CN113068390B - Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof - Google Patents

Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof Download PDF

Info

Publication number
CN113068390B
CN113068390B CN202110348967.9A CN202110348967A CN113068390B CN 113068390 B CN113068390 B CN 113068390B CN 202110348967 A CN202110348967 A CN 202110348967A CN 113068390 B CN113068390 B CN 113068390B
Authority
CN
China
Prior art keywords
gete
graphene
nanosheet
composite material
nanosheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110348967.9A
Other languages
Chinese (zh)
Other versions
CN113068390A (en
Inventor
牟从普
季颖
温福昇
王博翀
向建勇
柳忠元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202110348967.9A priority Critical patent/CN113068390B/en
Publication of CN113068390A publication Critical patent/CN113068390A/en
Application granted granted Critical
Publication of CN113068390B publication Critical patent/CN113068390B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Abstract

The invention provides two-dimensional magnetic Fe3GeTe2A nanosheet and graphene nanosheet composite material, and a preparation method and application thereof. The preparation method comprises the following steps: mixing Fe3GeTe2Mixing the powder with acetone, carrying out ultrasonic liquid phase stripping for 8-20 hours in an ice bath environment, carrying out vacuum filtration, and washing to obtain Fe3GeTe2Nanosheets; mixing Fe3GeTe2Mixing the nanosheets with graphite and 1-methyl-2-pyrrolidone, and performing ultrasonic liquid phase dissociation for 1-5 hours in an ice bath environment to obtain two-dimensional magnetic Fe3GeTe2Nanosheet and graphene nanosheet composites. Fe prepared by the method3GeTe2When the thickness of the nano sheet and graphene nano sheet composite material is only 1.45mm, the maximum reflection loss of the nano sheet and graphene nano sheet composite material to microwaves with the frequency of 9.9GHz is 44.43 dB. Therefore, the microwave absorbing material has good microwave absorbing performance and wide application prospect.

Description

Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof
Technical Field
The invention belongs to the field of wave-absorbing materials, and particularly relates to a two-dimensional magnetic Fe3GeTe2 nanosheet and graphene nanosheet composite material, and a preparation method and application thereof.
Background
With the rapid development of electronic technology, electromagnetic waves are closely related to our lives, such as microwave ovens for heating food in a short time, the update of mobile communication, the accurate positioning of GPS, and the like. However, the electromagnetic wave is a 'double-edged sword', which brings great convenience to people and brings serious electromagnetic pollution and interference. The health of human body and the operation of electronic equipment are seriously influenced. The microwave absorbing material can effectively absorb the harmful electromagnetic waves, and is favorable for guaranteeing the health of human bodies and the normal operation of electronic equipment. In recent years, two-dimensional layered materials have been receiving much attention due to properties such as high specific surface area and chemical stability.
Document 1 "Mu, c.; du, x.; nie, a.; wang, b.; wen, f.; xiang, j.; zhai, k.; liu, Z, Microwave Absorption Properties of heterogeneous Composites of Two Dimensional Layered Materials and Graphene nanosheets applied Physics letters 2019,115,043103 "reported that Two Dimensional Layered Materials of CrCl were obtained using liquid phase peeling technique3And a nano-sheet structure of graphene, and obtaining composite materials with different proportions by simple compounding. When the mass of the graphene nano sheet accounts for 40% of the total mass of the composite material, the maximum reflection loss of the composite material to microwaves with the frequency of 10GHz is 46.2dB at the thickness of 1.9 mm.
Document 2 "Chang, y.; mu, C.; yang, B.; nie, a.; wang, b.; xiang, j.; yang, y.; wen, f.; liu, Z.microwave Absorbing Properties of Two Dimensional Materials GeP5 Enhanced After Absorbing treatment applied Physics letters.2019,114, 013103 "reports the synthesis of Two Dimensional layered Materials GeP at high temperature and high pressure5Forming a porous structure by annealing treatment at different temperatures, and liquid-phase peeling to GeP having a porous structure5Nanosheets. GeP annealed at 570 DEG C5The nanosheet, when having a thickness of 2.9 mm, can achieve 37.8dB of maximum reflection loss for a frequency of 15.4 GHz.
Document 3 "Shi Y, Gao X, Qiu J. Synthesis and string connected microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam. ceramics International, 2018" reports a simple method to incorporate Fe3O4Uniformly adhered to graphene sheets overlapped with each otherGraphene and Fe3O4The mass ratio of (1: 1), when the composite material is 2.5mm, the maximum reflection loss reaches 45.08 dB.
Document 4 "Li H, W J, Huang y. microwave absorption properties of carbon nanotubes and plated-shaped znonans composites. materials Science and Engineering B2010, 175, 81-85" reports the preparation method of carbon nanotubes/ZnO and epoxy resin (EP) as a binder to test the wave absorbing properties of the composite. The effect of absorber concentration and composite thickness on microwave absorption performance was investigated. The maximum reflection loss value of the 1.5mm CNT/T-ZnO/EP composite material to 12.16 GHz electromagnetic waves is 23.00dB, and the effective absorption frequency bandwidth reaches 5 GHz.
Document 5, "Ma Y, Sun L, Huang W, et al, three-Dimensional Nitrogen nanoparticles/Graphene structures Used as a Metal-Free electric catalyst for the Oxygen Reduction Reaction [ J ]. Journal of Physical Chemistry C,2011,115(50): 24562456245697" reports the preparation method and electromagnetic wave absorption properties of three-Dimensional (3D) Nitrogen-Doped Carbon nanotube (NCNT)/reduced Graphene oxide. The material has good electromagnetic wave absorption performance due to the interconnected network structure, enough interfaces, a large number of defects in a single carbon nano tube and other factors: at a thickness of 3.5mm, a maximum reflection loss of 40.3dB is achieved.
The above documents all produce some composite materials with wave-absorbing properties, but all suffer from certain drawbacks to a different extent, such as: the requirement of low reflection loss value and thin thickness can not be satisfied at the same time. The problems are just the main resistance which hinders the development of the wave-absorbing material, and in view of this, the present application proposes a new composite material, aiming at solving the above problems.
Disclosure of Invention
The invention aims to provide two-dimensional magnetic Fe3GeTe2A nanosheet and graphene nanosheet composite material, and a preparation method and application thereof.
In order to achieve the above purpose of the present invention, the following technical solutions are adopted:
two-dimensional magnetic Fe3GeTe2Nano meterA method for preparing a sheet and graphene nanoplatelet composite, comprising:
mixing Fe3GeTe2Mixing the powder with acetone, carrying out ultrasonic liquid phase stripping for 8-20 hours in an ice bath environment, carrying out vacuum filtration, and washing to obtain Fe3GeTe2Nanosheets;
subjecting said Fe to3GeTe2Mixing the nanosheets with graphite and 1-methyl-2-pyrrolidone, performing ultrasonic liquid phase dissociation for 1-5 hours in an ice bath environment, performing vacuum filtration, washing, and drying in vacuum to obtain the two-dimensional magnetic Fe3GeTe2Nanosheet and graphene nanosheet composites.
Further, in a preferred embodiment of the present invention, the Fe3GeTe2The mass ratio of the nanosheets to the graphene is 1: 1-3.
Further, in a preferred embodiment of the present invention, the Fe3GeTe2The mass-volume ratio of the mixture formed by the nanosheets and the graphite to the 1-methyl-2-pyrrolidone is 0.5-1.5 mg/ml.
Further, in a preferred embodiment of the present invention, the power of the ultrasonic liquid phase stripping is 400-600W.
Further, in a preferred embodiment of the present invention, the Fe3GeTe2The mass-volume ratio of the powder to the acetone is 0.5-1.5 mg/mL.
Further, in a preferred embodiment of the present invention, in the vacuum filtration step, an organic microporous microfilm having a diameter of 0.2 μm is used.
Two-dimensional magnetic Fe3GeTe2The nanosheet and graphene nanosheet composite material is prepared by the preparation method.
A microwave absorbing material containing the above two-dimensional magnetic Fe3GeTe2A composite material of a nano sheet and a graphene nano sheet.
Further, in the preferred embodiment of the present invention, the thickness of the composite material is 1.45mm, and the maximum reflection loss of the microwave absorbing material for the microwave with the frequency of 9.9GHz is not lower than-40 dB.
The design idea of the invention is as follows:
Fe3GeTe2due to the inherent ferromagnetism, the material is suitable for being used as a magnetic loss material in the field of wave absorption. But pure phase Fe through measurement of electromagnetic parameters3GeTe2Has a small dielectric constant and thus has a poor dielectric loss capability against electromagnetic waves. Here, Fe is added3GeTe2The graphene/graphene composite material is mixed with dielectric loss material graphene, so that impedance matching is adjusted, a large amount of electromagnetic waves can enter the wave-absorbing material, and a high-performance microwave-absorbing two-dimensional composite material is obtained.
The invention has the following effects:
the invention utilizes ultrasonic liquid phase stripping technology to prepare two-dimensional layered magnetic Fe3GeTe2Nanosheets prepared by mixing Fe3GeTe2Uniformly compounding a suspension of nanosheets and graphene nanosheets, and obtaining two-dimensional magnetic Fe by using a vacuum filtration method3GeTe2And graphene nanosheet, and is applied to the field of microwave absorption. It has the following advantages:
1. the invention can obtain the two-dimensional magnetic material Fe by the ultrasonic liquid phase stripping technology3GeTe2The ultrasonic liquid phase stripping concentrates energy on a probe, has high power and high efficiency, and can rapidly strip Fe by the technology3GeTe2To obtain nanoscale two-dimensional layered Fe3GeTe2Nanosheets.
2. The invention further obtains the Fe-containing material by utilizing an ultrasonic liquid phase stripping technology3GeTe2Dispersion of nanoplatelets and graphene nanoplatelets due to Fe3GeTe2And the graphene are both nano-scale, are dispersed very uniformly, and are favorable for obtaining a uniformly-compounded two-dimensional composite material.
3. The invention adopts acetone as Fe3GeTe2Dispersing solvent for nanosheet, 1-methyl-2-pyrrolidone as Fe3GeTe2/The two solvents can realize good dispersion effect on the nano-sheets, and have the advantages ofThere are no alternatives.
4. In the vacuum filtration technology adopted by the invention, the diameter of the adopted organic microporous microfilm is 0.2 μm. The filtration process ensures that the sample is cleaned, and simultaneously, Fe3GeTe2/The graphene nano-sheets cannot permeate and flow away from the fine micropores along with alcohol or water.
5. Preparation of the resulting Fe3GeTe2When the thickness of the nano sheet and graphene nano sheet composite material is only 1.45mm, the maximum reflection loss of the nano sheet and graphene nano sheet composite material to microwaves with the frequency of 9.9GHz is 44.43 dB. Therefore, the microwave absorbing material has good microwave absorbing performance and wide application prospect.
Drawings
FIG. 1 is a schematic preparation scheme of example 1;
FIG. 2a shows Fe in example 13GeTe2XRD of the nanosheets;
FIG. 2b is a Raman spectrum of the composite material of example 1;
FIG. 3a shows Fe in example 13GeTe2Nanosheet reflection loss
FIG. 3b shows graphite and Fe in example 13GeTe2Reflection loss of 1:1 by mass composite
FIG. 3c shows graphite and Fe in example 13GeTe2Reflection loss of 2:1 composite
FIG. 3d is a graph of graphite and Fe in example 13GeTe2Reflection loss of 3:1 composite
FIG. 4 is a graph of the reflection loss of a composite material as a function of microwave frequency;
fig. 5 is a graph comparing microwave absorption performance of composite materials with related carbon-based materials.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to examples, but it will be understood by those skilled in the art that the following examples are only illustrative of the present invention and should not be construed as limiting the scope of the present invention. The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products available commercially.
Example 1:
this example provides a two-dimensional magnetic Fe3GeTe2The flow of the preparation method of the nanosheet and graphene nanosheet composite material is shown in fig. 1, and the preparation method specifically comprises the following steps:
(1) milling of Fe3GeTe2Single crystal to obtain Fe3GeTe2Powder; mixing Fe3GeTe2Adding the powder into acetone (1mg/mL), carrying out ultrasonic liquid phase stripping for 10 hours at the power of 500W to obtain Fe3GeTe2A nanosheet dispersion.
(2) Fe was collected by vacuum filtration and washed with deionized water3GeTe2Nanosheets, dried under vacuum to obtain Fe3GeTe2Nanosheets.
(3) Mixing graphite and Fe3GeTe2Uniformly mixing the nano sheets according to the mass ratio of 1: 1-3, adding the nano sheets into NMP (1-methyl-2-pyrrolidone) according to a certain mass ratio (1mg/mL), and performing ultrasonic liquid phase dissociation for 2 hours to obtain Fe3GeTe2And uniformly mixing the nanosheets and the graphene nanosheets.
(4) Taking the uniformly mixed suspension, carrying out vacuum filtration by adopting an organic microporous microfilm with the diameter of 0.2 mu m, washing by using deionized water, and carrying out vacuum drying to obtain Fe3GeTe2The composite material is prepared by uniformly mixing the nanosheets and the graphene nanosheets.
The composite material and the intermediate product were characterized with the following results:
FIG. 2a shows Fe3GeTe2The XRD pattern of the nanosheet is compared with a standard pdf card to prove Fe3GeTe2The successful preparation. FIG. 2b shows Raman spectra of the composite material, showing Raman diffraction peaks of graphene, respectively 1360cm-1Band D of 1580cm-1The sum of the G bands at position (b) is 2720cm -12D band at (b). These typical peaks are due to the in-plane vibration of structurally disordered, ordered graphitic carbon and the band structure of graphene layers, respectively. At the placeIn some samples, the strength of the D band related to disorder is very weak, indicating that the composite material is rich in high-quality graphene.
3 a-3 d are phase diagrams of the change of the reflection loss of the composite material along with the microwave frequency and the thickness of the wave-absorbing material, and the pure phase FGT in FIG. 3a is relatively flat and has no obvious absorption peak, i.e. the reflection loss values are all larger than-10 dB, which proves that the FGT with the thickness of 1-5mm is ineffective in absorbing the electromagnetic wave of 1-18 GHz. FIG. 3b shows that when the mass ratio of FGT to GNs is 1:1, the reflection loss value of the sample is close to-40 dB at about 4.5mm, and the wave absorbing effect is improved. FIG. 3c shows a blue-green bright band at a low thickness, high frequency at the FGT to GNs mass ratio of 1: 2. Thinner materials have proven to be effective absorption of electromagnetic waves at high frequencies. Wherein the maximum reflection loss of the 1.45mm material to the 9.9GHz microwave is 44.43 dB. Fig. 3d shows that when the mass ratio of FGT to GNs is 1:3, the impedance mismatch is caused by the increased amount of graphene, so the picture is red, and the electromagnetic wave is ineffectively absorbed.
Example 2
This example provides a two-dimensional magnetic Fe3GeTe2The flow of the preparation method of the nanosheet and graphene nanosheet composite material is shown in fig. 1, and the preparation method specifically comprises the following steps:
(1) milling of Fe3GeTe2Single crystal to obtain Fe3GeTe2Powder; mixing Fe3GeTe2Adding the powder into acetone (1.5mg/mL), ultrasonically stripping the liquid phase for 15 hours at the power of 600W to obtain Fe3GeTe2A nanosheet dispersion.
(2) Fe was collected by vacuum filtration and washed with deionized water3GeTe2Nanosheets, dried under vacuum to obtain Fe3GeTe2Nanosheets;
(3) mixing graphite and Fe3GeTe2The nano-sheets are uniformly mixed according to the mass ratio of 1:2, added into NMP (1-methyl-2-pyrrolidone) according to a certain mass-volume ratio (1.5mg/mL), and subjected to ultrasonic liquid phase dissociation for 4 hours, so that Fe is obtained3GeTe2Uniformly mixing the nanosheets and the graphene nanosheets to obtain a dispersion liquid;
(4) taking the uniformly mixed suspension, carrying out vacuum filtration by adopting an organic microporous microfilm with the diameter of 0.2 mu m, washing by using deionized water, and carrying out vacuum drying to obtain Fe3GeTe2The composite material is prepared by uniformly mixing nanosheets and graphene nanosheets.
Example 3
This example provides a two-dimensional magnetic Fe3GeTe2The flow of the preparation method of the nanosheet and graphene nanosheet composite material is shown in fig. 1, and the preparation method specifically comprises the following steps:
(1) milling of Fe3GeTe2Single crystal to obtain Fe3GeTe2Powder; mixing Fe3GeTe2Adding the powder into acetone (0.5mg/mL), and ultrasonic liquid-phase stripping with power of 400W for 9 hours to obtain Fe3GeTe2A nanosheet dispersion.
(2) Fe was collected by vacuum filtration and washed with deionized water3GeTe2Nanosheets, dried under vacuum to obtain Fe3GeTe2Nanosheets;
(3) mixing graphite and Fe3GeTe2The nano-sheets are uniformly mixed according to the mass ratio of 1:2, added into NMP (1-methyl-2-pyrrolidone) according to a certain mass-volume ratio (0.5mg/mL), and subjected to ultrasonic liquid phase dissociation for 1 hour, so that Fe is obtained3GeTe2Uniformly mixing the nanosheets and the graphene nanosheets to obtain a dispersion liquid;
(4) taking the uniformly mixed suspension, carrying out vacuum filtration by adopting an organic microporous microfilm with the diameter of 0.2 mu m, washing by using deionized water, and carrying out vacuum drying to obtain Fe3GeTe2The composite material is prepared by uniformly mixing the nanosheets and the graphene nanosheets.
The composite material prepared in the embodiment of the invention is subjected to a microwave absorption experiment:
the four groups of samples obtained in example 1 were pressed into a circular ring shape with a mass ratio of 3:7 with paraffin, the inner diameter of the circular ring being 3mm, the outer diameter being 7mm, and the thickness being 1.5 mm. Adopting a vector network analyzer to analyze the real part and the imaginary part of the dielectric constant of the material; and the real part and the imaginary part of the magnetic permeability are measured. And finally, calculating the wave absorbing performance of the material according to the electromagnetic parameters.
As a result, as shown in FIG. 4, when the thickness of the composite material was 1.45mm, the maximum reflection loss was 44.43dB with respect to the microwave having a frequency of 9.9 GHz.
The microwave absorption performance of the composite was compared to some carbon-based materials of the prior art (as shown in table 1). As a result, as shown in fig. 5, it is demonstrated that the present invention has advantages of "thinner thickness" and "stronger electromagnetic wave absorption capability".
TABLE 1 carbon-based materials of the prior art and their performance parameters
Figure BDA0003001800420000071
Figure BDA0003001800420000081
The above-mentioned embodiments are merely illustrative of the preferred embodiments of the present invention, and do not limit the scope of the present invention, and various modifications and improvements made to the technical solution of the present invention by those skilled in the art without departing from the spirit of the present invention shall fall within the protection scope defined by the claims of the present invention.

Claims (8)

1. Two-dimensional magnetic Fe3GeTe2The preparation method of the nanosheet and graphene nanosheet composite material is characterized by comprising the following steps:
mixing Fe3GeTe2Mixing the powder with acetone, carrying out ultrasonic liquid phase stripping for 8-20 hours in an ice bath environment, carrying out vacuum filtration, and washing to obtain Fe3GeTe2Nanosheets;
subjecting said Fe to3GeTe2Mixing the nanosheets with graphite and 1-methyl-2-pyrrolidone, performing ultrasonic liquid phase dissociation for 1-5 hours in an ice bath environment, performing vacuum filtration, washing, and drying in vacuum to obtain the two-dimensional magnetic Fe3GeTe2Compounding of nanosheets and graphene nanosheetsA material;
said Fe3GeTe2The mass ratio of the nanosheets to the graphene is 1: 3;
the thickness of the prepared composite material is 1.45mm, and the maximum reflection loss of the microwave absorbing material prepared from the composite material to microwaves with the frequency of 9.9GHz is not lower than-40 dB.
2. Two-dimensional magnetic Fe according to claim 13GeTe2The preparation method of the nano-sheet and graphene nano-sheet composite material is characterized in that the Fe3GeTe2The mass-volume ratio of the mixture formed by the nanosheets and the graphite to the 1-methyl-2-pyrrolidone is 0.5-1.5 mg/mL.
3. Two-dimensional magnetic Fe according to claim 13GeTe2The preparation method of the nanosheet and graphene nanosheet composite material is characterized in that the power of ultrasonic liquid-phase stripping is 400-600W.
4. Two-dimensional magnetic Fe according to claim 13GeTe2The preparation method of the nano-sheet and graphene nano-sheet composite material is characterized in that the Fe3GeTe2The mass-volume ratio of the powder to the acetone is 0.5-1.5 mg/mL.
5. Two-dimensional magnetic Fe according to claim 13GeTe2The preparation method of the nano sheet and graphene nano sheet composite material is characterized in that in the vacuum filtration step, an organic microporous micro-membrane with the diameter of 0.2 mu m is adopted.
6. Two-dimensional magnetic Fe3GeTe2Nanosheet and graphene nanosheet composite, characterized in that it is prepared by a method of preparation as claimed in any one of claims 1 to 5.
7. A microwave absorbing material, characterized in that itContaining the two-dimensional magnetic Fe as claimed in claim 63GeTe2A composite material of nanosheets and graphene nanosheets.
8. A microwave absorbing material as claimed in claim 7, wherein the thickness of the composite material is 1.45mm, and the maximum reflection loss of the microwave absorbing material for microwaves having a frequency of 9.9GHz is not less than-40 dB.
CN202110348967.9A 2021-03-31 2021-03-31 Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof Active CN113068390B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110348967.9A CN113068390B (en) 2021-03-31 2021-03-31 Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110348967.9A CN113068390B (en) 2021-03-31 2021-03-31 Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113068390A CN113068390A (en) 2021-07-02
CN113068390B true CN113068390B (en) 2022-07-01

Family

ID=76564914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110348967.9A Active CN113068390B (en) 2021-03-31 2021-03-31 Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113068390B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361289B (en) * 2022-01-10 2024-03-15 北京工业大学 Construction method of self-driven ultra-fast photoelectric detector based on van der Waals metal electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347377A (en) * 2013-06-08 2013-10-09 西北工业大学 Method for preparing graphene/Co3O4 wave-absorbing material through hydrothermal method
CN108929660A (en) * 2018-07-03 2018-12-04 广东工业大学 A kind of composition and its method for preparing nano-fluid
CN110041885A (en) * 2019-05-10 2019-07-23 安徽理工大学 A kind of preparation method of redox graphene/stannic oxide nanometer composite wave-suction material
CN112350076A (en) * 2020-11-04 2021-02-09 广东极客亮技术有限公司 Graphene composite nano metal film and preparation method and application thereof
CN112350029A (en) * 2020-10-26 2021-02-09 四川大学 Heterojunction diaphragm material for sodium metal battery and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277059A (en) * 2016-08-22 2017-01-04 齐齐哈尔大学 A kind of method preparing tungsten disulfide/Graphene heterojunction structure
KR102483991B1 (en) * 2018-02-13 2022-12-30 성균관대학교산학협력단 Microbubble integrated structure and method of manufacturing the same
CN109021919B (en) * 2018-07-09 2021-03-12 中南大学 Preparation method and application of graphene/cobalt-nickel-manganese ferrite nanocomposite
CN109273694B (en) * 2018-10-23 2021-08-31 四川普利司德高分子新材料有限公司 Graphene/stannous oxide two-dimensional heterojunction composite material and preparation method thereof
CN111454691B (en) * 2020-04-14 2021-06-08 大连理工大学 Graphene/amorphous titanium dioxide nanorod composite material, preparation method and application thereof
CN111542213A (en) * 2020-05-11 2020-08-14 向怀珍 Manganese-zinc ferrite-graphene composite electromagnetic shielding material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347377A (en) * 2013-06-08 2013-10-09 西北工业大学 Method for preparing graphene/Co3O4 wave-absorbing material through hydrothermal method
CN108929660A (en) * 2018-07-03 2018-12-04 广东工业大学 A kind of composition and its method for preparing nano-fluid
CN110041885A (en) * 2019-05-10 2019-07-23 安徽理工大学 A kind of preparation method of redox graphene/stannic oxide nanometer composite wave-suction material
CN112350029A (en) * 2020-10-26 2021-02-09 四川大学 Heterojunction diaphragm material for sodium metal battery and preparation method and application thereof
CN112350076A (en) * 2020-11-04 2021-02-09 广东极客亮技术有限公司 Graphene composite nano metal film and preparation method and application thereof

Also Published As

Publication number Publication date
CN113068390A (en) 2021-07-02

Similar Documents

Publication Publication Date Title
Chen et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands
Duan et al. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics
Mu et al. Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption
Sun et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance
Chen et al. Interconnected magnetic carbon@ NixCo1-xFe2O4 nanospheres with core–shell structure: an efficient and thin electromagnetic wave absorber
Zhang et al. Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties
Peymanfar et al. Preparation of graphite-like carbon nitride (g-C3N4)/NiCo2S4 nanocomposite toward salient microwave characteristics and evaluation of medium influence on its microwave features
Hu et al. A self-assembled graphene/polyurethane sponge for excellent electromagnetic interference shielding performance
Zhang et al. Improving the electromagnetic wave absorption properties of the layered MoS2 by cladding with Ni nanoparticles
Zhu et al. Synthesis and electromagnetic wave absorption performance of NiCo 2 O 4 nanomaterials with different nanostructures
Fang et al. Metal–organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures
CN110177449B (en) Carbon nanotube-based electromagnetic composite wave-absorbing material and preparation method and application thereof
Zhao et al. Direct in situ synthesis of a 3D interlinked amorphous carbon nanotube/graphene/BaFe 12 O 19 composite and its electromagnetic wave absorbing properties
Guo et al. The excellent electromagnetic wave absorbing properties of carbon fiber composites: the effect of metal content
CN108610590B (en) Microwave absorbing material and preparation method thereof
CN113068390B (en) Two-dimensional magnetic Fe3GeTe2Composite material of nanosheet and graphene nanosheet as well as preparation method and application thereof
Lyu et al. Novel synthesis of MoO3/Mo4O11/MoO2 heterogeneous nanobelts for wideband electromagnetic wave absorption
Ma et al. Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness
Yan et al. Nickel nanoparticle decorated N-doped carbon nanofibers for light weight and high-efficiency microwave absorption
Bai et al. Light-weight and high-efficiency electromagnetic wave shielding properties based on waste straw porous carbon
CN113861432B (en) Application of conductive MOF as wave-absorbing material
Xie et al. Bio-carbon/Fe x O y composite materials with a wideband electromagnetic wave absorption
Guo et al. Tailoring Microwave-absorption properties of Co x Ni y alloy/RGO nanocomposites with tunable atomic ratios
Qi et al. Synthesis and microwave absorption properties of sandwich-type CNTs/Fe 3 O 4/RGO composite with Fe 3 O 4 as a bridge
Azman et al. Graphene-based material for microstrip bandpass filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant