CN113049013A - 新型双参量光纤生化传感器 - Google Patents

新型双参量光纤生化传感器 Download PDF

Info

Publication number
CN113049013A
CN113049013A CN202110243194.8A CN202110243194A CN113049013A CN 113049013 A CN113049013 A CN 113049013A CN 202110243194 A CN202110243194 A CN 202110243194A CN 113049013 A CN113049013 A CN 113049013A
Authority
CN
China
Prior art keywords
fiber
optical fiber
double
mode
coreless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110243194.8A
Other languages
English (en)
Inventor
鞠涛
孟令知
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202110243194.8A priority Critical patent/CN113049013A/zh
Publication of CN113049013A publication Critical patent/CN113049013A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35367Sensor working in reflection using reflected light other than backscattered to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35348Sensor working in transmission using stimulated emission to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供的是一种新型双参量光纤生化传感器。其特征是:它由宽带光源,宽带环形器,光谱仪和双参量光纤传感器组成。该双参量光纤生化传感器是由一段单模光纤焊接一种单模光纤与同轴双波导光纤互联耦合的模式转换器,最后再焊接一小段无芯光纤。将无芯光纤端制成弧形锥体圆台,并镀上纳米金膜。同时在同轴双波导光纤端靠近无芯光纤锥体部分的中间芯写入光纤Bragg光栅。即可实现生化传感应用场景下,对生化参量和温度参量的同时测量。本发明结构灵活紧凑,可广泛应用于化学、生物、医学、生命科学等光纤传感应用领域。

Description

新型双参量光纤生化传感器
(一)技术领域
本发明涉及的是一种新型双参量光纤生化传感器,可用于生化传感应用场景下的对生化参量和温度参量同时测量,可广泛应用于化学、生物、医学、生命科学等光纤传感应用领域,属于光纤传感技术领域。
(二)背景技术
表面等离子体共振(Surface plasmon resonance,SPR)是指光在负、正介电常数材料的界面上反射后,导电电子产生的共振振荡。由于该技术对周围材料的折射率变化具有较高的灵敏度,在物理、化学和生物传感领域得到了广泛的研究。最常用的SPR传感装置是基于棱镜和光纤的。与基于棱镜的SPR传感器件相比,光纤型SPR传感器件具有体积小、柔韧性好、制造方便、抗电磁干扰等优点。
SPR传感中应用的光纤有几种,包括单模光纤、光子晶体光纤、纳米/微光纤、多模光纤和特种光纤。SPR传感器可以通过在光纤端部、光纤包覆面、光纤侧面抛光来实现。在基于棱镜的SPR传感***中,通过改变入射角可以很容易地调制传感器的固有谐振波长。在大多数光纤生化SPR传感***中,光纤纤芯的几何结构是固定的,因此其固有谐振波长和传感器的灵敏度很难被调制。
一种有效的方法是使用侧面抛光弯曲光纤SPR传感器,通过改变弯曲半径来实现这种调制。然而,由于光纤纤芯模式与表面等离子体模式(SPM)的耦合,其灵敏度也可能受到SPR激励方法的限制。
专利CN202010114018.X公开了一种光纤生化传感器及其制作方法,使用单模光纤刻写布拉格光纤光栅,同时在布拉格光栅对应的包层部分或全部刻蚀至纤芯形成至少一个凹槽,能够实现生化物质浓度的检测。但是该传感器需要用到氢氟酸刻蚀,具有较大的危险性。
专利CN201810786002.6公开了一种楔形尖端纳米结构集成光纤表面等离子体共振生化传感器,将阶跃折射率多模光纤裸露的光纤纤芯端面通过研磨并抛光处理形成楔形斜面,能够同时实现两种生化分子的实时检测。但是该传感器无法实现双参量的光纤生化传感器测量。
专利CN201510689013.9公开了一种光纤纤芯与包层交界面的Bragg光栅生化传感器及方法,其特点是光纤纤芯的前段设置长周期光纤光栅,在光纤的中段位于光纤纤芯和光纤包层的交界面设置光纤纤芯与包层交界面的Bragg光栅。但是该传感器无法实现双参量的光纤生化传感器测量。
专利CN201510779036.9公开了一种基于倏逝波技术的特种光纤生化传感器,其特点是采用特种多孔微结构光纤,作为探测探针,并结合光纤耦合透镜实现生化传感。但是该传感器结构复杂难以集成,并且无法实现双参量的光纤生化传感器测量。
专利CN201910129549.3公开了一种基于SPR效应的螺旋微结构光纤折射率传感器,其特点是采用螺旋微结构光纤,微结构光纤包层外表面涂覆有等离子体激元材料层,等离子体激元材料层外表面涂覆氧化物薄膜层。该传感器可以实现生化参数的测量,但是无法实现双参量的光纤生化传感器测量。
专利CN201711018321.4公开了一种基于表面等离子体共振的温度传感器及其制备方法,其特点是金膜沉积在侧面抛磨单模光纤的抛磨面上,温敏薄膜固化在金膜上。温敏薄膜实现稳定传感测量,金膜处实现生化传感测量。但是该传感器很难被调制其固有谐振波长和传感器的灵敏度。
为了克服上述在先技术的不足,本发明公开了一种基于同轴双波导光纤的新型双参量生化传感器。通过改变锥体圆台的弧度来有效地调节谐振波长和灵敏度,就如同改变棱镜型SPR传感器的入射角一样。在锥体圆台镀上一层纳米金膜,实现生化参量的传感测量。同时该传感器在中间芯刻写FBG,能够在生化参量测量的同时获得温度参量的测量,实现对SPR温度依赖特性的补偿。与在先技术相比,由于采用同轴双波导光纤,其结构紧凑灵活,满足了生化传感对多参量测量的需求。
(三)发明内容
本发明的目的在于提供一种结构紧凑灵活、可批量生产的一种新型双参量光纤生化传感器。
本发明的目的是这样实现的:
该新型双参量光纤生化传感***由宽带光源,宽带环形器,光谱仪和双参量光纤生化传感器组成,该双参量光纤生化传感器是由一段单模光纤焊接一种单模光纤与同轴双波导光纤互联耦合的模式转换器,再焊接一段同轴双波导光纤,最后再焊接一小段无芯光纤组成的,其中无芯光纤端被研磨或被熔融拉锥制成弧形锥体圆台,该锥体圆台被镀上一层纳米金膜,形成表面等离子波(SPR)敏感探头,而同轴双波导光纤端靠近无芯光纤锥体部分的中间芯被写入光纤Bragg光栅(FBG),用于实现传感区的温度测量,该光纤生化传感***能够满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。
图1与图2给出了新型双参量光纤生化传感器的工作原理图。
如图1所示,首先,将宽谱光源1的宽谱光耦合输入到单模光纤3中,经过宽带环形器4后,该宽谱光通过特殊的单模光纤-同轴双波导光纤模式转换器6被同时耦合到同轴双波导光纤7中间芯和环形纤芯中。该传感器由单模光纤连接单模光纤与同轴双波导光纤的模式转换器6(该模式转换器由三明治结构:单模光纤-双包层光纤-同轴双波导光纤构成),在同轴双波导光纤7端焊接一小段无芯光纤8,该无芯光纤被研磨或被熔融拉锥制成弧形锥体圆台9,该锥体圆台9被镀上一层纳米金膜,可形成SPR传感探头,用于生化参数测量,同轴双波导光纤7端靠近锥体部分的中间芯被写入FBG,用于温度参数测量。
为了论述清晰起见,将光在传感探头中的光传播分为三个阶段,如图2所示。阶段I为进入中间纤芯的光对应于FBG23反射光谱的光信号被反射回来,由光谱仪2读出,测量出传感区的环境温度;阶段II为,进入环形波导的光再进入无芯光纤段22,环形光束在无芯光纤段22经历了适当的光束扩散后,被弧形纤端表面反射,汇集在弧形锥体圆台纤端的中心。当弧形纤端表面镀有纳米金膜时,入射的环形光束就会在金层与周围介质的边界处激发表面等离子体波(SPW)24。阶段III为,由弧形表面汇聚在锥体圆台端面中心25的含有待探测物质的SPR光信号再全部被反射回环形波导中,按照原来的光路,传回到光谱仪2中。
所述一种实现单模光纤与同轴双波导光纤互联耦合的模式转换器,其特征是该模式转换器是由单模光纤焊接一段双包层光纤再焊接一段同轴双波导光纤的三明治结构组成,该模式转换器是在双包层光纤与同轴双波导光纤的焊接点处经过热扩散技术加工而成,能够将来自单模光纤的模场的一部分低损耗的过渡到具有单模特性的中间芯中,而另一部分则被转化成高阶模,例如,LP02的环形模,低损耗的过渡到同轴双波导光纤的环形芯中,实现了较低光损耗的耦合连接。
热扩散技术常用于模场直径的扩展,实施对象通常是单芯光纤,因此常称之为热扩芯光纤。光纤热扩散技术的突出优点为,在不改变光纤尺寸的情况下能够重构光纤内部折射率分布,且在足够缓变的梯度温度场中光纤的归一化频率不变。热扩散能够使光纤中的初始掺杂剂分布渐变为稳定的圆周对称的准高斯分布,这种过程容易实现不同光纤向同一高斯折射率分布模场的绝热转变。单模光纤是光纤光学***中最常用的光纤,能够跟绝大多数现有的光学***和光学模块兼容匹配。因此,大多数拥有特定功能的特殊模场光纤的使用都需要与单模光纤实现良好的模场适配,即低损耗互连。
在热扩散中,双包层光纤是一种很好的桥接光纤,能够实现单模光纤与同轴双波导光纤之间的模场适配。首先,双包层光纤的纤芯尺寸和纤芯与内包层数值孔径能够很容易地设计为与单模光纤参数相同,则两者的基模场基本一致,即单模光纤中的基模场简单熔接之后能够无损的输入双包层光纤中。需要注意的是,双包层光纤的内包层直径要大于单模光纤的基模场,这样才能保证双包层光纤和单模光纤之间的基模匹配。其次,根据同轴双波导光纤的截面掺杂剂浓度总量,设计双包层光纤的外包层参数。以双包层光纤与同轴双波导光纤的熔接点为中心施加缓慢梯度温度场,经过较长时间的热扩散后,双包层光纤和同轴双波导光纤的折射率分布能够演变为同一准高斯分布。在足够缓变的温度场中,光纤中的掺杂剂能在光纤内部发生足够缓变的扩散,因此光纤的折射率分布也足够缓变。从而保证单模光纤直接耦合进入双包层光纤中的基模场,能够低损耗的过渡到同轴双波导光纤中。如图3所示,单模光纤31的光功率几乎能够100%耦合转变为同轴双波导光纤33的光功率。
热扩散技术制备单模光纤与同轴双波导光纤互联耦合的模式转换器,包括如下步骤:
1)、对双包层光纤进行设计。根据同轴双波导光纤的参数,对双包层光纤的纤芯和内包层的几何尺寸、掺杂剂种类、数值孔径进行设计。
2)、进行热扩散处理。将双包层光纤与同轴双波导光纤焊接点处放在恒温场中进行高温加热处理,加热一定时间之后,双包层光纤与同轴双波导光纤焊接点的折射率分布渐变为近似的圆周对称的准高斯分布。
所述的通过弧形锥体研磨技术可以在无芯光纤端制成弧形锥体圆台,通过计算机控制电控位移台调节无芯光纤端与研磨台面的接触角度,即可在无芯光纤端制成具有不同弧形的锥体圆台。
所述的通过熔融拉锥技术可以在无芯光纤端制成弧形锥体圆台,通过计算机控制拉锥机的加热温度、拉锥速度对无芯光纤拉锥,拉锥后对无芯光纤切割,即可在无芯光纤端制成具有不同弧形的锥体圆台。
本发明提供的新型双参量光纤生化传感器,能够同时实现生化参数和温度参数的测量。与在先技术相比,由于采用同轴双波导光纤,其结构紧凑灵活,满足了生化传感对多参量测量的需求。
(四)附图说明
图1是基于同轴双波导光纤的双参量光纤传感***示意图。该基于同轴双波导光纤的双参量光纤传感***包括:宽谱光源1,光谱仪2,单模光纤3,宽带光纤环形器4,双参量光纤传感区5,单模光纤与同轴双波导光纤互连耦合的模式转换器6,同轴双波导光纤7,无芯光纤8,表面镀有纳米金膜的弧形锥体圆台9。
图2是双参量光纤传感探头SPR激发与温度双参量传感原理图。同轴双波导光纤21,无芯光纤22,FBG23,SPR传感24,弧形锥体圆台25。
图3是为单模光纤与同轴双波导光纤的模式转换器的模场传输图。单模光纤31,双包层光纤32,同轴双波导光纤33。
图4是实施例中采用的同轴双波导光纤的截面图。41为同轴双波导光纤的包层,42为同轴双波导光纤的环形芯,43为同轴双波导光纤的纤芯。
图5是实施例中采用的双包层光纤的截面图。51为双包层光纤的外包层,52为双包层光纤的内包层,53为双包层光纤的纤芯。
图6是新型双参量光纤生化传感器***实施传感测量的示意图。该实施例新型双参量光纤生化传感器***包括:宽谱光源61,光谱仪62,单模光纤63,宽带光纤环形器64,注射泵65,废液池66,计算机67,双参量光纤传感68。
(五)具体实施方式
下面结合具体的实施例来进一步阐述本发明。
实施例1:
本实施例同轴双波导光纤的截面示意图,如图4所示。41为同轴双波导光纤的包层,42为同轴双波导光纤的环形芯,43为同轴双波导光纤的纤芯。
本实施例双包层光纤的截面示意图,如图5所示。51为双包层光纤的外包层,52为双包层光纤的内包层,53为双包层光纤的纤芯。
本实施例所选用的单模光纤的几何尺寸为,包层直径为125μm、纤芯直径为8μm,纤芯的数值孔径为0.12;所选用双包层光纤的几何尺寸为,外包层51直径为125μm、内包层52直径为74μm、纤芯53直径为8μm,纤芯53的数值孔径为0.14;所选用同轴双波导光纤的几何尺寸为,同轴双波导光纤包层41的直径为125μm、同轴双波导光纤的环形芯42厚度为5μm、同轴双波导光纤的环形芯42内侧到同轴双波导光纤轴心的距离为22.5μm,同轴双波导光纤纤芯43的直径为8μm。所选用光纤的掺杂剂种类均为锗,双包层光纤和同轴双波导光纤的横截面上初始掺杂剂总量相同。
本实施例单模光纤与同轴双波导光纤的模式转换器的制作步骤为:1)、根据同轴双波导光纤的参数,对双包层光纤的纤芯和内包层的几何尺寸、掺杂剂种类、数值孔径进行设计。2)、将双包层光纤与同轴双波导光纤焊接点处放在恒温场中进行高温加热处理,加热6小时之后,双包层光纤与同轴双波导光纤焊接点的折射率分布渐变为近似的圆周对称的准高斯分布。
将一段单模光纤焊接单模光纤与同轴双波导光纤的模式转换器,再焊接一段同轴双波导光纤,最后再焊接一小段无芯光纤。采用紫外光栅刻写平台,在同轴双波导光纤端靠近无芯光纤的中间芯写入光纤Bragg光栅(FBG);通过弧形锥体研磨技术可以在无芯光纤端制成弧形锥体圆台,通过计算机控制电控位移台调节无芯光纤端与研磨台面的接触角度,即可在无芯光纤端制成具有不同弧形的锥体圆台,并在该锥体圆台镀上一层纳米金膜,形成表面等离子波(SPR)敏感探头。即,该光纤生化传感器能够满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。
本实施例新型双参量光纤生化传感器***实施传感测量时,首先,将双参数光纤生化传感器接入传感测量***中。注射泵65注入含有待探测物质的液体到双参量光纤生化传感区68,并接入废液池66收集流出的废液。宽谱光源61输出的宽谱光耦合输入到单模光纤63中,经过宽带光纤环形器64后,该宽谱光通过特殊的单模光纤-同轴双波导光纤模式转换器被同时耦合到中间的纤芯和环形纤芯中。其次,进入中间纤芯的光对应于FBG反射光谱的光信号被反射回来,由光谱仪62读出,测量出传感区的环境温度;与此同时,进入环形波导的光再进入无芯光纤段,环形光束经历了无芯光纤适当的光束扩散后,被弧形纤端表面反射,汇集在弧形锥体圆台纤端的中心。弧形纤端表面镀有纳米金膜时,入射的环形光束在金层与周围介质的边界处激发表面等离子体波(SPW)。最后,由弧形表面汇聚在锥体圆台断面中心的含有待探测物质的SPR光信号再全部被反射回环形波导中,按照原来的光路,传回到光谱仪62中。光谱仪62连接计算机67,分析光谱仪采集的传感信号,即可实现同时对生化和温度的传感测量。
本发明实施例提供的新型双参量光纤生化传感器***,能够满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。与在先技术相比,由于采用了同轴双波导光纤,其结构紧凑灵活,满足了对生化传感器多参量测量的需求。
以上所述,仅为本发明的优选实施例,但本发明的保护范围并不局限于此。任何本领域的技术人员根据本发明的精神和范围,对本发明进行各种改动和变化,均应包含在本发明权利要求保护范围内。

Claims (5)

1.一种新型双参量光纤生化传感器***。其特征是:该光纤传感器***由宽带光源,宽带环形器,光谱仪和双参量光纤生化传感器组成,该双参量光纤生化传感器是由一段单模光纤焊接一种单模光纤与同轴双波导光纤互联耦合的模式转换器,再焊接一段同轴双波导光纤,最后再焊接一小段无芯光纤组成的,其中无芯光纤端被研磨或被熔融拉锥制成弧形锥体圆台,该锥体圆台被镀上一层纳米金膜,形成表面等离子波(SPR)敏感探头,而同轴双波导光纤端靠近无芯光纤锥体部分的中间芯被写入光纤Bragg光栅(FBG),用于实现传感区的温度测量,该光纤生化传感***能够满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。
2.根据权利要求1所述的新型双参量光纤生化传感器***中,一种实现单模光纤与同轴双波导光纤互联耦合的模式转换器,其特征是该模式转换器是由单模光纤焊接一段双包层光纤再焊接一段同轴双波导光纤的三明治结构组成,该模式转换器是在双包层光纤与同轴双波导光纤的焊接点处经过热扩散技术加工而成,能够将来自单模光纤的模场的一部分光功率低损耗的过渡到具有单模特性的中间芯中,而另一部分则被转化成高阶模,例如,LP02的环形模,低损耗的过渡到同轴双波导光纤的环形芯中,能够实现较低光损耗的耦合连接。
3.根据权利要求1所述的新型双参量光纤生化传感器***,通过弧形锥体研磨技术可以在无芯光纤端制成弧形锥体圆台,通过计算机控制电控位移台调节无芯光纤端与研磨台面的接触角度,即可在无芯光纤端制成具有不同弧形的锥体圆台。
4.根据权利要求1所述的新型双参量光纤生化传感器***,通过熔融拉锥技术可以在无芯光纤端制成弧形锥体圆台,通过计算机控制拉锥机的加热温度、拉锥速度对无芯光纤拉锥,拉锥后对无芯光纤切割,即可在无芯光纤端制成具有不同弧形的锥体圆台。
5.根据权利要求2所述的热扩散技术制备单模光纤与同轴双波导光纤互联耦合的模式转换器,包括如下步骤:
1)、对双包层光纤进行参数优化设计
根据同轴双波导光纤的参数,对双包层光纤的纤芯和内包层的几何尺寸、掺杂剂种类、数值孔径进行优化设计。
2)、进行热扩散处理
将双包层光纤与同轴双波导光纤焊接点处放在恒温场中进行高温加热处理,加热一定时间之后,双包层光纤与同轴双波导光纤焊接点的折射率分布渐变为近似的圆周对称的准高斯分布。
CN202110243194.8A 2021-03-05 2021-03-05 新型双参量光纤生化传感器 Pending CN113049013A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110243194.8A CN113049013A (zh) 2021-03-05 2021-03-05 新型双参量光纤生化传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110243194.8A CN113049013A (zh) 2021-03-05 2021-03-05 新型双参量光纤生化传感器

Publications (1)

Publication Number Publication Date
CN113049013A true CN113049013A (zh) 2021-06-29

Family

ID=76510020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110243194.8A Pending CN113049013A (zh) 2021-03-05 2021-03-05 新型双参量光纤生化传感器

Country Status (1)

Country Link
CN (1) CN113049013A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769857A (zh) * 2010-01-06 2010-07-07 哈尔滨工程大学 基于环形芯波导的等离子体谐振式光纤生物传感器
CN106596508A (zh) * 2016-12-26 2017-04-26 哈尔滨工程大学 表面增强型光纤拉曼探针
CN106680223A (zh) * 2016-12-26 2017-05-17 哈尔滨工程大学 纤维集成透射吸收式光谱探针及制作方法
CN207600625U (zh) * 2017-11-17 2018-07-10 中国计量大学 一种基于表面等离子体共振的折射率温度双参数传感器
CN207937357U (zh) * 2018-04-02 2018-10-02 鞍山峰澜科技有限公司 一种基于光纤布拉格光栅的链霉亲和素spr传感器
CN109799572A (zh) * 2018-12-12 2019-05-24 桂林电子科技大学 一种纤维集成的高斯-环形模场适配器
CN110480470A (zh) * 2019-09-07 2019-11-22 桂林电子科技大学 一种可同时完成多个弧形锥体光纤端研磨的光纤研磨装置
CN111060481A (zh) * 2019-12-17 2020-04-24 桂林电子科技大学 基于同轴双波导光纤spr纳米显微成像装置
CN111103273A (zh) * 2019-11-04 2020-05-05 桂林电子科技大学 光纤端超分辨纳米荧光显微照明探针
CN111830633A (zh) * 2020-08-04 2020-10-27 桂林电子科技大学 一种同轴双波导光纤扇入连接器
CN111928880A (zh) * 2020-09-03 2020-11-13 东北大学 基于表面等离子体效应的马赫-曾德干涉光纤及其传感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769857A (zh) * 2010-01-06 2010-07-07 哈尔滨工程大学 基于环形芯波导的等离子体谐振式光纤生物传感器
CN106596508A (zh) * 2016-12-26 2017-04-26 哈尔滨工程大学 表面增强型光纤拉曼探针
CN106680223A (zh) * 2016-12-26 2017-05-17 哈尔滨工程大学 纤维集成透射吸收式光谱探针及制作方法
CN207600625U (zh) * 2017-11-17 2018-07-10 中国计量大学 一种基于表面等离子体共振的折射率温度双参数传感器
CN207937357U (zh) * 2018-04-02 2018-10-02 鞍山峰澜科技有限公司 一种基于光纤布拉格光栅的链霉亲和素spr传感器
CN109799572A (zh) * 2018-12-12 2019-05-24 桂林电子科技大学 一种纤维集成的高斯-环形模场适配器
CN110480470A (zh) * 2019-09-07 2019-11-22 桂林电子科技大学 一种可同时完成多个弧形锥体光纤端研磨的光纤研磨装置
CN111103273A (zh) * 2019-11-04 2020-05-05 桂林电子科技大学 光纤端超分辨纳米荧光显微照明探针
CN111060481A (zh) * 2019-12-17 2020-04-24 桂林电子科技大学 基于同轴双波导光纤spr纳米显微成像装置
CN111830633A (zh) * 2020-08-04 2020-10-27 桂林电子科技大学 一种同轴双波导光纤扇入连接器
CN111928880A (zh) * 2020-09-03 2020-11-13 东北大学 基于表面等离子体效应的马赫-曾德干涉光纤及其传感器

Similar Documents

Publication Publication Date Title
He et al. Polymer optical fiber liquid level sensor: A review
US5604587A (en) Long capillary waveguide raman cell
CN102749304B (zh) 高灵敏度光子晶体光纤折射率传感器及制法
CN112596174B (zh) 一种微纳光纤耦合器复合制造方法
Hu et al. A narrow groove structure based plasmonic refractive index sensor
CN116448270A (zh) 一种基于七芯光纤的温度和曲率传感器及其制备方法
Cordaro et al. Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring
Kong et al. Thin-core fiber taper-based multi-mode interferometer for refractive index sensing
Wei et al. Fiber SPR two-dimensional micro displacement sensor based on the coaxial double waveguide with a conical structure
Wei et al. Research on vector bending SPR sensor based on V-groove fiber
CN110823834B (zh) 基于塑料光纤周期性窄槽结构的高灵敏度spr折射率传感器
CN112833928A (zh) 级联宏弯曲和交替单模-多模光纤结构温度折射率传感器
CN113049013A (zh) 新型双参量光纤生化传感器
CN214201179U (zh) 共振角度可调包层型光纤spr传感器
Shi et al. High-sensitivity and direction recognizable SPR microdisplacement sensor based on fiber V-groove
CN209802407U (zh) 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构
CN113029216B (zh) 基于同轴双波导光纤的多参量传感器
CN115307567A (zh) 一种基于多芯光纤拉锥的曲率传感器及其制备方法
Chetia et al. Low-cost refractive index sensor with optical fibers attached to a U-shaped glass tube
CN111122456A (zh) 一种错位异质结构光纤表面等离子体共振传感器
Li et al. Experimental study on high sensitivity intensity modulation curvature sensor based on SPR no-core fiber
CN216348692U (zh) 一种非对称花生形光纤mzi温度和折射率传感***
CN214539245U (zh) 一种基于拉锥无芯光纤的m-z干涉型折射率传感器
Sulaiman et al. An experimental analysis on the performance of single mode-multimode-single mode and multimode-single mode-multimode fiber optic sensor
CN115825005B (zh) 一种基于微流控芯片快速测算液体折射率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210629