CN113019372A - Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation - Google Patents

Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation Download PDF

Info

Publication number
CN113019372A
CN113019372A CN202110270895.0A CN202110270895A CN113019372A CN 113019372 A CN113019372 A CN 113019372A CN 202110270895 A CN202110270895 A CN 202110270895A CN 113019372 A CN113019372 A CN 113019372A
Authority
CN
China
Prior art keywords
cobalt
nickel
composite oxide
coal bed
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110270895.0A
Other languages
Chinese (zh)
Other versions
CN113019372B (en
Inventor
李文志
吴明伟
袁亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202110270895.0A priority Critical patent/CN113019372B/en
Publication of CN113019372A publication Critical patent/CN113019372A/en
Application granted granted Critical
Publication of CN113019372B publication Critical patent/CN113019372B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/396
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

The invention provides a cobalt-nickel nano composite material, which comprises a cobalt-nickel composite oxide and a silicon dioxide layer compounded on the surface of the cobalt-nickel composite oxide. The cobalt-nickel nano composite material provided by the invention has a specific structure and appearance, consists of a cobalt-nickel composite oxide and a surface silicon layer, and is a cobalt-nickel composite oxide with an inorganic silicon modified surface. The cobalt-nickel nano composite material provided by the invention is used as a catalyst for catalyzing the preparation of methanol by the oxidation of coal bed gas, has excellent catalytic activity and stability for the catalytic reaction of preparing methanol by the oxidation of coal bed gas under the condition of no noble metal load, and can improve the hydrothermal stability of the cobalt-nickel nano composite material by the transfer of surface hydroxyl. The preparation method is simple, the conditions are mild, the characteristics of high methanol yield and good stability are shown in the reaction of preparing methanol by oxidizing coal bed gas, and the method is suitable for large-scale production popularization and application and has good practical prospect.

Description

Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation
Technical Field
The invention belongs to the technical field of preparing methanol by oxidizing coal bed gas, and relates to a cobalt-nickel nano composite material and a preparation method thereof, and a method for preparing methanol by catalyzing coal bed gas oxidation, in particular to a cobalt-nickel composite oxide catalyst with a silicon-modified surface, a preparation method thereof, and a method for preparing methanol by catalyzing coal bed gas oxidation.
Background
The catalyst is one of the most common substances in chemical reaction, and refers to a substance which can change the chemical reaction rate of a reactant in the chemical reaction without changing chemical equilibrium, and the mass and chemical properties of the substance are not changed before and after the chemical reaction, so that the catalyst is in a relationship with a reaction system like a lock-key relationship and has high selectivity. According to statistics, about more than 90% of industrial processes use catalysts, such as chemical industry, petrochemical industry, biochemical industry, environmental protection and the like. Thus, there has been a high interest in the field of catalyst research. The catalysts are various in types and are classified into homogeneous catalysts and heterogeneous catalysts according to the phase state of a reaction system, and the heterogeneous catalysts include solid acid catalysts, organic base catalysts, metal oxide catalysts, complex catalysts, rare earth catalysts, nano catalysts and the like, wherein the metal oxide catalysts are solid catalysts taking metal oxides as main active components, are widely applied catalysts at present, particularly transition metal oxide catalysts which are used most in industry, are often used for catalytic reactions of redox mechanisms, and are very important catalysts.
With the rapid development of social economy, petroleum resources are increasingly exhausted, and natural gas gradually becomes a main alternative energy. Natural gas resources in China are generally rich, but gas field distribution is dispersed, and the natural gas resources cannot be effectively utilized due to geographical positions or economic factors; the associated gas obtained by oil exploitation is not converted into effective capacity due to the limitation of exploitation places. The main organic component of the coal bed gas is methane, and along with coal mining, a large amount of coal bed gas is wasted every year in China. Methanol is a liquid organic chemical raw material and a core product of C1 chemistry at normal temperature, and is considered as an ideal product for coal bed gas conversion. Therefore, aiming at the characteristics of natural gas fields in remote inland and open sea and petroleum associated gas, the process technology for preparing alcohol products such as methanol and the like by direct catalytic oxidation of coal bed gas is developed, and the method has very important significance for promoting the development of long-distance transportation, deep utilization and the like of marginal natural gas and improving the utilization rate of a gas source.
The methane gas in the coal bed gas is stable in chemical property, and the activation and the conversion of the methane gas require harsh reaction conditions. Compared with coal bed gas, the target product methanol is more active in chemical property, and can be further reacted to generate a deep oxidation product CO more easily under the reaction condition of coal bed gas conversion2. It is often difficult to achieve the desired target product selectivity at a suitable conversion of coalbed methane. At present, the yield of the process for preparing the methanol by the heterogeneous catalytic oxidation of the coal bed gas, which has the most prospect of industrial application, is generally insufficient, and the catalyst is easy to deactivate.
Therefore, the search for a catalyst with high reaction activity and high product selectivity at low temperature is always a hotspot and a difficulty in the research of catalytic conversion of coal bed gas, and is also a significant challenge in catalytic science.
Disclosure of Invention
In view of the above, the technical problems to be solved by the present invention are to provide a cobalt-nickel nanocomposite, a preparation method thereof, and a method for preparing methanol by catalyzing coal bed methane oxidation, in particular, a cobalt-nickel composite oxide catalyst with a silicon-modified surface, wherein the cobalt-nickel nanocomposite provided by the present invention has excellent catalytic activity and stability when used as a catalyst, in particular, in the aspect of catalyzing the preparation of methanol by catalyzing coal bed methane oxidation; and the preparation method has simple synthesis steps and mild conditions, is suitable for large-scale production popularization and application, and has good practical prospect.
The invention provides a cobalt-nickel nano composite material, which comprises a cobalt-nickel composite oxide and a silicon dioxide layer compounded on the surface of the cobalt-nickel composite oxide.
Preferably, the cobalt-nickel composite oxide is a composite of an oxide of cobalt and an oxide of nickel;
the thickness of the silicon dioxide layer is 0.5-5 nm;
the mass fraction of the silicon dioxide in the cobalt-nickel nano composite material is 5-30%.
Preferably, the cobalt-nickel composite oxide includes cobalt-nickel composite oxide particles;
the particle size of the cobalt-nickel composite oxide is 2-30 nm;
the molar ratio of cobalt to nickel in the cobalt-nickel composite oxide is 1: (0.2-5).
Preferably, the silica comprises amorphous silica;
the cobalt-nickel composite oxide is loaded between the silicon dioxide layer and the silicon dioxide layer;
a plurality of cobalt-nickel composite oxide particles are coated between the silica layer and the silica layer.
Preferably, the cobalt-nickel nanocomposite material is a cobalt-nickel nanocomposite catalyst material;
in the cobalt-nickel nano composite catalyst material, the cobalt-nickel composite oxide is an active component;
the cobalt-nickel nano composite catalyst material is a catalyst for catalyzing coal bed methane to be oxidized to prepare methanol.
The invention provides a preparation method of a cobalt-nickel nano composite material, which comprises the following steps:
1) mixing a cobalt source and a nickel source in a solvent, and adding ammonia water to obtain a composite precipitate of cobalt and nickel;
2) and mixing the composite precipitate of cobalt and nickel with an organic silicon source, and calcining to obtain the cobalt-nickel nanocomposite.
Preferably, the cobalt source comprises cobalt nitrate;
the nickel source comprises nickel nitrate;
the solvent comprises cyclohexane;
the volume concentration of the ammonia water is 10-50%;
the mass volume ratio of the cobalt source to the ammonia water is 1: (0.5 to 3).
Preferably, the organic silicon source comprises one or more of tetraethyl silicate, triethoxyoctylsilane, trimethoxysilane and trimethoxyoctylsilane;
the calcining temperature is 300-600 ℃;
the calcining time is 3-8 h;
the temperature rise rate of the calcination is 5-10 ℃/min.
The invention provides a method for preparing methanol by catalyzing coal bed gas oxidation, which comprises the step of carrying out catalytic reaction on feed gas containing coal bed gas under the action of a cobalt-nickel nano composite material prepared by any one of the above technical schemes or a cobalt-nickel nano composite material prepared by any one of the above preparation methods to obtain the methanol.
Preferably, the concentration of methane in the coal bed gas is less than or equal to 5 vol%;
the cobalt-nickel nano composite material has methanol selectivity in the catalytic reaction process;
the catalytic reaction is carried out in a continuous gas flow state;
the airspeed of the continuous airflow is 10000-60000 h-1
The invention provides a cobalt-nickel nano composite material, which comprises a cobalt-nickel composite oxide and a silicon dioxide layer compounded on the surface of the cobalt-nickel composite oxide. Compared with the prior art, the method aims at the problems that the methane gas in the coal bed gas is stable in chemical property and needs harsh reaction conditions for activation and conversion. And compared with coal bed gas, the methanol has more active chemical property, and can be further reacted more easily to generate a deep oxidation product CO under the reaction condition of implementing the conversion of the coal bed gas2And the ideal selectivity of the target product is difficult to obtain under the appropriate conversion rate of the coal bed gas.
The cobalt-nickel nano composite material provided by the invention has a specific structure and appearance, consists of a cobalt-nickel composite oxide and a surface silicon layer, and is a cobalt-nickel composite oxide with an inorganic silicon modified surface. The amorphous silicon dioxide formed by calcining the composite oxide and the interface formed by the amorphous silicon dioxide and the cobalt-nickel composite oxide have high oxidation-reduction capability, so that the catalyst for catalyzing the coal bed methane oxidation to prepare the methanol has excellent catalytic activity and stability for the reaction of preparing the methanol from the coal bed methane. And the cobalt-nickel nano composite material can also improve the hydrothermal stability of the cobalt-nickel nano composite material through the transfer of surface hydroxyl.
The cobalt-nickel composite oxide with the silicon-modified surface, namely the cobalt-nickel nano composite material, provided by the invention has excellent catalytic activity for the catalytic reaction of preparing methanol by oxidizing coal bed gas without loading noble metal, is simple in preparation method and mild in condition, shows the characteristics of high methanol yield and good stability in the reaction of preparing methanol by oxidizing coal bed gas, is suitable for large-scale production popularization and application, and has good practical prospect.
Experimental results show that the cobalt-nickel composite oxide with the silicon-modified surface, prepared by the invention, has excellent catalytic activity and selectivity when used as a catalyst, can partially oxidize and convert coal bed gas into methanol at 80 ℃ under the condition that the cobalt-nickel ratio is 1:1, wherein the selectivity of the methanol is up to 82%, the conversion rate of methane in the coal bed gas is up to 12.4%, and the catalyst still maintains good stability after being used for 60 hours. And noble metal is not used as an active site in the preparation process, so that the catalyst has application prospect.
Drawings
FIG. 1 is a TEM transmission electron micrograph of the cobalt-nickel nanocomposite prepared in example 1 of the present invention.
Detailed Description
For a further understanding of the invention, reference will now be made to the preferred embodiments of the invention by way of example, and it is to be understood that the description is intended to further illustrate features and advantages of the invention, and not to limit the scope of the claims.
All of the starting materials of the present invention, without particular limitation as to their source, may be purchased commercially or prepared according to conventional methods well known to those skilled in the art.
The feedstock used in the present invention is not particularly limited in its purity, and the present invention is preferably analytically pure or pure as is conventional in the art of coal bed gas oxidation catalyst manufacture.
All the raw materials, the marks and the acronyms thereof belong to the conventional marks and acronyms in the field, each mark and acronym is clear and definite in the field of related application, and the raw materials can be purchased from the market or prepared by a conventional method by the technical staff in the field according to the marks, the acronyms and the corresponding application.
All the processes of the invention, the abbreviations thereof belong to the common abbreviations in the art, each abbreviation is clear and definite in the field of its associated use, and the ordinary process steps thereof can be understood by those skilled in the art from the abbreviations.
The invention provides a cobalt-nickel nano composite material, which comprises a cobalt-nickel composite oxide and a silicon dioxide layer compounded on the surface of the cobalt-nickel composite oxide.
In the present invention, the cobalt-nickel composite oxide is a composite of an oxide of cobalt and an oxide of nickel.
In the present invention, the cobalt-nickel composite oxide preferably includes cobalt-nickel composite oxide particles.
In the present invention, the particle size of the cobalt-nickel composite oxide is preferably 2 to 30nm, more preferably 5 to 28nm, more preferably 7 to 25nm, more preferably 10 to 23nm, and more preferably 13 to 20 nm.
In the present invention, the molar ratio of cobalt and nickel in the cobalt-nickel composite oxide is preferably 1: (0.5 to 5), more preferably 1: (0.7-4), more preferably 1: (1-3), specifically may be 1: 1.
the surface of the cobalt-nickel composite oxide is compounded with a silicon dioxide layer.
In the invention, the thickness of the silicon dioxide layer is preferably 0.5-5 nm, more preferably 1.5-4 nm, and more preferably 2.5-3 nm.
In the present invention, the mass fraction of the silica in the cobalt-nickel nanocomposite is preferably 5% to 30%, more preferably 6% to 25%, more preferably 7% to 20%, and more preferably 8% to 10%. Specifically, it may be 5%.
In the present invention, the silica is preferably amorphous silica.
In the present invention, the cobalt-nickel composite oxide is supported between a silica layer and a silica layer. Specifically, the plurality of cobalt-nickel composite oxide particles are preferably coated between the silica layer and the silica layer. In the cobalt-nickel nanocomposite, the formed coating structure is not a core-shell coating structure, but a single or a plurality of cobalt-nickel composite oxide particles are coated between silicon dioxide lamella layers to form a sandwich structure.
In the present invention, the cobalt-nickel nanocomposite material is preferably a cobalt-nickel nanocomposite catalyst material. In the cobalt-nickel nano composite catalyst material, the cobalt-nickel composite oxide is preferably an active component. Specifically, the cobalt-nickel nano composite catalyst material is used as a catalyst for catalyzing the coal bed methane oxidation to prepare the methanol.
The invention provides a preparation method of a cobalt-nickel nano composite material, which comprises the following steps:
1) mixing a cobalt source and a nickel source in a solvent, and adding ammonia water to obtain a composite precipitate of cobalt and nickel;
2) and mixing the composite precipitate of cobalt and nickel with an organic silicon source, and calcining to obtain the cobalt-nickel nanocomposite.
Firstly, mixing a cobalt source and a nickel source in a solvent, and then adding ammonia water to obtain a composite precipitate of cobalt and nickel.
In the present invention, the cobalt source preferably comprises cobalt nitrate.
In the present invention, the nickel source preferably comprises nickel nitrate.
In the present invention, the solvent preferably includes cyclohexane.
In the present invention, the volume concentration of the ammonia water is preferably 10% to 50%, more preferably 15% to 45%, more preferably 20% to 40%, and more preferably 25% to 35%. Specifically, it may be 28%.
In the present invention, the mass-to-volume ratio of the cobalt source to the aqueous ammonia is preferably 1: (0.5 to 3), more preferably 1: (1 to 2.5), more preferably 1: (1.5-2).
The composite precipitate of cobalt and nickel and an organic silicon source are mixed and calcined to obtain the cobalt-nickel nano composite material.
In the present invention, the organic silicon source preferably includes one or more of tetraethyl silicate, triethoxyoctylsilane, trimethoxysilane, and trimethoxyoctylsilane, and more preferably tetraethyl silicate, triethoxyoctylsilane, trimethoxysilane, or trimethoxyoctylsilane.
In the invention, the calcination temperature is preferably 300-600 ℃, more preferably 350-550 ℃, and more preferably 400-500 ℃.
In the invention, the calcination time is preferably 3-8 h, more preferably 4-7 h, and more preferably 5-6 h.
In the invention, the heating rate of the calcination is preferably 5-10 ℃/min, more preferably 6-9 ℃/min, and more preferably 7-8 ℃/min.
The invention is a complete and refined integral preparation process, better ensures the appearance and structure of the cobalt-nickel nanocomposite material, and improves the catalytic performance of the cobalt-nickel nanocomposite material, and the preparation method of the cobalt-nickel nanocomposite material can specifically comprise the following steps:
s1) adding ammonia water into a cobalt source and a nickel source in a cyclohexane solvent to obtain a composite precipitate of cobalt and nickel;
s2) mixing an organic silicon source with the composite precipitate of cobalt and nickel, stirring, drying and calcining to obtain the catalyst for preparing methanol by catalyzing coal bed methane.
After the composite precipitate of cobalt and nickel is obtained, a silicon source is mixed with the composite precipitate of cobalt and nickel, and after the mixture is stirred for a period of time, the mixture is subjected to solid-liquid separation, drying and calcining to obtain the catalyst for preparing methanol by catalyzing coal bed gas by the cobalt-nickel composite oxide with the silicon-modified surface.
Wherein the stirring time is preferably 1-4 h, more preferably 2-4 h, and still more preferably 3 h. The method of solid-liquid separation is preferably centrifugation. The rotation speed of the centrifugation is preferably 6000 to 10000rpm, more preferably 7000 to 9000rpm, and still more preferably 8000 rpm. The time for centrifugation is preferably 1-5 min, more preferably 2-4 min, and still more preferably 3 min. The drying temperature is preferably 40 ℃ to 200 ℃, more preferably 80 ℃ to 120 ℃, still more preferably 100 ℃ to 120 ℃, and most preferably 110 ℃ to 120 ℃. The drying time is preferably 8-12 h, more preferably 10-12 h, and further preferably 12 h. The calcination is preferably carried out in an air atmosphere. The calcination temperature is preferably 300-600 ℃, more preferably 400-600 ℃, and still more preferably 500 ℃. The calcination time is preferably 3-8 h, and more preferably 4-6 h. The heating rate of the calcination is preferably 5-10 ℃/min. The mass fraction of silica of the surface is preferably 5%.
The interface formed by the amorphous silica calcined on the composite oxide and the cobalt-nickel composite oxide has high oxidation-reduction capability, so that the catalyst for catalyzing the methanol preparation by the oxidation of the coal bed gas has excellent catalytic activity and stability for the methanol preparation reaction by the oxidation of the coal bed gas.
The invention also provides a method for preparing methanol by catalyzing coal bed gas oxidation, wherein the raw material gas containing coal bed gas is subjected to catalytic reaction under the action of the cobalt-nickel nano composite material in any one of the technical schemes or the cobalt-nickel nano composite material prepared by the preparation method in any one of the technical schemes to obtain the methanol. The cobalt-nickel nano composite material is used as a catalyst for catalytic reaction.
In principle, the present invention is not limited to the specific steps and conditions in the method for preparing methanol by catalytic coal-bed methane oxidation, and other raw materials, etc., which are conventional steps and conditions in the method for preparing methanol by catalytic coal-bed methane oxidation, and other conventional raw materials, etc. known to those skilled in the art.
In the present invention, the concentration of methane in the coal bed gas is preferably 5 vol% or less, more preferably 4 vol% or less, and still more preferably 3 vol% or less.
In the present invention, the catalytic reaction is preferably carried out in a continuous gas flow state.
In the invention, the cobalt-nickel nano composite material has higher methanol selectivity in the catalytic reaction process, namely the relative content of other oxygen-containing byproducts is lower. And the whole reaction is carried out in a continuous gas flow state. The preferred space velocity of the continuous airflow is 10000-60000 h-1More preferably 12000-48000 h-1More preferably20000-40000 h-1More preferably 28000-33000 h-1
In the invention, the cobalt-nickel nano composite material is used as a catalyst in the catalytic reaction process and has methanol selectivity.
The invention adopts a continuous flow reactor, the total reaction pressure is 0.1-5 MPa, and the partial pressure ratio of coal bed gas to oxygen is (0.3-10): 1, with N2Diluting with inert gases such as He and Ar, wherein the total gas space velocity is 10000-60000 h-1Continuously reacting at 100-500 ℃ to generate methanol, formaldehyde, ethylene and CO2And the like. Wherein, the continuous flow bed reactor can adopt a fixed bed quartz tube type microreactor. The proportion of the coal bed gas in the reaction gas mixture needs to be in a range avoiding the explosion limit (less than or equal to 20%).
The method for preparing methanol by directly and selectively oxidizing coal bed gas in one step provided by the invention takes oxygen as an oxidant, and directly and one step catalytically oxidizes the coal bed gas to prepare the high value-added product methanol, CO2The yield is effectively controlled. The catalyst adopted by the invention is a non-noble metal solid material, active components such as other noble metal oxides and the like do not need to be loaded, no corrosive or toxic solvent is used in the preparation process and the reaction process of the catalyst, and the method is environment-friendly. And the method has the advantages of mild reaction conditions, continuous reaction, simple process, good catalyst stability, high effective utilization rate of carbon, few byproducts and good industrial development and application potential. Provides a new nonmetal catalysis system for preparing oxygen-containing compounds by activating coal bed gas.
The invention provides a surface silicon modified cobalt-nickel composite oxide catalyst, a preparation method thereof and a method for preparing methanol by catalyzing coal bed methane oxidation. The cobalt-nickel nano composite material provided by the invention has a specific structure and appearance, consists of a cobalt-nickel composite oxide and a surface silicon layer, and is a cobalt-nickel composite oxide with an inorganic silicon modified surface. The amorphous silicon dioxide formed by calcining the composite oxide and the interface formed by the amorphous silicon dioxide and the cobalt-nickel composite oxide have high oxidation-reduction capability, so that the catalyst for catalyzing the coal bed methane oxidation to prepare the methanol has excellent catalytic activity and stability for the reaction of preparing the methanol from the coal bed methane. And the cobalt-nickel nano composite material can also improve the hydrothermal stability of the cobalt-nickel nano composite material through the transfer of surface hydroxyl.
The invention provides a preparation method of a surface silicon modified cobalt-nickel composite oxide catalyst with high catalytic activity and good stability and application of the catalyst in preparation of methanol by coal bed methane oxidation. The invention discloses a surface silicon modified cobalt-nickel composite oxide catalyst for preparing methanol by directly oxidizing coal bed gas and a preparation method thereof. Wherein the molar ratio of cobalt to nickel may be specifically 1: specifically, the mass fraction of surface silica may be 5%. Compared with other catalysts for preparing methanol by oxidizing coal bed gas, the catalyst provided by the invention has the characteristics of simple preparation method, high methanol yield and good stability in the reaction of preparing methanol by oxidizing coal bed gas. The invention utilizes the cobalt-nickel mixed oxide which is generated uniformly in the organic solvent cyclohexane, then a layer of tetraethyl silicate is wrapped on the surface of the cobalt-nickel mixed oxide, amorphous silicon dioxide can be formed after the tetraethyl silicate is calcined, and the interface formed by the amorphous silicon dioxide and the cobalt-nickel composite oxide has high oxidation-reduction capability, so that the catalyst for preparing methanol by catalyzing the oxidation of coal bed methane has excellent catalytic activity and stability for the catalytic reaction of preparing methanol by oxidizing the coal bed methane.
The cobalt-nickel composite oxide with the silicon-modified surface has excellent catalytic activity for the catalytic reaction of preparing methanol by oxidizing coal bed gas without loading noble metal, has the characteristics of simple preparation method and mild conditions, shows high yield and good stability in the reaction of preparing methanol by oxidizing coal bed gas, is suitable for large-scale production popularization and application, and has good practical prospect.
Experimental results show that the cobalt-nickel composite oxide with the silicon-modified surface, prepared by the invention, has excellent catalytic activity and selectivity when used as a catalyst, can partially oxidize and convert coal bed gas into methanol at 80 ℃ under the condition that the cobalt-nickel ratio is 1:1, wherein the selectivity of the methanol is up to 82%, the conversion rate of methane in the coal bed gas is up to 12.4%, and the catalyst still maintains good stability after being used for 60 hours. And noble metal is not used as an active site in the preparation process, so that the catalyst has application prospect.
For further illustration of the present invention, the cobalt-nickel nanocomposite and the preparation method thereof, and the method for preparing methanol by catalytic coal bed methane oxidation provided by the present invention are described in detail with reference to the following examples, but it should be understood that these examples are carried out on the premise of the technical solution of the present invention, and the detailed embodiments and specific procedures are given only for further illustration of the features and advantages of the present invention, but not for limitation of the claims of the present invention, and the scope of the present invention is not limited to the following examples.
Example 1
4.5g of nickel nitrate hexahydrate and 4.5g of cobalt nitrate hexahydrate were dissolved in 5ml of water, and then added to 100ml of a cyclohexane solution, and stirred at room temperature for 3 hours. Adding 4.3ml of 28% ammonia water into the solution, stirring for 3 hours, adding 5ml of tetraethyl silicate, stirring the solution at room temperature for 48 hours, centrifuging at 8000rpm for 3 minutes to obtain a solid, drying in an oven at 120 ℃ for 5 hours to evaporate the solvent, transferring the sample into a quartz crucible, calcining in a tube furnace at 500 ℃ for 4 hours in the air atmosphere, naturally cooling to room temperature, and grinding to obtain the black powdery cobalt-nickel composite oxide catalyst with the silicon-modified surface.
The cobalt-nickel composite oxide catalyst with the surface silicon modified obtained in example 1 was analyzed by a transmission electron microscope to obtain a scanning image of the transmission electron microscope.
Referring to fig. 1, fig. 1 is a TEM transmission electron microscope image of a cobalt nickel nanocomposite prepared in example 1 of the present invention.
Activity test of the catalyst:
the preparation method is carried out in a fixed bed quartz tube type microreactor (the inner diameter is 3mm) with two ends communicated and the rest parts sealed, the loading amount of a catalyst is 20mg, a raw material gas is coal bed gas with the methane volume fraction of 5 percent, the rest gas is mixed gas of air, the gas flow rate is 10ml/min, and the corresponding gasThe flow space velocity is 30,000h-1. The temperature in the reactor was kept at 80 ℃ during the reaction by means of a temperature-controlled resistance wire. The conversion rate of reactant methane and the content of methanol in the product are monitored in real time at regular intervals, and the methane and the methanol in the product gas are analyzed on line by a GC-1690 gas chromatograph equipped with a hydrogen flame detector.
The activity test shows that the cobalt-nickel composite oxide catalyst with the silicon-modified surface prepared by the method can partially oxidize the coal bed gas and convert the coal bed gas into methanol at the temperature of 80 ℃, wherein the selectivity of the methanol is up to 82%, the conversion rate of methane in the coal bed gas is up to 12.4%, and the catalyst still maintains stability after being used for 60 hours.
Table 1 shows that the cobalt to nickel ratio obtained in example 1 of the present invention is 1:1, the selectivity and the conversion rate of methanol prepared from coal bed gas of the cobalt-nickel laminated layer assembled cobalt-nickel composite oxide catalyst with the silicon-modified surface.
Referring to table 1, table 1 shows the catalytic performance of the cobalt-nickel mixed oxide catalyst with silicon-modified surface prepared in examples 1 to 4 of the present invention.
TABLE 1
Reference numerals Catalyst [ mg] Airspeed [ h ]-1] Coal bed methane conversion [% ]] Methanol selectivity [% ]]
Example 1 100 30,000 12.4 82
Example 2 100 30,000 10.5 71
Example 3 100 30,000 9.6 67
Example 4 100 30,000 10.1 61
It can be seen that the cobalt-nickel composite oxide catalyst with the surface silicon modified prepared by the preparation method has higher conversion rate, selectivity and catalytic stability in the reaction of preparing methanol by partial oxidation of coal bed gas.
Example 2
The preparation procedure of example 1 was followed, with the feed being varied so that the molar ratio of cobalt to nickel was 2: 1. activity tests showed that the cobalt to nickel ratio prepared using example 2 was 2: 1, the conversion rate of methane in the coal bed gas is 10.5% and the selectivity of methanol is 71% under the condition of 80 ℃.
Example 3
The preparation of example 1 was followed, with the feed being varied so that the molar ratio of cobalt to nickel was 1: 2. activity tests showed that the cobalt to nickel ratio prepared using example 3 was 1: 2 at the temperature of 80 ℃, the conversion rate of methane in the coal bed gas is 9.6 percent, and the selectivity of methanol is 67 percent.
Comparative example 1
The procedure is as in example 1 except that no tetraethyl silicate is added. Activity tests showed that the cobalt to nickel ratio using the comparative preparation was 1: 2 at 80 ℃, the conversion rate of methane in the coal bed gas is 10.1%, and the selectivity of methanol is 61%.
The above detailed description of a cobalt-nickel composite oxide catalyst with silicon-modified surface, a preparation method thereof, and a method for preparing methanol by catalytic coal-bed methane oxidation provided by the present invention, and the description of the embodiments of the present invention are provided herein by using specific examples, and the description of the above examples is only for assisting understanding of the method of the present invention and its core ideas, including the best mode, and also for enabling any person skilled in the art to practice the present invention, including making and using any device or system, and implementing any combination of methods. It should be noted that, for those skilled in the art, it is possible to make various improvements and modifications to the present invention without departing from the principle of the present invention, and those improvements and modifications also fall within the scope of the claims of the present invention. The scope of the invention is defined by the claims and may include other embodiments that occur to those skilled in the art. Such other embodiments are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (10)

1. The cobalt-nickel nanocomposite is characterized by comprising a cobalt-nickel composite oxide and a silicon dioxide layer compounded on the surface of the cobalt-nickel composite oxide.
2. The cobalt-nickel nanocomposite material according to claim 1, wherein the cobalt-nickel composite oxide is a composite of an oxide of cobalt and an oxide of nickel;
the thickness of the silicon dioxide layer is 0.5-5 nm;
the mass fraction of the silicon dioxide in the cobalt-nickel nano composite material is 5-30%.
3. The cobalt-nickel nanocomposite material of claim 1, wherein the cobalt-nickel composite oxide comprises cobalt-nickel composite oxide particles;
the particle size of the cobalt-nickel composite oxide is 2-30 nm;
the molar ratio of cobalt to nickel in the cobalt-nickel composite oxide is 1: (0.2-5).
4. The cobalt-nickel nanocomposite material of claim 3, wherein the silica comprises amorphous silica;
the cobalt-nickel composite oxide is loaded between the silicon dioxide layer and the silicon dioxide layer;
a plurality of cobalt-nickel composite oxide particles are coated between the silica layer and the silica layer.
5. The cobalt-nickel nanocomposite material of claim 1, wherein the cobalt-nickel nanocomposite material is a cobalt-nickel nanocomposite catalyst material;
in the cobalt-nickel nano composite catalyst material, the cobalt-nickel composite oxide is an active component;
the cobalt-nickel nano composite catalyst material is a catalyst for catalyzing coal bed methane to be oxidized to prepare methanol.
6. The preparation method of the cobalt-nickel nano composite material is characterized by comprising the following steps of:
1) mixing a cobalt source and a nickel source in a solvent, and adding ammonia water to obtain a composite precipitate of cobalt and nickel;
2) and mixing the composite precipitate of cobalt and nickel with an organic silicon source, and calcining to obtain the cobalt-nickel nanocomposite.
7. The cobalt-nickel nanocomposite material of claim 1, wherein the cobalt source comprises cobalt nitrate;
the nickel source comprises nickel nitrate;
the solvent comprises cyclohexane;
the volume concentration of the ammonia water is 10-50%;
the mass volume ratio of the cobalt source to the ammonia water is 1: (0.5 to 3).
8. The cobalt-nickel nanocomposite of claim 1, wherein the source of organic silicon comprises one or more of tetraethyl silicate, triethoxyoctylsilane, trimethoxysilane, and trimethoxyoctylsilane;
the calcining temperature is 300-600 ℃;
the calcining time is 3-8 h;
the temperature rise rate of the calcination is 5-10 ℃/min.
9. A method for preparing methanol by catalyzing coal bed gas oxidation is characterized in that under the action of the cobalt-nickel nanocomposite material of any one of claims 1 to 5 or the cobalt-nickel nanocomposite material prepared by the preparation method of any one of claims 6 to 8, raw gas containing coal bed gas is subjected to catalytic reaction to obtain methanol.
10. The method of claim 9, wherein the concentration of methane in the coal bed methane is less than or equal to 5 vol%;
the cobalt-nickel nano composite material has methanol selectivity in the catalytic reaction process;
the catalytic reaction is carried out in a continuous gas flow state;
the airspeed of the continuous airflow is 10000-60000 h-1
CN202110270895.0A 2021-03-12 2021-03-12 Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation Active CN113019372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110270895.0A CN113019372B (en) 2021-03-12 2021-03-12 Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110270895.0A CN113019372B (en) 2021-03-12 2021-03-12 Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation

Publications (2)

Publication Number Publication Date
CN113019372A true CN113019372A (en) 2021-06-25
CN113019372B CN113019372B (en) 2023-03-10

Family

ID=76470429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110270895.0A Active CN113019372B (en) 2021-03-12 2021-03-12 Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation

Country Status (1)

Country Link
CN (1) CN113019372B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849711A (en) * 2022-04-27 2022-08-05 苏州大学 Metal nano catalyst, preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205420A (en) * 2007-12-06 2008-06-25 复旦大学 Magnetic inorganic nano-particle/ordered meso-porous silica core-shell microspheres and preparation thereof
CN104768910A (en) * 2012-10-29 2015-07-08 阿肯马法国公司 Method for directly synthesising unsaturated aldehydes from alcohol mixtures
CN106140273A (en) * 2015-04-21 2016-11-23 中国科学院青岛生物能源与过程研究所 A kind of cladded type cobalt-base catalyst for Fiscber-Tropscb synthesis and preparation thereof and application
CN106268822A (en) * 2015-05-13 2017-01-04 新加坡国立大学 M-SiO2 catalyst, its preparation method and the application in methane carbon dioxide reformation thereof
CN106513000A (en) * 2016-11-30 2017-03-22 中国科学院上海高等研究院 Supported nickel-based catalyst, and preparation method and application thereof
WO2017153893A1 (en) * 2016-03-09 2017-09-14 Basf Corporation Core/shell hydrocarbon trap catalyst and method of manufacture
CN110038590A (en) * 2019-05-14 2019-07-23 中国科学院山西煤炭化学研究所 A kind of more interlayer composite catalysts and its preparation method and application
CN110508304A (en) * 2019-08-29 2019-11-29 华南农业大学 Biogas full constituent inverting biological catalyst for methanol NiCo2O4/SiC-SiO2- Foam and preparation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205420A (en) * 2007-12-06 2008-06-25 复旦大学 Magnetic inorganic nano-particle/ordered meso-porous silica core-shell microspheres and preparation thereof
CN104768910A (en) * 2012-10-29 2015-07-08 阿肯马法国公司 Method for directly synthesising unsaturated aldehydes from alcohol mixtures
CN106140273A (en) * 2015-04-21 2016-11-23 中国科学院青岛生物能源与过程研究所 A kind of cladded type cobalt-base catalyst for Fiscber-Tropscb synthesis and preparation thereof and application
CN106268822A (en) * 2015-05-13 2017-01-04 新加坡国立大学 M-SiO2 catalyst, its preparation method and the application in methane carbon dioxide reformation thereof
WO2017153893A1 (en) * 2016-03-09 2017-09-14 Basf Corporation Core/shell hydrocarbon trap catalyst and method of manufacture
CN106513000A (en) * 2016-11-30 2017-03-22 中国科学院上海高等研究院 Supported nickel-based catalyst, and preparation method and application thereof
CN110038590A (en) * 2019-05-14 2019-07-23 中国科学院山西煤炭化学研究所 A kind of more interlayer composite catalysts and its preparation method and application
CN110508304A (en) * 2019-08-29 2019-11-29 华南农业大学 Biogas full constituent inverting biological catalyst for methanol NiCo2O4/SiC-SiO2- Foam and preparation method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B G NURGITA ET AL.: "Partical oxidation of methane to methanol over MxOy/ZSM-5(Mn,Fe,Co, and Ni) hierarchical transition metal oxide catalysts", 《IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING》 *
FENG ZHANG ET AL.: "Reaction of Methane with MOx/CeO2 (M = Fe, Ni, and Cu) Catalysts:In Situ Studies with Time-Resolved X‑ray Diffraction", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 *
YOSHIHITO SHIOTA ET AL.: "Methane-to-Methanol Conversion by First-Row Transition-MetalOxide Ions: ScO+, TiO+, VO+, CrO+, MnO+, FeO+, CoO+, NiO+,and CuO+", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
郑小刚: "结构可控型镍基催化剂的制备及其对CH4/CO2等离子体重整反应的催化性能研究", 《中国博士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849711A (en) * 2022-04-27 2022-08-05 苏州大学 Metal nano catalyst, preparation method and application thereof
CN114849711B (en) * 2022-04-27 2023-08-11 苏州大学 Metal nano catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
CN113019372B (en) 2023-03-10

Similar Documents

Publication Publication Date Title
CN108097316B (en) Preparation method of MOFs nano material loaded with nano metal particles
EP3450419A1 (en) Catalytic reactor configuration and preparation, and method for directly synthesizing ethylene by catalyzing methane under oxygen-free condition
CN107362804B (en) Flower-like Co3O4-CeO2Process for producing composite oxide catalyst
CN110639548B (en) Monoatomic palladium-cobalt bimetallic nano-catalyst for efficiently catalyzing benzene oxidation
CN105536811A (en) A core-shell type catalyst for lower-alkene preparation from synthetic gas, a preparing method thereof and applications of the catalyst
KR101481972B1 (en) Silica-coated Ni supported catalyst, method for manufacturing therof and production method of synthesis gas using the catalyst
Zhang et al. Palladium nanoparticles supported on UiO-66-NH2 as heterogeneous catalyst for epoxidation of styrene
CN112403491B (en) Catalyst for preparing liquid fuel by high-selectivity conversion of synthesis gas and preparation method and application thereof
CN107500296A (en) A kind of bar-shaped β Mo2C controlledly synthesis and its application in inverse water gas shift reation
CN113019372B (en) Surface silicon modified cobalt-nickel composite oxide catalyst, preparation method thereof and method for preparing methanol by catalyzing coal bed gas oxidation
CN111167460A (en) Preparation of H by direct cracking of natural gas2Catalyst with CNTs (carbon nanotubes), and preparation method and application thereof
CN102631914A (en) Vanadium pentoxide catalyst taking mesoporous carbon as carrier, and preparation method thereof
Hu et al. Construction of Cu cocatalyst on TiO2 for regulating the selectivity of photocatalytic CO2 reduction
CN111992214B (en) Nano hierarchical pore SiO 2 @ Cu/Ni core-shell material and preparation method and application thereof
CN114029048B (en) Preparation method and application of tungsten oxide catalyst coated by porous carbon
CN114797946B (en) Supported Pt-based catalyst for preparing propylene by propane dehydrogenation
CN114408970B (en) Preparation method of hollow mesoporous carbon-doped gallium trioxide nanospheres and product thereof
CN114308093A (en) High-load nickel-based carbide catalyst and preparation method and application thereof
JP7084378B2 (en) Sulfur trioxide conversion method and hydrogen generation method
CN112108147A (en) Platinum-manganese-based bimetallic catalyst for catalyzing ethylene oxide at low temperature
CN109621996B (en) Catalyst for directly preparing aromatic hydrocarbon by carbon dioxide hydrogenation and preparation method and application thereof
CN115155565B (en) Preparation method and application of Mn-based composite metal oxide catalyst for removing VOCs at low temperature
CN114797932B (en) Bimetallic 3D unique honeycomb-shaped carbon dioxide reduction catalyst and preparation method and application thereof
CN114797952B (en) Catalyst with isolated dehydrogenation and oxidation double active sites, and preparation and application thereof
CN112295554B (en) Catalytic combustion catalyst, preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant