CN113032912A - 基于关联规则的船舶柴油机故障检测方法 - Google Patents

基于关联规则的船舶柴油机故障检测方法 Download PDF

Info

Publication number
CN113032912A
CN113032912A CN202110421987.4A CN202110421987A CN113032912A CN 113032912 A CN113032912 A CN 113032912A CN 202110421987 A CN202110421987 A CN 202110421987A CN 113032912 A CN113032912 A CN 113032912A
Authority
CN
China
Prior art keywords
fault
diesel engine
association rule
degree
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110421987.4A
Other languages
English (en)
Inventor
林赫
湛日景
石大亮
张毅然
李奔跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110421987.4A priority Critical patent/CN113032912A/zh
Publication of CN113032912A publication Critical patent/CN113032912A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种基于关联规则的船舶柴油机故障检测方法,通过模拟船舶柴油机故障,记录故障类别及发动机运行参数,建立柴油机原始故障数据库;对数据库依次进行特征变量选取、数据归一化、数据离散化,以及通过分层随机抽样,按照比例划分训练集和测试集;故障检测模型建立:通过关联规则分类算法,得到运行参数与故障之间的关联规则集,应用该关联规则集测试数据集,预测数据集对应的故障状态,得到故障检测精度,并进行参数优化;利用故障检测模型建立船舶柴油机故障规则库,制出关联规则散点图,提取重要规则并运用基于K‑means聚类分组矩阵和矢量图方法进行可视化。本发明缩减了数据的处理时间,提高了***实时性。

Description

基于关联规则的船舶柴油机故障检测方法
技术领域
本发明涉及的是一种柴油机故障检测领域的技术,具体是一种基于关联规则的船舶柴油机故障检测方法。
背景技术
船用柴油机作为船舶的动力心脏,是船舶安全运行的基本保障,其结构复杂、工作条件恶劣,发生故障的可能性极大,因此,船舶动力***的状态监测和故障检测功能十分重要。随着船舶智能化的发展,基于数据驱动的智能检测方法在一定程度上避免了过度依靠专家经验和复杂的对象模型等缺点,因此受到了日益广泛的关注。现有的基于数据驱动的船舶柴油机故障检测方法以黑箱或者灰箱模型为主,虽然精度能够满足要求,但是其故障检测模型的可解释性较差。
发明内容
本发明针对现有技术存在的上述不足,提出一种基于关联规则的船舶柴油机故障检测方法,在满足检测精度的基础上,确定故障。
本发明是通过以下技术方案实现的:
本发明涉及一种基于关联规则的船舶柴油机故障检测方法,具体步骤如下:
步骤一、模拟船舶柴油机故障,记录故障类别及发动机运行参数,建立柴油机原始故障数据库;
步骤二、对数据库采用主成分分析法选取故障类别的运行参数作为特征变量,经数据归一化、数据离散化以及通过分层随机抽样,按照比例划分为训练集和测试集;
步骤三、建立故障检测模型:通过关联规则分类算法,得到运行参数与故障之间的关联规则集,应用该关联规则集测试数据集,预测数据集对应的故障状态,通过网格搜索法,确定最佳参数组合,即最小置信度和最小支持度后重复步骤三,得到最终的故障检测模型检测精度;
步骤四、利用故障检测模型建立船舶柴油机故障规则库,制出关联规则散点图,提取置信度和支持度均达到设定的阈值以上的规则并运用基于K-means聚类分组矩阵对关联规则进行聚类、运用矢量图方法将数学语言文字转换为图形来表示各项关联规则,进一步分析关联规则集中的物理含义从而实现可视化。
所述的故障类别是对进气、增压器、中冷器、气门、气缸、排气和涡轮,这七个功能模块进行模拟进气歧管漏气、中冷器效率降低、中冷器压降增大、失火、排气歧管漏气、排气阀提前开启和喷油角过大。
所述的发动机运行参数包括:进气温度、进气压力、进气流量、增压器出口温度、增压器出口压力、中冷器进口温度、中冷器出口温度、中冷器出口压力、进气歧管温度、进气歧管压力、气缸平均有效压力、排气歧管温度、排气歧管压力、涡轮进气温度、涡轮进气压力、涡轮出口温度、涡轮出口压力、柴油机转速、柴油机功率和柴油机扭矩。
所述的运行参数包括:进气流量、增压器出口温度、增压器出口压力、进气歧管温度、进气歧管压力、排气歧管温度、排气歧管压力、涡轮进气温度、涡轮出口温度和气缸平均有效压力。
所述的数据归一化是指:将故障状态下的特征变量与正常状态下的特征变量对比,将特征变量的绝对值转换为各特征变量与正常状态下的偏离度,即:
Figure BDA0003028170200000021
其中:σi为各个特征变量的偏离度,xi为故障状态下特征变量,x为正常状态下特征变量。
所述的数据离散化是指:根据各特征变量偏离度大小,将特征变量转换为类别属性,具体是:偏离度σi的范围在[15%,+∞)为非常高;偏离度σi的范围在[5%,15%)为高;偏离度σi的范围在[1%,5%)为较高;偏离度σi的范围在[-1%,1%)为正常;偏离度σi的范围在[-5%,-1%)为较低;偏离度σi的范围在[-15%,-5%)为低;偏离度σi的范围在(-∞,-15%]为非常低。
所述的训练集和测试集的比例为7:3。
所述的关联规则分类算法,通过数据挖掘建立关联规则集,即通过设立初始最小置信度和最小支持度阈值,运用Apriori算法对训练集进行关联规则挖掘得到;再依据分类属性值去判断该项集的类别属性。
所述的Apriori算法是指:使用支持度作为判断频繁项集的标准,采用迭代的方法找到最大的K项频繁项,具体为:先搜索出候选一项集及对应的支持度,剪枝去掉低于设立参数支持度的项集,得到频繁一项集,然后对剩下的频繁一项集进行连接,得到候选的频繁二项集,筛选去掉低于支持度的候选频繁二项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。
技术效果
本发明整体解决了现有故障检测技术的过度依靠专家经验和复杂的对象模型的不足等缺陷;与现有技术相比,本发明通过建立具有高精度的柴油机故障诊断模型,通过知识发现,解析故障作用机理,为进一步故障分析研究提供参考。
附图说明
图1为本发明的方法流程图;
图2为本发明的数据预处理流程图;
图3为本发明故障检测模型建立及参数优化流程图。
具体实施方式
如图1所示,本实施例涉及一种基于关联规则的船舶柴油机故障检测方法,具体步骤如下:
步骤一、故障数据库建立:选取船舶柴油机TBD234为对象,记录故障类别及发动机运行参数,建立柴油机原始故障数据库。
所述的故障类别是对进气、增压器、中冷器、气门、气缸、排气和涡轮,这七个功能模块进行模拟进气歧管漏气、中冷器效率降低、中冷器压降增大、失火、排气歧管漏气、排气阀提前开启和喷油角过大的七种故障。
所述的发动机运行参数包括:进气温度、进气压力、进气流量、增压器出口温度、增压器出口压力、中冷器进口温度、中冷器出口温度、中冷器出口压力、进气歧管温度、进气歧管压力、气缸平均有效压力、排气歧管温度、排气歧管压力、涡轮进气温度、涡轮进气压力、涡轮出口温度、涡轮出口压力、柴油机转速、柴油机功率和柴油机扭矩。
步骤二、原始数据库预处理:如图2所示,对数据库依次进行特征变量选取、数据归一化、数据离散化,以及训练集和测试集建立。
所述的特征变量选取是对数据库采用主成分分析法选取故障类别的运行参数作为特征变量。
所述的运行参数包括:进气流量、增压器出口温度、增压器出口压力、进气歧管温度、进气歧管压力、排气歧管温度、排气歧管压力、涡轮进气温度、涡轮出口温度、气缸平均有效压力。
所述的数据归一化是将故障状态下的特征变量与正常状态下的特征变量对比,将特征变量的绝对值转换为各特征变量与正常状态下的偏离度,即:
Figure BDA0003028170200000031
其中:σi为各个特征变量的偏离度,xi为故障状态下特征变量,x为正常状态下特征变量。
所述的数据离散化是根据各特征变量偏离度大小,将特征变量转换为类别属性,具体是:偏离度σi的范围在[15%,+∞)为非常高;偏离度σi的范围在[5%,15%)为高;偏离度ρi的范围在[1%,5%)为较高;偏离度σi的范围在[-1%,1%)为正常;偏离度σi的范围在[-5%,-1%)为较低;偏离度σi的范围在[-15%,-5%)为低;偏离度ρi的范围在(-∞,-15%]为非常低。
所述的训练集和测试集建立是采用分层随机抽样,按照7:3比例将数据库划分为训练数据集和测试数据集。
步骤三、故障检测模型建立:通过关联规则分类算法,得到运行参数与故障之间的关联规则集,应用该关联规则集测试数据集,预测数据集对应的故障状态,得到故障检测精度,并进行参数优化。
如图3所示,所述的关联规则集是通过设立初始最小置信度和最小支持度阈值,运用Apriori算法对训练集进行关联规则挖掘而建立。
所述的关联规则分类算法是:通过数据挖掘建立关联规则集,再依据分类属性值去判断该项集的类别属性。
所述的关联规则集是通过设立初始最小置信度和最小支持度阈值,运用Apriori算法对训练集进行关联规则挖掘而建立。
所述的Apriori算法是:使用支持度作为判断频繁项集的标准,采用迭代的方法找到最大的K项频繁项。
所述的最大K项频繁项是,先搜索出候选1项集及对应的支持度,剪枝去掉低于设立参数支持度的项集,得到频繁1项集,然后对剩下的频繁1项集进行连接,得到候选的频繁2项集,筛选去掉低于支持度的候选频繁2项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。
所述的参数优化是使用网格搜索法,确定最佳参数组合,即最小置信度和最小支持度。
所述的故障检测精度是输入最佳参数组合,重复进行步骤三,得到最终的故障检测模型检测精度。
步骤四、利用故障检测模型建立船舶柴油机故障规则库,提取重要规则并运用基于K-means聚类分组矩阵和矢量图方法进行可视化。
所述的重要规则是将规则的置信度阈值设为0.9,支持度阈值设为0.05,每条规则的置信度和支持度均在阈值以上的则为重要规则。
所述的基于K-means聚类分组矩阵可视化是结合K-means聚类的思想,对关联规则进行聚类,利于快速发现关联规则间的规律,帮助对关联规则的理解。
所述的矢量图方法是将数学语言文字转换为图形来表示各项关联规则,进一步分析关联规则集中的物理含义。
经过具体实际实验,通过发动机仿真软件GT-Power建立船舶柴油机仿真模型,通过参数校核以及故障模拟方案,构建TBD234船舶柴油机故障运行数据库,运用本发明所提出的基于关联规则分类的故障检测方法,确定最佳参数组合为(最小支持度,最小置信度)=(0.01,0.7),得到模型故障诊断精度为98.67%。挖掘得到的重要规则可视化结果也显示出符合柴油机热力循环规律,进一步说明了模型的可靠性。
与现有技术相比,本方法提出的基于关联规则分类的船舶柴油机故障检测方法具有高精度、运算快的特点;此外,在保证高精度的前提下,本发明解决了现有基于数据驱动的船舶故障诊断模型的可解释性较差问题,通过知识发现,解析故障作用机理,为进一步故障分析研究提供参考。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (5)

1.一种基于关联规则的船舶柴油机故障检测方法,其特征在于,包括:
步骤一、模拟船舶柴油机故障,记录故障类别及发动机运行参数,建立柴油机原始故障数据库;
步骤二、对数据库采用主成分分析法选取故障类别的运行参数作为特征变量,经数据归一化、数据离散化以及通过分层随机抽样,按照比例划分为训练集和测试集;
步骤三、建立故障检测模型:通过关联规则分类算法,得到运行参数与故障之间的关联规则集,应用该关联规则集测试数据集,预测数据集对应的故障状态,通过网格搜索法,确定最佳参数组合,即最小置信度和最小支持度后重复步骤三,得到最终的故障检测模型检测精度;
步骤四、利用故障检测模型建立船舶柴油机故障规则库,制出关联规则散点图,提取置信度和支持度均达到设定的阈值以上的规则并运用基于K-means聚类分组矩阵对关联规则进行聚类、运用矢量图方法将数学语言文字转换为图形来表示各项关联规则,进一步分析关联规则集中的物理含义从而实现可视化;
所述的故障类别是对进气、增压器、中冷器、气门、气缸、排气和涡轮,这七个功能模块进行模拟进气歧管漏气、中冷器效率降低、中冷器压降增大、失火、排气歧管漏气、排气阀提前开启和喷油角过大;
发动机运行参数包括:进气温度、进气压力、进气流量、增压器出口温度、增压器出口压力、中冷器进口温度、中冷器出口温度、中冷器出口压力、进气歧管温度、进气歧管压力、气缸平均有效压力、排气歧管温度、排气歧管压力、涡轮进气温度、涡轮进气压力、涡轮出口温度、涡轮出口压力、柴油机转速、柴油机功率和柴油机扭矩;
所述的运行参数包括:进气流量、增压器出口温度、增压器出口压力、进气歧管温度、进气歧管压力、排气歧管温度、排气歧管压力、涡轮进气温度、涡轮出口温度和气缸平均有效压力。
2.根据权利要求1所述的基于关联规则的船舶柴油机故障检测方法,其特征是,所述的数据归一化是指:将故障状态下的特征变量与正常状态下的特征变量对比,将特征变量的绝对值转换为各特征变量与正常状态下的偏离度,即:
Figure FDA0003028170190000011
其中:σi为各个特征变量的偏离度,xi为故障状态下特征变量,x为正常状态下特征变量。
3.根据权利要求1所述的基于关联规则的船舶柴油机故障检测方法,其特征是,所述的数据离散化是指:根据各特征变量偏离度大小,将特征变量转换为类别属性,具体是:偏离度σi的范围在[15%,+∞)为非常高;偏离度σi的范围在[5%,15%)为高;偏离度σi的范围在[1%,5%)为较高;偏离度σi的范围在[-1%,1%)为正常;偏离度σi的范围在[一5%,-1%)为较低;偏离度σi的范围在[-15%,-5%)为低;偏离度σi的范围在(-∞,-15%]为非常低。
4.根据权利要求1所述的基于关联规则的船舶柴油机故障检测方法,其特征是,所述的关联规则分类算法,通过数据挖掘建立关联规则集,即通过设立初始最小置信度和最小支持度阈值,运用Apriori算法对训练集进行关联规则挖掘得到;再依据分类属性值去判断该项集的类别属性。
5.根据权利要求4所述的基于关联规则的船舶柴油机故障检测方法,其特征是,所述的Apriori算法是指:使用支持度作为判断频繁项集的标准,采用迭代的方法找到最大的K项频繁项,具体为:先搜索出候选一项集及对应的支持度,剪枝去掉低于设立参数支持度的项集,得到频繁一项集,然后对剩下的频繁一项集进行连接,得到候选的频繁二项集,筛选去掉低于支持度的候选频繁二项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果。
CN202110421987.4A 2021-04-20 2021-04-20 基于关联规则的船舶柴油机故障检测方法 Pending CN113032912A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110421987.4A CN113032912A (zh) 2021-04-20 2021-04-20 基于关联规则的船舶柴油机故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110421987.4A CN113032912A (zh) 2021-04-20 2021-04-20 基于关联规则的船舶柴油机故障检测方法

Publications (1)

Publication Number Publication Date
CN113032912A true CN113032912A (zh) 2021-06-25

Family

ID=76457625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110421987.4A Pending CN113032912A (zh) 2021-04-20 2021-04-20 基于关联规则的船舶柴油机故障检测方法

Country Status (1)

Country Link
CN (1) CN113032912A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114595271A (zh) * 2022-02-24 2022-06-07 贵州具京网络科技有限公司 一种大数据挖掘方法及***
CN115034671A (zh) * 2022-07-01 2022-09-09 国网河南省电力公司电力科学研究院 基于关联规则与聚类的二次***信息故障分析方法
CN115497267A (zh) * 2022-09-06 2022-12-20 江西小手软件技术有限公司 基于时序关联规则的设备预警平台
CN115713031A (zh) * 2022-11-11 2023-02-24 上海海事大学 一种基于计算机视觉的船舶主机气缸润滑优化调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871003A (zh) * 2014-03-31 2014-06-18 国家电网公司 一种应用历史故障数据的配电网故障诊断方法
CN108873859A (zh) * 2018-05-31 2018-11-23 浙江工业大学 基于改进关联规则的桥式抓斗卸船机故障预测模型方法
CN110008253A (zh) * 2019-03-28 2019-07-12 浙江大学 基于两阶段频繁项集产生策略的工业数据关联规则挖掘及异常工况预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871003A (zh) * 2014-03-31 2014-06-18 国家电网公司 一种应用历史故障数据的配电网故障诊断方法
CN108873859A (zh) * 2018-05-31 2018-11-23 浙江工业大学 基于改进关联规则的桥式抓斗卸船机故障预测模型方法
CN110008253A (zh) * 2019-03-28 2019-07-12 浙江大学 基于两阶段频繁项集产生策略的工业数据关联规则挖掘及异常工况预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL HAHSLER ET AL.: ""Visualizing association rules in hierarchical groups"", 《JOURNAL OF BUSINESS ECONOMICS》 *
肖峰: ""基于梯度提升树的船舶柴油机故障诊断研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114595271A (zh) * 2022-02-24 2022-06-07 贵州具京网络科技有限公司 一种大数据挖掘方法及***
CN115034671A (zh) * 2022-07-01 2022-09-09 国网河南省电力公司电力科学研究院 基于关联规则与聚类的二次***信息故障分析方法
CN115497267A (zh) * 2022-09-06 2022-12-20 江西小手软件技术有限公司 基于时序关联规则的设备预警平台
CN115713031A (zh) * 2022-11-11 2023-02-24 上海海事大学 一种基于计算机视觉的船舶主机气缸润滑优化调节方法
CN115713031B (zh) * 2022-11-11 2023-12-22 上海海事大学 一种基于计算机视觉的船舶主机气缸润滑优化调节方法

Similar Documents

Publication Publication Date Title
CN113032912A (zh) 基于关联规则的船舶柴油机故障检测方法
CN110441065B (zh) 基于lstm的燃气轮机在线检测方法与装置
CN110849626B (zh) 一种自适应稀疏压缩自编码的滚动轴承故障诊断***
CN111259532B (zh) 基于3dcnn-jtfa的航空发动机控制***传感器的故障诊断方法
US7593804B2 (en) Fixed-point virtual sensor control system and method
CN112016251B (zh) 一种核动力装置故障的诊断方法及***
CN113688558B (zh) 一种基于大数据库样本的汽车行驶工况构建方法及***
CN111680788A (zh) 基于深度学习的设备故障诊断方法
CN114856811B (zh) 柴油发动机空气***健康评估方法
CN113157732B (zh) 一种基于pso-bp神经网络的地下铲运机故障诊断方法
CN116384224A (zh) 一种基于条件化参数动态卷积神经网络的航空发动机寿命预测方法
CN115204368A (zh) 一种基于智能芯片技术的飞机发动机故障诊断方法
CN113742396A (zh) 一种对象学习行为模式的挖掘方法及装置
CN116502155B (zh) 一种用于数控电动螺旋压力机的******
CN116611580A (zh) 一种基于多源数据与深度学习的海洋赤潮预测方法
Zhu et al. Engine fault diagnosis using probabilistic neural network
CN114826764B (zh) 一种基于集成学习的边缘计算网络攻击识别方法及***
CN115774847A (zh) 一种柴油机性能评估及预测方法和***
CN114710344A (zh) 一种基于溯源图的入侵检测方法
CN115374687A (zh) 数形结合的油井工况智能诊断方法
CN112926400A (zh) 基于数据驱动的液压缸内泄露故障智能诊断方法及***
CN211479145U (zh) 一种基于火焰图像和深度学习的燃烧工况图像监测装置
CN117610274A (zh) 一种基于cnn-se-gru神经网络的柴油机变工况故障诊断方法
Zhang et al. Autoencoder and Deep Neural Network based Energy Consumption Analysis of Marine Diesel Engine
Cui et al. Evaluation method of aero-engine performance based on hybrid AP-HMM model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210625