CN113063240A - 一种强化辐射制冷领域的复合结构表面 - Google Patents

一种强化辐射制冷领域的复合结构表面 Download PDF

Info

Publication number
CN113063240A
CN113063240A CN202110295321.9A CN202110295321A CN113063240A CN 113063240 A CN113063240 A CN 113063240A CN 202110295321 A CN202110295321 A CN 202110295321A CN 113063240 A CN113063240 A CN 113063240A
Authority
CN
China
Prior art keywords
titanium metal
radiation
germanium
dielectric layer
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110295321.9A
Other languages
English (en)
Other versions
CN113063240B (zh
Inventor
崔贵成
吕继组
高林松
白敏丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202110295321.9A priority Critical patent/CN113063240B/zh
Publication of CN113063240A publication Critical patent/CN113063240A/zh
Application granted granted Critical
Publication of CN113063240B publication Critical patent/CN113063240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于辐射制冷技术领域,提出了一种强化辐射制冷领域的复合结构表面。该表面基于钛‑锗‑钨的材料堆叠顺序,其中对于钛金属需要进行尺寸的设计并制备长、宽和厚度依次为1μm、0.2μm和0.06μm的金属条带分别置于钨衬底和电介质层锗之上,这些金属条带在平行和垂直方向交错分布,相邻且平行的条带间距设置为1μm。中间的锗介质层设置为0.6μm,同时金属钨设置为金属衬底,其厚度设置为2μm。本发明具备制备可行性强、辐射特性突出的特点,该表面能够在大气窗口波段具有较高的光谱发射率,满足辐射制冷的要求。

Description

一种强化辐射制冷领域的复合结构表面
技术领域
本发明属于辐射制冷技术领域,涉及一种强化辐射制冷领域的复合结构表面。
背景技术
大气对某些特殊波段,如8-13μm区间的电磁波,具有极高的透射性能,使得电磁波能够直接辐射至宇宙空间,故该波段被称为大气窗口。根据大气窗口的热力学应用价值,辐射制冷作为一种被动式的散热方式被提出,其目的是将波长处于8-13μm光谱区间的电磁波强化辐射,并抑制该范围以外电磁波的发射。超材料电磁发射器能够通过微观调控的方式,使表面在大气窗口波段具有高发射率的特性,从而满足辐射制冷的要求。
随着纳米技术的进步,应用于辐射制冷的微纳模型被广泛研究和提出。如文献Wang H,Prasad Sivan V,Mitchell A,Rosengarten G,Phelan P,Wang L.Highlyefficient selective metamaterial absorber for high-temperature solar thermalenergy harvesting.Solar Energy Materials and Solar Cells.2015;137:235-42.提出了Ti-MgF2-W结构的梯形微表面,通过改变Ti金属的几何参数,在可见光波段具有高吸收率,并且在大气窗口区间高发射率的特性,将其应用在太阳能电池表面,可同时满足辐射制冷和光伏发电的功能。同样,文献Liu Q,Wu W,Lin S,Xu H,Lu Y,Song W.Non-taperedmetamaterial emitters for radiative cooling to low temperature limit.OpticsCommunications.2019;450:246-51.中通过在竖直方向上堆叠若干层金属—介质—金属的圆柱形周期性光栅结构,使其在大气窗口波段平均发射率达到了0.8,温度降低55K。这些结构在设计上具有极大的灵活性和创新性,但是整体结构较为复杂,并且对制备精度要求较高,难以大范围普及和应用。另外,学者们提出的模型在理论上依旧存在光谱发射率低、发射带宽窄、光谱选择性差等问题,结合复杂的模型设计,并不利于辐射制冷领域的广泛应用。因此,开发一种结构设计简易、制备难度低,且能够很好地满足大气窗口区间(8-13μm)持续高发射特性的表面显得尤为重要。
发明内容
本发明的目的是为了解决辐射结构表面设计复杂、光谱辐射特性差等问题,提出了一种基于钛-锗-钨的复合结构表面。
本发明技术方案:
一种强化辐射制冷领域的复合结构表面,包括金属钨衬底,半导体锗电介质层和钛金属条,半导体锗电介质层位于金属钨衬底上,钛金属条位于半导体锗电介质层上;
所述的金属钨衬底的厚度L8为2-2.5μm;所述的半导体锗电介质层L7为0.6-0.8μm;所述的钛金属条的长度L3为1-1.2μm,宽度L4为0.2-0.25μm,高度L9为0.06-0.08μm;钛金属条垂直和平行交错分布在半导体锗电介质层上;两平行钛金属条在平行方向的间距L2为1μm,两垂直钛金属条在平行方向距离为L3+2L1为1.8-2μm;两垂直钛金属条在垂直方向的距离L6为1μm,两平行钛金属条在垂直方向距离L3+2L5为1.8-2μm。
本发明的有益效果:把金属钨作为衬底,在其上面涂上薄的半导体锗作为电介质层,在电介质层上面堆叠垂直和平行交错分布的钛金属条。顶层钛金属条在λ=9.4μm的短波入射情况下,能产生表面产生感应电流,同时在金属钨衬底内部形成感应电流,进而在锗电介质层内部形成闭合回路电流。该现象会激发锗半导体层内部的磁共振,从而对短波具有强烈的束缚作用,强化了金属钨对短波的吸收。而在λ=12.1μm的长波入射情况下,将会在顶层钛金属条与锗电介质层交界处形成磁场加强,会形成感应电流,将磁场强烈束缚在此交界面上,从而强化顶层钛金属带对于长波的吸收。由此可见,钛-锗-钨的复合结构表面满足在λ=9.4μm的短波和λ=12.1μm的长波入射情况下,都具有很高的吸收比,从而强化波长处于8-13μm光谱区间的辐射,并抑制该范围以外电磁波的发射。
有益效果:本发明与现有研究相比具有以下优点:
1、结构模型设计简易,具有一定的制备可行性。
2、采用本发明的方式计算得到钛-锗-钨微纳复合结构表面在大气窗口波段(8-13μm)具有超过0.9的光谱发射率,且光谱带宽较宽无明显缺陷,并在其他中红外波段具有不超过0.2的低发射率。
3、采用这种钛-锗-钨的复合结构,形成了一个完美的电磁发射器,激发了表面等离激元、电偶极子谐振和磁极化共振等效应。
附图说明
图1是本发明提出的超材料复合结构辐射制冷表面3D图。
图2是复合结构表面的平行轴的结构特征。
图3是复合结构表面的垂直轴的结构特征。
具体实施方式
本发明基于50-100℃范围内。考虑热辐射主要集中在近中红外区的特性,提出了一种基于钛-锗-钨的复合结构表面。
所述的金属钨衬底的厚度L8为2-2.5μm,半导体锗电介质层L7为0.6-0.8μm;钛金属条的长度L3为1-1.2μm,宽度L4为0.2-0.25μm,高度L9为0.06-0.08μm;垂直和平行钛金属条交错分布;平行钛金属条在平行方向距离L2为1μm,垂直钛金属条在平行方向距离为L3+2L1为1.8-2μm;垂直钛金属条在垂直方向的距离L6为1μm,平行钛金属条在垂直方向距离L3+2L5为1.8-2μm。
所述钛-锗-钨微纳的复合结构,在不同的入射波长情况下,辐射结构在不同的地方进行强化吸收。在短波入射时,在金属钨衬底内部形成的感应电流与锗电介质层形成闭合回路电流,进而在锗电介质层触发磁共振,强化了在锗-钨交界面对短波的强束缚作用,从而使得短波在金属钨衬底内部迅速吸收。在长波入射时,在顶层交错分布钛金属条与锗电介质层交界面形成感应电流,进而触发磁共振效应。磁共振效应能姜电磁波强烈束缚进钛金属条中,最终转化为热能被消耗,从而强化对长波的吸收。
本发明的具体的工作过程如下:
在短波长处,电磁波将与2μm钨金属衬底内产生耦合作用,激发出表面等离激元,同时也会产生感应电流。并且在0.6μm锗电介质层内部形成闭合的回路电流,从而引起磁共振效应。该磁共振与入射电磁波的磁场分量方向相反,具有强烈的束缚作用,所以在短波入射条件下2μm对单元结构的吸收起主导作用,根据基尔霍夫定律,复合表面对短波的发射能力得到了强化。
在长波长处,顶层钛金属条1μm×0.2μm带在电磁波的影响下会在长轴两端发生了电荷的定向聚集,因此产生了电偶极子共振,这种共振模式激发了感应电流,与0.6μm锗介质层形成了多个闭合回路,导致了磁共振效应,该效应能够将电磁波强烈束缚进结构中,最终转化为热能被消耗,表现出顶层钛金属条1μm×0.2μm带对长波吸收的主导作用,强化了发射能力。另外,矩形对称钛金属条1μm×0.2μm带的排列方式可以表现出对偏振角度、极角的不敏感性,并且针对发射率光谱的缺陷具有很好的弥补作用,是超材料表面在大气窗口区间实现选择性辐射的关键。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改。变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (1)

1.一种强化辐射制冷领域的复合结构表面,其特征在于,该强化辐射制冷领域的复合结构表面包括金属钨衬底、半导体锗电介质层和钛金属条,半导体锗电介质层位于金属钨衬底上,钛金属条位于半导体锗电介质层上;
所述的金属钨衬底的厚度L8为2-2.5μm;所述的半导体锗电介质层L7为0.6-0.8μm;所述的钛金属条的长度L3为1-1.2μm,宽度L4为0.2-0.25μm,高度L9为0.06-0.08μm;钛金属条垂直和平行交错分布在半导体锗电介质层上;两平行钛金属条在平行方向的间距L2为1μm,两垂直钛金属条在平行方向距离为L3+2L1为1.8-2μm;两垂直钛金属条在垂直方向的距离L6为1μm,两平行钛金属条在垂直方向距离L3+2L5为1.8-2μm。
CN202110295321.9A 2021-03-19 2021-03-19 一种强化辐射制冷领域的复合结构表面 Active CN113063240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110295321.9A CN113063240B (zh) 2021-03-19 2021-03-19 一种强化辐射制冷领域的复合结构表面

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110295321.9A CN113063240B (zh) 2021-03-19 2021-03-19 一种强化辐射制冷领域的复合结构表面

Publications (2)

Publication Number Publication Date
CN113063240A true CN113063240A (zh) 2021-07-02
CN113063240B CN113063240B (zh) 2022-04-12

Family

ID=76562366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110295321.9A Active CN113063240B (zh) 2021-03-19 2021-03-19 一种强化辐射制冷领域的复合结构表面

Country Status (1)

Country Link
CN (1) CN113063240B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833582A (zh) * 2021-01-19 2021-05-25 郑州大学 一种实现辐射制冷的二氧化硅热超材料及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160356561A1 (en) * 2015-06-03 2016-12-08 PC Krause and Associates Composite material for passive radiative cooling
US20170219746A1 (en) * 2014-08-29 2017-08-03 National Institute For Materials Science Electromagnetic Wave Absorbing/Radiating Material, Method of Manufacturing Same, and Infrared Source
CN112460836A (zh) * 2020-11-17 2021-03-09 淮阴工学院 被动式辐射冷却复合材料薄膜
CN112460837A (zh) * 2020-12-05 2021-03-09 中国人民解放军国防科技大学 基于dbs算法的二氧化钛选择性吸波器及设计方法
CN112513690A (zh) * 2018-07-31 2021-03-16 住友电气工业株式会社 辐射装置和发射冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170219746A1 (en) * 2014-08-29 2017-08-03 National Institute For Materials Science Electromagnetic Wave Absorbing/Radiating Material, Method of Manufacturing Same, and Infrared Source
US20160356561A1 (en) * 2015-06-03 2016-12-08 PC Krause and Associates Composite material for passive radiative cooling
CN112513690A (zh) * 2018-07-31 2021-03-16 住友电气工业株式会社 辐射装置和发射冷却装置
CN112460836A (zh) * 2020-11-17 2021-03-09 淮阴工学院 被动式辐射冷却复合材料薄膜
CN112460837A (zh) * 2020-12-05 2021-03-09 中国人民解放军国防科技大学 基于dbs算法的二氧化钛选择性吸波器及设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833582A (zh) * 2021-01-19 2021-05-25 郑州大学 一种实现辐射制冷的二氧化硅热超材料及其应用

Also Published As

Publication number Publication date
CN113063240B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
Du et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating
Diem et al. Wide-angle perfect absorber/thermal emitter in the terahertz regime
Soydan et al. All ceramic-based metal-free ultra-broadband perfect absorber
Shi et al. Compact broadband terahertz perfect absorber based on multi-interference and diffraction effects
Li et al. Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics
CN103269574B (zh) 一种超薄宽带吸波超材料
Huang et al. A brief review on terahertz metamaterial perfect absorbers
Wu et al. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion
CN104198051A (zh) 一种多频带的红外超材料吸波体
Hoa et al. Numerical study of an ultrabroadband, wide-angle, polarization-insensitivity metamaterial absorber in the visible region
CN113063240B (zh) 一种强化辐射制冷领域的复合结构表面
CN107146955A (zh) 一种基于石墨烯材料的高效可调的太赫兹吸波器件
CN103675961A (zh) 基于双l结构的中红外双频带超材料吸收器
CN111443505A (zh) 深亚波长尺寸非互易性发射/吸收器件构造方法及***
Meng et al. Gain-assisted plasmon resonance narrowing and its application in sensing
Lu et al. A broadband metamaterial absorber based on multilayer-stacked structure
Du John et al. Design of Si based nano strip resonator with polarization-insensitive metamaterial (MTM) absorber on a glass substrate
CN102778708A (zh) 一种光波段吸波器
CN106707382B (zh) 基于齿形结构的光吸收器
CN111817019A (zh) 渐变结构介质加载石墨烯超宽带高效广角太赫兹吸波器
Hamdy et al. Wavelength-selective metamaterial absorber based on 2D split rhombus grating for thermophotovoltic solar cell
CN110634966A (zh) 一种超薄太阳光黑硅吸波器及其制备方法
US20170085211A1 (en) Metamaterial based emitters for thermophotovoltaics
US10797633B2 (en) Thermal emitter for energy conversion technical field
Collin et al. New limits for light-trapping with multi-resonant absorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant