CN113060724A - Hollow carbon sphere and preparation method and application thereof - Google Patents

Hollow carbon sphere and preparation method and application thereof Download PDF

Info

Publication number
CN113060724A
CN113060724A CN202110325859.XA CN202110325859A CN113060724A CN 113060724 A CN113060724 A CN 113060724A CN 202110325859 A CN202110325859 A CN 202110325859A CN 113060724 A CN113060724 A CN 113060724A
Authority
CN
China
Prior art keywords
carbon
hollow carbon
hollow
sphere
spheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110325859.XA
Other languages
Chinese (zh)
Other versions
CN113060724B (en
Inventor
谭强强
夏青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN202110325859.XA priority Critical patent/CN113060724B/en
Publication of CN113060724A publication Critical patent/CN113060724A/en
Application granted granted Critical
Publication of CN113060724B publication Critical patent/CN113060724B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

The invention relates to a hollow carbon sphere and a preparation method and application thereof, wherein the preparation raw materials of the hollow carbon sphere comprise a carbon source and a catalyst; the carbon source comprises polytetrafluoroethylene or a combination of polytetrafluoroethylene and other carbon sources. The hollow carbon spheres have high dispersion degree, small and uniform particle size and high graphitization degree, and have high reversible specific capacity and excellent cycling stability when being used as a negative electrode material of a lithium ion battery.

Description

Hollow carbon sphere and preparation method and application thereof
Technical Field
The invention relates to the technical field of carbon materials, in particular to a hollow carbon sphere and a preparation method and application thereof.
Background
Carbon materials have been widely used as electrode materials for lithium ion batteries because of their low cost, low operating voltage, high electrical conductivity, good cycle life, and small volume change during lithium intercalation/deintercalation, and carbon materials are also used in energy fields such as sodium ion batteries, potassium ion batteries, supercapacitors, and the like.
CN110729480A discloses a nitrogen-doped porous hollow carbon sphere and a preparation method thereof, wherein the preparation method disclosed by the invention comprises the steps of obtaining melamine resin beads through one-step condensation of melamine and formaldehyde, and coating polypyrrole on the melamine resin beads by using the beads as a template, taking pyrrole as a nitrogen source and a carbon source and ammonium persulfate as a catalyst; and (3) gradually decomposing the melamine resin pellets in the roasting process by controlling roasting to obtain the nitrogen-doped porous hollow carbon pellets. But the particle size of the hollow carbon sphere formed by the disclosed preparation method is larger.
CN112090395A discloses a method for preparing carbon cages with ultrahigh dye adsorption performance by using different activators. The disclosed method comprises the following steps: stirring and mixing the tar, the absolute ethyl alcohol and the silicon dioxide uniformly, drying to obtain a silicon-carbon material, and then carbonizing to obtain C/SiO of the tar-carbon-coated nano silicon dioxide2A material; mixing C/SiO2Adding the materials into water, adding hydrofluoric acid, stirring and mixing uniformly, separating, and drying to obtain hollow carbon spheres; adding an activating agent into the hollow carbon spheres, adding water, uniformly stirring, drying, activating, adding the activated carbon spheres into the water, carrying out solid-liquid separation, and washing and drying the solid to obtain the carbon cage with the ultrahigh dye adsorption performance. The preparation method disclosed by the invention utilizes the effect of the activating agent on permeation, adsorption and wetting of the hollow carbon spheres to change the surface of the hollow carbon spheres, can effectively improve the specific surface area of the porous carbon cage, and further can effectively improve the adsorption performance of the porous carbon cage on the dye, but does not consider the influence of the particle size and the wall thickness of the carbon cage on the adsorption efficiency.
CN112265979A discloses a method for preparing nitrogen-doped hollow carbon spheres, wherein the preparation process disclosed herein is to graphitize a carbon layer at a high temperature by using carbon-coated titanium dioxide mesocrystals as a template, and further dissolve the titanium dioxide inside with hydrofluoric acid to obtain the nitrogen-doped hollow carbon spheres. The prepared nitrogen-doped hollow carbon spheres have good cycling stability and rate performance, but the disclosed carbon spheres are modified from the doping angle, and the carbon spheres with smaller particle size are not formed by the method, so that the uniformity of the particle size is poorer.
In view of the above, it is important to develop a hollow carbon sphere having a small and uniform particle size.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide hollow carbon spheres, a preparation method and application thereof, wherein the hollow carbon spheres have high dispersion degree and small and uniform particle size.
In order to achieve the purpose, the invention adopts the following technical scheme:
in a first aspect, the invention provides a hollow carbon sphere, wherein the preparation raw materials of the hollow carbon sphere comprise a carbon source and a catalyst;
the carbon source comprises polytetrafluoroethylene or a combination of polytetrafluoroethylene and other carbon sources.
The hollow carbon sphere takes polytetrafluoroethylene or the combination of polytetrafluoroethylene and other carbon sources as the carbon source, the reaction is carried out in a gaseous state by utilizing the sublimation property of the polytetrafluoroethylene at low temperature, and the catalyst catalyzes the carbon source to be cracked in situ to obtain the hollow carbon sphere. The hollow carbon spheres obtained by reaction under the gaseous condition have high dispersion degree, small and uniform particle size and high graphitization degree.
Preferably, the hollow carbon spheres are spherical or spheroidal in shape.
Preferably, the particle size D50 of the hollow carbon sphere is 10-50nm, such as 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, and the like.
Preferably, the wall thickness of the hollow carbon spheres is 4-10nm, such as 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, and the like.
Preferably, the catalyst comprises ferrocene and/or ferric chloride, preferably ferrocene.
The ferrocene is preferably used as the catalyst because the ferrocene can be sublimated at low temperature and can react with fluorine ions in the polytetrafluoroethylene under gaseous reaction, so that carbon atoms are released in situ to generate the hollow carbon spheres. The hollow carbon spheres obtained by the gaseous reaction have high dispersion degree, small and uniform particle size and high graphitization degree.
Preferably, the other carbon source comprises any one of polyvinylidene fluoride, polyethylene glycol, sucrose, glucose or phenolic resin or a combination of at least two thereof, wherein typical but non-limiting combinations include: combinations of polyvinylidene fluoride and polyethylene glycol, combinations of polyethylene glycol, sucrose and glucose, combinations of polyethylene glycol, sucrose, glucose and phenolic resins, combinations of polyvinylidene fluoride, polyethylene glycol, sucrose, glucose and phenolic resins, and the like.
Preferably, the molar ratio of the polytetrafluoroethylene to carbon atoms in the other carbon source is (5-100: 1), such as 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, and the like.
Preferably, the molar ratio of carbon atoms in the carbon source to iron atoms in the catalyst is (2-20: 1), such as 2:1, 3:1, 5:1, 7:1, 9:1, 11:1, 13:1, 15:1, 17:1, 19:1, 20:1, and the like.
In the present invention, the molar ratio of carbon atoms in the carbon source to iron atoms in the catalyst is (2-20):1, and the hollow carbon spheres obtained have a small and uniform particle diameter and a high degree of graphitization.
In a second aspect, the present invention provides a method for preparing the hollow carbon sphere of the first aspect, the method comprising the steps of: mixing a catalyst and a carbon source according to a molar ratio, transferring the mixture into a closed reactor, and then sequentially carrying out heat treatment, cooling and separation to obtain the hollow carbon spheres;
the carbon source comprises polytetrafluoroethylene or a combination of polytetrafluoroethylene and other carbon sources.
The reason for carrying out the reaction in the closed reactor is that the selected carbon source and the catalyst can be sublimated at low temperature, reactants are in a gaseous state during heat treatment, the loss of the prepared raw materials can be reduced by the closed space, the raw materials are fully reacted, and the obtained hollow carbon spheres have smaller particle size and more uniform appearance. In addition, the separation is equivalent to further purification of the hollow carbon spheres, so that the purity of the obtained hollow carbon spheres is higher.
Preferably, the method further comprises filling a protective atmosphere in the closed reactor before the heat treatment.
Preferably, the protective atmosphere comprises any one of nitrogen, argon or helium or a combination of at least two of them, wherein typical but non-limiting combinations include: a combination of nitrogen and argon, a combination of argon and helium, a combination of nitrogen, argon and helium, and the like.
Preferably, the temperature of the heat treatment is 400-900 ℃, such as 400 ℃, 450 ℃, 500 ℃, 550 ℃, 600 ℃, 650 ℃, 700 ℃, 750 ℃, 800 ℃, 850 ℃ and 900 ℃, etc.
Preferably, the heating rate of the heat treatment is 1-30 deg.C/min, such as 1 deg.C/min, 5 deg.C/min, 10 deg.C/min, 15 deg.C/min, 20 deg.C/min, 25 deg.C/min, 30 deg.C/min, and the like.
Preferably, the constant temperature time of the heat treatment is 0.5-12h, such as 0.5h, 1h, 2h, 4h, 6h, 8h, 10h, 12h and the like.
Preferably, the separating further comprises dispersing the cooled material in a solvent.
Preferably, the solvent comprises ethanol.
Preferably, the separation comprises any one of centrifugation, standing or suction filtration or a combination of at least two thereof.
Preferably, the separating further comprises drying the solvent.
As a preferred technical scheme, the preparation method comprises the following steps:
(1) uniformly mixing a carbon source and a catalyst according to the molar ratio of carbon atoms to iron atoms (2-20) to 1 to obtain mixed powder;
(2) transferring the mixed powder to a closed reactor, and filling protective atmosphere;
(3) heating the closed reactor to 400-900 ℃ at the speed of 1-30 ℃/min under the protective atmosphere, keeping the temperature for 0.5-12h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the hollow carbon spheres and the residual mixture in ethanol, separating and drying to obtain the hollow carbon spheres.
In a third aspect, the present invention provides a lithium ion battery, which includes the hollow carbon sphere of the first aspect.
Compared with the prior art, the invention has the following beneficial effects:
the hollow carbon sphere has high graphitization degree, small particle size and thin wall thickness, the particle size can reach 10-50nm, the wall thickness can reach 4-10nm, and the shape is uniform. The hollow carbon sphere is used as a lithium ion battery cathode material, and the reversible specific capacity and the capacity retention rate of 200 cycles of circulation of the material are both high. The button battery prepared by using the hollow carbon spheres as a negative electrode material and a lithium sheet as a reference electrode has a reversible specific capacity of above 342mAh/g and a capacity retention rate of above 90% after 200 cycles.
Drawings
FIG. 1 is a transmission electron micrograph of a hollow carbon sphere according to an example.
Detailed Description
For the purpose of facilitating an understanding of the present invention, the present invention will now be described by way of examples. It should be understood by those skilled in the art that the examples are only for the understanding of the present invention and should not be construed as the specific limitations of the present invention.
Example 1
The embodiment provides a hollow carbon sphere, and raw materials for preparing the hollow carbon sphere include ferrocene and polytetrafluoroethylene.
The preparation method of the hollow carbon sphere comprises the following steps:
(1) uniformly mixing polytetrafluoroethylene (purchased from Aladdin and with the brand number of P110094) and ferrocene according to the molar ratio of carbon atoms to iron atoms of 20:1 to obtain mixed powder;
(2) transferring the obtained mixed powder into a closed reaction kettle, and filling argon into the reaction kettle;
(3) carrying out heat treatment on the closed reaction kettle in an argon atmosphere, heating to 700 ℃ at the speed of 10 ℃/min, carrying out constant-temperature heat treatment for 4h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the mixture in ethanol, centrifuging at low speed to separate the hollow carbon spheres from the residual mixture, and drying the supernatant to obtain the hollow carbon spheres.
Example 2
The embodiment provides a hollow carbon sphere, and raw materials for preparing the hollow carbon sphere comprise ferrocene, polytetrafluoroethylene and sucrose.
The preparation method of the hollow carbon sphere comprises the following steps:
(1) uniformly mixing polytetrafluoroethylene (purchased from Aladdin and with the brand number of P110094) and a mixture of ferrocene and sucrose (the molar ratio of carbon atoms is 5:1) according to the molar ratio of the carbon atoms to the iron atoms being 10:1 to obtain mixed powder;
(2) transferring the obtained mixed powder into a closed reactor, and filling nitrogen into the reaction kettle;
(3) carrying out heat treatment on the closed reaction product in a helium atmosphere, heating to 900 ℃ at the speed of 30 ℃/min, carrying out constant-temperature heat treatment for 0.5h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the mixture in ethanol, centrifuging at low speed to separate the hollow carbon spheres from the residual mixture, and drying the supernatant to obtain the hollow carbon spheres.
Example 3
The embodiment provides a hollow carbon sphere, and raw materials for preparing the hollow carbon sphere comprise ferrocene, polytetrafluoroethylene and glucose.
The preparation method of the hollow carbon sphere comprises the following steps:
(1) uniformly mixing a mixture (carbon atom molar ratio is 100:1) of polytetrafluoroethylene (purchased from alatin and brand number is P110094) and glucose with ferrocene according to the molar ratio of the carbon atoms to the iron atoms being 2:1 to obtain mixed powder;
(2) transferring the obtained mixed powder into a closed reactor, and filling nitrogen into the reaction kettle;
(3) carrying out heat treatment on the closed reaction product in a helium atmosphere, heating to 400 ℃ at the speed of 1 ℃/min, carrying out constant-temperature heat treatment for 12h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the mixture in ethanol, centrifuging at low speed to separate the hollow carbon spheres from the residual mixture, and drying the supernatant to obtain the hollow carbon spheres.
Example 4
The embodiment provides a hollow carbon sphere, and raw materials for preparing the hollow carbon sphere comprise ferrocene, polytetrafluoroethylene and polyvinylidene fluoride.
The preparation method of the hollow carbon sphere comprises the following steps:
(1) uniformly mixing a mixture (carbon atom molar ratio is 20:1) of polytetrafluoroethylene (purchased from Aladdin and brand P110094) and polyvinylidene fluoride (purchased from Suwei and brand 6020) with ferrocene according to the molar ratio of the carbon atoms to the iron atoms being 5:1 to obtain mixed powder;
(2) transferring the obtained mixed powder into a closed reactor, and filling nitrogen into the reaction kettle;
(3) carrying out heat treatment on the closed reaction product in a helium atmosphere, heating to 600 ℃ at the speed of 5 ℃/min, carrying out constant-temperature heat treatment for 8h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the mixture in ethanol, centrifuging at low speed to separate the hollow carbon spheres from the residual mixture, and drying the supernatant to obtain the hollow carbon spheres.
Example 5
The embodiment provides a hollow carbon sphere, and raw materials for preparing the hollow carbon sphere include ferrocene, polytetrafluoroethylene, polyethylene glycol and sucrose.
The preparation method of the hollow carbon sphere comprises the following steps:
(1) uniformly mixing a mixture (carbon atom molar ratio is 50:0.5:0.5) of polytetrafluoroethylene (purchased from alatin and having a brand number of P110094), polyethylene glycol (purchased from alatin and having a brand number of P103737) and sucrose with ferrocene according to a ratio of the carbon atom to iron atom molar ratio of 15:1 to obtain mixed powder;
(2) transferring the obtained mixed powder into a closed reactor, and filling nitrogen into the reaction kettle;
(3) carrying out heat treatment on the closed reaction product in a helium atmosphere, heating to 800 ℃ at the speed of 20 ℃/min, carrying out constant-temperature heat treatment for 2h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the mixture in ethanol, centrifuging at low speed to separate the hollow carbon spheres from the residual mixture, and drying the supernatant to obtain the hollow carbon spheres.
Example 6
This example differs from example 1 in that the molar ratio of carbon atoms in the polytetrafluoroethylene to iron atoms in the ferrocene is 1:1, and the rest is the same as example 1.
Example 7
This example differs from example 1 in that the molar ratio of carbon atoms in the polytetrafluoroethylene to iron atoms in the ferrocene is 30:1, and the rest is the same as example 1.
Example 8
This example is different from example 1 in that it was prepared without transferring it to a closed reaction vessel and heat-treated under an argon atmosphere, and the rest was the same as example 1.
Example 9
This example is different from example 1 in that the preparation does not include the step (4), and the rest is the same as example 1.
Comparative example 1
This comparative example differs from example 1 in that the catalyst is ferrous sulfate in equimolar amounts and the rest is the same as example 1.
Comparative example 2
The comparative example is different from example 1 only in that the carbon source is sucrose having the same number of moles of carbon atoms, and the rest is the same as example 1.
Performance testing
The hollow carbon spheres described in examples 1 to 9 and comparative examples 1 to 2 were subjected to the following tests:
(1) transmission electron microscopy: the morphology of the sample was observed using a high-resolution transmission electron microscope (TEM, JEM-2100F).
And (2) performing electrochemical performance test by taking the hollow carbon spheres as a lithium ion battery negative electrode material, wherein the pole piece ratio is as follows: acetylene black: polyvinylidene fluoride (mass ratio) is 80:10:10, and a CR2025 type button cell is prepared by using a lithium sheet as a reference electrode and subjected to the following tests:
(2) reversible specific capacity of the material: performing constant-current charge and discharge test on the battery by adopting a LAND battery test system, wherein the voltage range is 0.01-3.0V, and the current density is 1000 mA/g;
(3) capacity retention rate at 200 cycles: a battery is subjected to constant-current charge and discharge test by adopting a LAND battery test system, the voltage range is 0.01-3.0V, the current density is 1000mA/g, and the retention rate is the ratio of the reversible specific capacity after 200 cycles to the reversible specific capacity of the first cycle.
The test results are summarized in fig. 1 and table 1.
TABLE 1
Figure BDA0002994650100000091
Figure BDA0002994650100000101
The hollow carbon spheres of embodiments 1-5 of the present invention have a particle size of 10-50nm, a wall thickness of 4-10nm, a high degree of graphitization, and a uniform morphology, as shown in fig. 1 for example. The hollow carbon sphere is used as a lithium ion battery cathode material, the reversible specific capacity and the capacity retention rate of 200 cycles of circulation are both high, the reversible specific capacity of the button battery material prepared from the hollow carbon sphere in examples 1-5 is above 342mAh/g, and the capacity retention rate of 200 cycles of circulation is above 90%.
As can be seen from the analysis of comparative example 1 and example 1, the performance of comparative example 1 is inferior to that of example 1, and the comprehensive performance of the hollow carbon spheres obtained by selecting the catalyst of the invention is proved to be better.
As can be seen from the analysis of comparative example 2 and example 1, the performance of comparative example 2 is inferior to that of example 1, and the comprehensive performance of the hollow carbon spheres obtained by using the carbon source of the invention is proved to be better.
As is clear from the analysis of examples 6 to 7 and example 1, the performance of examples 6 to 7 was inferior to that of example 1, and it was confirmed that the hollow carbon spheres obtained in the range of (2 to 20):1 molar ratio of carbon atoms in the carbon source to iron atoms in the catalyst were more excellent in overall performance.
Analysis of example 8 and example 1 revealed that example 8 was inferior to example 1, demonstrating that the hollow carbon spheres prepared in the closed reactor had better overall properties.
Analysis of example 9 and example 1 revealed that example 9 was inferior to example 1 in performance because the hollow carbon spheres not subjected to separation contained impurities, and the overall performance of the hollow carbon spheres obtained by separating the reaction mass was better.
The applicant states that the present invention is illustrated in detail by the above examples, but the present invention is not limited to the above detailed methods, i.e. it is not meant that the present invention must rely on the above detailed methods for its implementation. It should be understood by those skilled in the art that any modification of the present invention, equivalent substitutions of the raw materials of the product of the present invention, addition of auxiliary components, selection of specific modes, etc., are within the scope and disclosure of the present invention.

Claims (10)

1. The hollow carbon sphere is characterized in that raw materials for preparing the hollow carbon sphere comprise a carbon source and a catalyst;
the carbon source comprises polytetrafluoroethylene or a combination of polytetrafluoroethylene and other carbon sources.
2. The hollow carbon sphere of claim 1, wherein the hollow carbon sphere is spherical or spheroidal in shape;
preferably, the particle size D50 of the hollow carbon sphere is 10-50 nm;
preferably, the wall thickness of the hollow carbon spheres is 4-10 nm.
3. The hollow carbon sphere of claim 1 or 2, wherein the catalyst comprises ferrocene and/or ferric chloride;
preferably, the other carbon source comprises any one or a combination of at least two of polyvinylidene fluoride, polyethylene glycol, sucrose, glucose or phenolic resin;
preferably, the molar ratio of the polytetrafluoroethylene to carbon atoms in other carbon sources is (5-100): 1.
4. The hollow carbon sphere of any one of claims 1 to 3, wherein the molar ratio of carbon atoms in the carbon source to iron atoms in the catalyst is (2-20): 1.
5. A method for preparing hollow carbon spheres according to any one of claims 1 to 4, comprising the steps of: mixing a catalyst and a carbon source according to a molar ratio, transferring the mixture into a closed reactor, and then sequentially carrying out heat treatment, cooling and separation to obtain the hollow carbon spheres;
the carbon source comprises polytetrafluoroethylene or a combination of polytetrafluoroethylene and other carbon sources.
6. The method according to claim 5, further comprising filling a protective atmosphere in the closed reactor before the heat treatment;
preferably, the protective atmosphere comprises any one of nitrogen, argon or helium or a combination of at least two thereof.
7. The method as claimed in claim 5 or 6, wherein the temperature of the heat treatment is 400-900 ℃;
preferably, the heating rate of the heat treatment is 1-30 ℃/min;
preferably, the constant temperature time of the heat treatment is 0.5-12 h.
8. The method of any one of claims 5-7, further comprising dispersing the cooled material in a solvent prior to said separating;
preferably, the solvent comprises ethanol;
preferably, the separation comprises any one of centrifugation, standing or suction filtration or a combination of at least two of the foregoing;
preferably, the separating further comprises drying the solvent.
9. The method according to any one of claims 5 to 8, characterized by comprising the steps of:
(1) uniformly mixing a carbon source and a catalyst according to the molar ratio of carbon atoms to iron atoms (2-20) to 1 to obtain mixed powder;
(2) transferring the mixed powder to a closed reactor, and filling protective atmosphere;
(3) heating the closed reactor to 400-900 ℃ at the speed of 1-30 ℃/min under the protective atmosphere, keeping the temperature for 0.5-12h, and cooling to obtain hollow carbon spheres and a residual mixture;
(4) and dispersing the hollow carbon spheres and the residual mixture in ethanol, separating and drying to obtain the hollow carbon spheres.
10. A lithium ion battery comprising the hollow carbon sphere of any one of claims 1 to 3.
CN202110325859.XA 2021-03-26 2021-03-26 Hollow carbon sphere and preparation method and application thereof Active CN113060724B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110325859.XA CN113060724B (en) 2021-03-26 2021-03-26 Hollow carbon sphere and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110325859.XA CN113060724B (en) 2021-03-26 2021-03-26 Hollow carbon sphere and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113060724A true CN113060724A (en) 2021-07-02
CN113060724B CN113060724B (en) 2022-11-29

Family

ID=76563654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110325859.XA Active CN113060724B (en) 2021-03-26 2021-03-26 Hollow carbon sphere and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113060724B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824329A (en) * 2022-05-20 2022-07-29 南京师范大学 Iron-containing monatomic catalyst and application thereof
CN116425140A (en) * 2023-03-16 2023-07-14 上海交通大学 Nitrogen-doped hard carbon material, preparation method thereof and application thereof in negative electrode of sodium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082024A1 (en) * 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
CN102208641A (en) * 2011-05-17 2011-10-05 广州市香港科大***研究院 Method for synthesizing Fe3O4/C lithium ion battery cathode material with hollow sphere structure by one-step process
CN103183341A (en) * 2013-04-02 2013-07-03 中国矿业大学 Controllable synthesis method of N-doped graphitized carbon ball with hollow structures
CN103274385A (en) * 2013-04-26 2013-09-04 北大先行科技产业有限公司 Lithium ion battery cathode material carbon microsphere and preparation method thereof
CN106784865A (en) * 2016-12-22 2017-05-31 温州大学 A kind of nitrogen co-doped carbosphere of iron and preparation method, purposes and oxygen reduction electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082024A1 (en) * 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
CN102208641A (en) * 2011-05-17 2011-10-05 广州市香港科大***研究院 Method for synthesizing Fe3O4/C lithium ion battery cathode material with hollow sphere structure by one-step process
CN103183341A (en) * 2013-04-02 2013-07-03 中国矿业大学 Controllable synthesis method of N-doped graphitized carbon ball with hollow structures
CN103274385A (en) * 2013-04-26 2013-09-04 北大先行科技产业有限公司 Lithium ion battery cathode material carbon microsphere and preparation method thereof
CN106784865A (en) * 2016-12-22 2017-05-31 温州大学 A kind of nitrogen co-doped carbosphere of iron and preparation method, purposes and oxygen reduction electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANGWOOK LEE 等: "Novel and scalable solid-state synthesis of a nanocrystalline FeF3/C composite and its excellent electrochemical performance", 《CHEMICAL COMMUNICATIONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824329A (en) * 2022-05-20 2022-07-29 南京师范大学 Iron-containing monatomic catalyst and application thereof
CN116425140A (en) * 2023-03-16 2023-07-14 上海交通大学 Nitrogen-doped hard carbon material, preparation method thereof and application thereof in negative electrode of sodium ion battery

Also Published As

Publication number Publication date
CN113060724B (en) 2022-11-29

Similar Documents

Publication Publication Date Title
CN107394125B (en) Manganese-doped lithium iron silicate/graphene hollow nanosphere positive electrode material and preparation method thereof
CN109148847B (en) Boron-doped modified hard carbon-coated negative electrode material with high rate performance and liquid-phase preparation method thereof
CN107221654B (en) Three-dimensional porous nest-shaped silicon-carbon composite negative electrode material and preparation method thereof
CN105449214A (en) Lithium ion battery cathode material of which nano particles embedded into carbon nanosheet and preparation method of lithium ion battery cathode material
CN108400297B (en) Silicon-based lithium ion battery cathode material and preparation method thereof
CN109167042B (en) Lithium-rich manganese-based positive electrode material coated with composite carbon material, preparation method of lithium-rich manganese-based positive electrode material and lithium battery
CN113060724B (en) Hollow carbon sphere and preparation method and application thereof
Tien et al. Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery
CN105460917A (en) Nitrogen-doped carbon nanotube adopting hierarchical structure and preparation method
CN110729480A (en) Nitrogen-doped porous hollow carbon sphere and preparation method and application thereof
CN108448080A (en) A kind of graphene coated silicon/metal composite negative pole material and preparation method thereof
CN113135568A (en) Nitrogen-doped porous carbon material and preparation method and application thereof
CN107151014B (en) Biological porous carbon-based lithium-sulfur battery positive electrode material and preparation method thereof
CN112687881B (en) Ferric oxyfluoride cathode material, preparation method thereof and lithium ion battery
CN111276684A (en) Preparation method and application of carbon-coated composite material
CN111668453A (en) Flexible self-supporting positive electrode material and preparation method and application thereof
CN105633370A (en) Modified natural graphite and preparation method and application thereof
CN111564610B (en) Carbon-coated cuprous phosphide-copper composite particle modified by carbon nanotube and preparation method and application thereof
CN113013391A (en) Method for preparing nitrogen-doped multidimensional and hierarchical porous carbon material adaptive to sulfur anode carrier of aluminum-sulfur battery
CN113620272A (en) Preparation method of sodium ion battery negative electrode material
CN107492641A (en) A kind of titanium carbide four vulcanizes three titanium composite materials and preparation method thereof
CN112803021A (en) Nano FeF3/C composite positive electrode material, preparation method thereof and lithium ion battery
CN107706397B (en) Nickel-cobalt-manganese ternary composite electrode material modified by modified carbon nano tube and preparation method thereof
CN109148843A (en) A kind of boron doping negative electrode material and its method for preparing solid phase with good properties at high temperature
CN109742350B (en) Preparation method of nitrided ferroferric oxide/graphene composite material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant