATERIALS RESEARCH BULLETIN》 *

Similar Documents

Publication Publication Date Title
Wang et al. Enhanced photocatalytic activity and mechanism of CeO 2 hollow spheres for tetracycline degradation
Lin et al. Microstructure and photocatalytic performance of BiVO4 prepared by hydrothermal method
Ren et al. Recent advances in solar thermal electrochemical process (STEP) for carbon neutral products and high value nanocarbons
CN108275737B (zh) 一种基于气液界面加热淡化海水的方法
CN107262116B (zh) 一种分级结构MoS2/Cu2S复合材料及其制备方法
CN104383910B (zh) 一种颗粒大小可控的钒酸铋/石墨烯复合光催化剂的制法
CN107158967B (zh) 一种用于光蒸发水的含碳复合半透膜、其制备方法及用途
CN113815072B (zh) 一种用于光热净化污水的木基复合材料及其制备方法和应用
Zheng et al. TiO 2/Ti 3 C 2 intercalated with gC 3 N 4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N 2 selectivity in aqueous solution
CN110773213A (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
Wang et al. Hexagonal cluster Mn-MOF nanoflowers with super-hydrophilic properties for efficient and continuous solar-driven clean water production
Wang et al. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation
Sun et al. Controlled synthesis of Sn doped ZnO microspheres stringed on carbon fibers with enhanced visible-light photocatalytic activities
CN101884915A (zh) 介孔金属氧化物/大孔二氧化钛纳米管阵列复合光催化剂及其制备方法
Sekar et al. Biomass activated carbon-decorated spherical β-Ni (OH) 2 nanoparticles for enhanced hydrogen production from sulphide wastewater
CN110280289A (zh) 一种氮化碳光催化材料及其制备方法
Durairaj et al. Facile synthesis of waste-derived carbon/MoS 2 composite for energy storage and water purification applications
Yuan et al. A high-efficiency solar water evaporation-photocatalysis system achieved by manipulating surface wettability and constructing heterojunction
Ning et al. Oxygen-incorporated MoS2 catalyst for remarkable enhancing piezocatalytic H2 evolution and degradation of organic pollutant
CN101714427B (zh) Eu(Ⅲ)-1,10邻菲罗啉配合物/碳纳米管导电荧光复合材料及其制备
Li et al. In situ synthesis of N–CoMe2Pc/rGO nanocomposite with enhanced photocatalytic activity and stability in Cr (VI) reduction
CN113070027A (zh) 具有铜离子吸附能力的三钛酸盐和碳纳米管复合光热膜及其制备方法和应用
Cheng et al. Effect of post-annealing treatment on photocatalytic and photoelectrocatalytic performances of TiO2 nanotube arrays photoelectrode
CN110511393B (zh) 一种以铜网为基体的Fe-dobdc MOF及其制备方法和在太阳能蒸汽产生中的应用
CN103920449A (zh) 高效吸附重金属的自组装纳米薄膜MnO2吸附剂及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210706