CN113014323B - 光传送装置及光通信*** - Google Patents

光传送装置及光通信*** Download PDF

Info

Publication number
CN113014323B
CN113014323B CN201911323318.2A CN201911323318A CN113014323B CN 113014323 B CN113014323 B CN 113014323B CN 201911323318 A CN201911323318 A CN 201911323318A CN 113014323 B CN113014323 B CN 113014323B
Authority
CN
China
Prior art keywords
signal
adjustment signal
modulator
pulse amplitude
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911323318.2A
Other languages
English (en)
Other versions
CN113014323A (zh
Inventor
蔡坤廷
陈威宏
庄荣敏
梁耀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oplink Communications LLC
Original Assignee
Oplink Communications LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oplink Communications LLC filed Critical Oplink Communications LLC
Priority to CN201911323318.2A priority Critical patent/CN113014323B/zh
Priority to PCT/US2020/065783 priority patent/WO2021127299A1/en
Priority to US17/784,104 priority patent/US11942993B2/en
Publication of CN113014323A publication Critical patent/CN113014323A/zh
Application granted granted Critical
Publication of CN113014323B publication Critical patent/CN113014323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25137Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6912Spread spectrum techniques using chirp

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光传送装置,其包含:一控制模块,根据一指示一色散量的输入信号产生一包括一斜率调整信号与一偏压偏移调整信号且分别随该色散量的极性及大小变化而改变的控制信号输出,及一电平调整信号;一多阶脉冲振幅调制器,根据该电平调整信号对一数据输入进行调制,以产生一多阶脉冲振幅调制信号;及一非对称光调制器,受该斜率调整信号控制而操作在自身的一转移函数的正斜率及负斜率中之一,受该偏压偏移调整信号控制而将其自身的一偏压点偏离该转移函数的一正交点,并将该多阶脉冲振幅调制信号调制至一光信号以产生一具有一啁啾的光调制信号。

Description

光传送装置及光通信***
技术领域
本发明涉及一种传送装置及通信***,特别涉及一种光传送装置及光通信***。
背景技术
在光纤通信***中,光纤色散是一种因波速与其波长的相依性而令光波分散成不同波长的光谱成分的现象。当光学信号或脉冲投射至如光纤通道中时,其波封沿着光纤通道以波群速度传播。由于此脉冲包含一系列的光谱成分,各光谱成分以不同的波群速度前进,造成波群速度色散(Group velocity dispersion,GVD)、模内(intramodal)色散,或简单地光纤色散。这个色散现象也常称为脉冲展宽。当脉冲沿着光纤前进,光谱成分在空间与时间上持续分散,使得脉冲变得太宽,一脉冲的前缘与上一个脉冲的后缘重叠,则会发生符号间干扰(Inter symbol interference,ISI)并导致位元模糊,造成光接收器无法分辨出“0”位元与“1”位元间的差异而发生传输错误。此外,光纤的色散与光纤的长度成正比,也就是说,光学信号的传输距离受到光纤色散的限制。
如此一来,色散便成为影响光纤通信的信号品质的重要因素之一。因此,如何避免色散对光纤通信***造成严重影响,以提升光传输距离,为相关通信业者所要改善的课题。
发明内容
因此,本发明的一个目的,即在提供一种能够克服现有技术的缺点的光传送装置。
于是,本发明光传送装置包含一控制模块、一多阶脉冲振幅调制器,及一非对称光调制器。
该控制模块用于接收一指示一色散量的输入信号,并根据该输入信号产生一包括一斜率调整信号与一偏压偏移调整信号的控制信号输出,及一随该偏压偏移调整信号变化而改变的电平调整信号,该斜率调整信号及该偏压偏移调整信号分别随该色散量的极性及大小的变化而改变。
该多阶脉冲振幅调制器用于接收一数据输入,且连接该控制模块以接收该电平调整信号,并至少根据该电平调整信号对该数据输入进行调制,以产生一多阶脉冲振幅调制信号。
该非对称光调制器用于接收一光信号,且连接该多阶脉冲振幅调制器及该控制模块以分别接收该多阶脉冲振幅调制信号及该控制信号输出,该非对称光调制器受该控制信号输出的该斜率调整信号控制而操作在其自身的一转移函数的正斜率及负斜率二者其中之一,且受该控制信号输出的该偏压偏移调整信号控制而将其自身的一偏压点偏离该转移函数的一正交点,并将该多阶脉冲振幅调制信号调制至该光信号以产生一具有一啁啾的光调制信号,该啁啾的极性及大小分别随该斜率调整信号及该偏压偏移调整信号的变化而改变。
因此,本发明的另一个目的,即在提供一种能够克服现有技术的缺点的光通信***。
于是,本发明光通信***包含一光传送装置、一光放大器、一光接收装置,及一检测器。
该光传送装置包括一控制模块、一多阶脉冲振幅调制器,及一非对称光调制器。
该控制模块用于接收一指示一色散量的输入信号及一测量信号,并根据该输入信号及该测量信号产生一包括一斜率调整信号与一偏压偏移调整信号的控制信号输出,该斜率调整信号及该偏压偏移调整信号分别随该色散量的极性及大小的变化而改变。
该多阶脉冲振幅调制器用于接收一数据输入,并对该数据输入进行调制,以产生一多阶脉冲振幅调制信号。
该非对称光调制器用于接收一光信号,且连接该多阶脉冲振幅调制器及该控制模块以分别接收该多阶脉冲振幅调制信号及该控制信号输出,该非对称光调制器受该控制信号输出的该斜率调整信号控制而操作在其自身的一转移函数的正斜率及负斜率二者其中之一,且受该控制信号输出的该偏压偏移调整信号控制而将其自身的一偏压点偏离该转移函数的一正交点,并将该多阶脉冲振幅调制信号调制至该光信号以产生一具有一啁啾的光调制信号,该啁啾的极性及大小分别随该斜率调整信号及该偏压偏移调整信号的变化而改变。
该光放大器经由一光纤连接该非对称光调制器以接收该光调制信号,并将该光调制信号放大,以产生一光放大信号。
该光接收装置连接该光放大器以接收该光放大信号,并根据该光放大信号产生一数据输出。
该检测器连接该光接收装置以接收该数据输出,及连接该控制模块,并根据该数据输出产生该测量信号且输出至该控制模块,该测量信号指示该数据输出的一误码率(BitError Rate,BER)、一纠错码(Forward Error Coding,FEC)及一信噪比中之一。
本发明的功效在于:利用调整该非对称光调制器操作在其自身的该转移函数的正斜率或负斜率,及利用该非对称光调制器的该偏压点偏离该转移函数的该正交点,如此一来,本发明该光传送装置所传送出的该光调制信号具有优化的该啁啾,可降低光纤色散对光通信***传输的影响,进而提升光通信***的传输性能,并增加光传输距离。
附图说明
本发明的其他的特征及功效,将于参照图式的实施方式中清楚地呈现,其中:
图1是一方块图,说明本发明光传送装置用于一光通信***的一第一实施例;
图2与图3是波形图,说明一输入信号的一光纤色散量、一非对称光调制器的一啁啾参数,及一色散引起的光功率代价(Dispersion-induced Optical Power Penalty)间的关系;
图4是一波形图,说明该非对称光调制器操作在一转移函数的正斜率时,该非对称光调制器的该啁啾参数与一归一化非对称光调制器偏压偏移间的关系;
图5是一波形图,说明该非对称光调制器操作在该转移函数的负斜率时,该非对称光调制器的该啁啾参数与该归一化非对称光调制器偏压偏移间的关系;
图6是一示意图,说明一非对称光调制器的一偏压点在一转移函数的不同位置时,该光调制信号的眼图变化;及
图7是一方块图,说明该光传送装置用于另一光通信***的一第二实施例。
附图标记说明:
1:光传送装置
10、100:光通信***
11:控制模块
111:斜率控制器
112:偏压偏移控制器
113:光调制器偏压控制器
114:电平调整器
12:多阶脉冲振幅调制器
13:放大器
14:非对称光调制器
2:激光光源
3:光纤
4:光接收装置
41:光接收器
42:多阶脉冲振幅解调器
5:光放大器
6:检测器
B1~B3:偏压点
Ba:偏压偏移调整信号
Co:控制信号输出
Di:数据输入
Do:数据输出
Es:电信号
L0:第零电平
L1:第一电平
L2:第二电平
L3:第三电平
La:电平调整信号
Lm:光调制信号
Lm1:光调制信号的第一种眼图
Lm2:光调制信号的第二种眼图
Lm3:光调制信号的第三种眼图
Lma:光放大信号
Ls:光信号
Ms:测量信号
Is:输入信号
Pam:多阶脉冲振幅调制信号
Pr:极性调整信号
Sa:斜率调整信号
α:啁啾参数
具体实施方式
在本发明被详细描述之前,应当注意在以下的说明内容中,类似的元件以相同的编号来表示。
<第一实施例>
参阅图1,本发明光传送装置1的一实施例适用于一光通信***10。该光通信***10包括一光纤3,及一包括一光接收器41与一多阶脉冲振幅解调器(PAM-N Demodulator)42的光接收装置4。该光传送装置1用于将其内部的一激光光源2所发射出呈连续波(Continuous wave)的一光信号Ls进行调制,以产生一具有一啁啾(Chirp)的光调制信号Lm,且将该光调制信号Lm经由该光纤3传送至该光接收器41。该光接收器41将其所接收到的该光调制信号Lm转换成一电信号Es并输出至该多阶脉冲振幅解调器42。该多阶脉冲振幅解调器42再将其所接收到的该电信号Es进行解调处理,以产生一数据输出Do。
本实施例的该光传送装置1还包含一控制模块11、一多阶脉冲振幅调制器12、一放大器13,及一非对称光调制器14。
该控制模块11用于接收一指示一色散量的输入信号Is,并根据该输入信号Is产生一包括一斜率调整信号Sa与一偏压偏移调整信号Ba的控制信号输出Co、一随该偏压偏移调整信号Ba变化而改变的电平调整信号La,及一随该斜率调整信号Sa变化而改变的极性调整信号Pr。该斜率调整信号Sa及该偏压偏移调整信号Ba分别随该色散量的极性及大小(即该色散量的绝对值)的变化而改变。在本实施例中,该色散量的极性及大小相关于该光调制信号Lm的波长与该光纤3的长度。该控制模块11包括一斜率控制器111、一偏压偏移控制器112、一光调制器偏压控制器113,及一电平调整器114。
该斜率控制器111接收该输入信号Is,且根据该输入信号Is的该色散量的极性,产生该斜率调整信号Sa,并根据该斜率调整信号Sa,产生及输出该极性调整信号Pr。
该偏压偏移控制器112接收该输入信号Is,且根据该输入信号Is的该色散量的大小,产生该偏压偏移调整信号Ba。
该光调制器偏压控制器113连接该斜率控制器111及该偏压偏移控制器112以分别接收该斜率调整信号Sa及该偏压偏移调整信号Ba,并据以产生及输出该控制信号输出Co。
该电平调整器114连接该偏压偏移控制器112,并根据该偏压偏移调整信号Ba产生及输出该电平调整信号La。
该多阶脉冲振幅调制器12用于接收一数据输入Di(为一二进位数据),且连接该斜率控制器111及该电平调整器114以分别接收该极性调整信号Pr及该电平调整信号La,并根据该极性调整信号Pr及该电平调整信号La对该数据输入Di进行多阶脉冲振幅调制(multi-level pulse amplitude modulation,PAM-N),以产生一多阶脉冲振幅调制信号Pam。在本实施例中,该多阶脉冲振幅调制信号Pam为一四阶脉冲振幅调制(four-level pulseamplitude modulation,PAM-4)信号,且该四阶脉冲振幅调制信号具有一第零电平、一第一电平、一第二电平及一第三电平。
该放大器13连接在该多阶脉冲振幅调制器12与该非对称光调制器14间,且将来自该多阶脉冲振幅调制器12的该多阶脉冲振幅调制信号Pam放大并输出至该非对称光调制器14。
该非对称光调制器14连接该激光光源2以接收该光信号Ls,且连接该放大器13及该光调制器偏压控制器113以分别接收该多阶脉冲振幅调制信号Pam及该控制信号输出Co。该非对称光调制器14受该控制信号输出Co的该斜率调整信号Sa控制而操作在其自身的一转移函数(Transfer Function)的正斜率及负斜率二者其中之一,且受该控制信号输出Co的该偏压偏移调整信号Ba控制而将其自身的一偏压点偏离该转移函数的一正交点,并将该多阶脉冲振幅调制信号Pam调制至该光信号Ls以产生该具有该啁啾的光调制信号Lm。该啁啾的极性及大小(即该啁啾的绝对值)分别随该斜率调整信号Sa及该偏压偏移调整信号Ba的变化而改变。
需说明的是,在本实施例中,当该输入信号Is的该色散量的极性为正极性时,该光调制信号Lm的该啁啾为负极性,当该输入信号Is的该色散量的极性为负极性时,该光调制信号Lm的该啁啾为正极性。该非对称光调制器14为一马赫-詹德调制器(Mach-Zehndermodulator,MZM),该马赫-詹德调制器由一铌酸锂基(LiNbO3-based)、一硅(Silicon)及一磷化铟(Inp)中的一者制成。此外,该非对称光调制器14是自该放大器13接收经放大后的该多阶脉冲振幅调制信号Pam,但不限于此。本实施例也可省略该放大器13,如此一来,该非对称光调制器14是直接连接该多阶脉冲振幅调制器12以接收该多阶脉冲振幅调制信号Pam。另外,该非对称光调制器14可以通过下述其中一种不平衡设计方式来实现,举例来说:(1)使该非对称光调制器14具有不平衡的分光比;(2)使该非对称光调制器14所包括的两个电极(图未式)的长度或形状不平衡;(3)使该两个电极接收到不同振幅的驱动信号;或(4)使该两个电极的PN接面(PN junction)偏压不平衡等,但不限于此。
参阅图2及图3,其说明该光调制信号Lm为一53.125GBd四阶脉冲振幅调制(PAM4)光信号时,该输入信号Is的该色散量(图中横轴所示)、该非对称光调制器14具有的一啁啾参数(图中以一参数α作为该啁啾参数),及该光接收器41所接收到的该光调制信号Lm因色散引起的光功率代价(Dispersion-induced Optical Power Penalty,即图中纵轴所示)间的关系。由图2可知,当该色散量为负极性时,该非对称光调制器14的该啁啾参数为正极性确实可使该光调制信号Lm因色散引起的光功率代价变小。由图3可知,当该色散量为正极性时,该非对称光调制器14的该啁啾参数为负极性确实可使该光调制信号Lm因色散引起的光功率代价变小。因此,本发明该光传送装置1通过使该光调制信号Lm具有优化的该啁啾,以降低该光纤3引起的色散对该光通信***10的传输所造成的影响,进而提升该光通信***10的光传输距离。以下举例说明本实施例该光传送装置1的动作,且该斜率控制器111及该偏压偏移控制器112的执行先后顺序不以此为限。
详细来说,该非对称光调制器14的该啁啾参数的极性是相关于该非对称光调制器14操作在其自身的该转移函数的正斜率或负斜率,而该非对称光调制器14的该啁啾参数的大小是相关于该非对称光调制器14的该偏压点与该转移函数的该正交点间的偏移。举例来说,如图4所示,其说明该非对称光调制器14操作在该转移函数的正斜率时,该非对称光调制器14的该啁啾参数(图中纵轴所示),及该非对称光调制器14的该偏压点与该转移函数的该正交点间的偏移(图中横轴所示)的关系。此外,当该非对称光调制器14根据该斜率调整信号Sa的变化而从原先操作在该转移函数的正斜率改变为操作在该转移函数的负斜率时,该非对称光调制器14的该啁啾参数,及该非对称光调制器14的该偏压点与该转移函数的该正交点间的偏移的关系如图5所示。由图4、5可知,当该偏压点与该正交点间的偏移越大,则该啁啾参数的绝对值大小越大。另外,该啁啾参数的极性可通过该转移函数的正斜率或负斜率来调整。
如此一来,操作时,该斜率控制器111根据该输入信号Is的该色散量的极性来产生该斜率调整信号Sa,并将该斜率调整信号Sa经由该光调制器偏压控制器113输出至该非对称光调制器14,以调整该非对称光调制器14操作在其自身的该转移函数的正斜率或负斜率,使得该非对称光调制器14的该啁啾参数的极性与该色散量的极性相反。同时,当该斜率控制器111所产生的该斜率调整信号Sa是为使该非对称光调制器14操作在该转移函数的负斜率时,该斜率控制器111产生及输出该极性调整信号Pr至该多阶脉冲振幅调制器12,以致该多阶脉冲振幅调制器12所产生的该多阶脉冲振幅调制信号Pam的极性反转,使得该多阶脉冲振幅调制信号Pam与该光调制信号Lm的极性不同。反之,当该斜率控制器111所产生的该斜率调整信号Sa是为使该非对称光调制器14操作在该转移函数的正斜率时,由于此时该多阶脉冲振幅调制信号Pam与该光调制信号Lm的极性相同,因此可根据实际电路应用需求而将该斜率控制器111设计为不输出该极性调整信号Pr,或仍输出该极性调整信号Pr以通知该多阶脉冲振幅调制器12将其所产生的该多阶脉冲振幅调制信号Pam的极性维持不变。
接着,该偏压偏移控制器112根据该输入信号Is的该色散量的大小产生该偏压偏移调整信号Ba,并将该偏压偏移调整信号Ba经由该光调制器偏压控制器113输出至该非对称光调制器14,以调整该非对称光调制器14的该偏压点与该转移函数的该正交点间的偏移(例如经由该非对称光调制器14内的一电极而控制该非对称光调制器14的一偏压电压以调整该偏压点),使得该非对称光调制器14的该啁啾参数的大小改变。
需补充说明的是,进一步参阅图6,其说明当该非对称光调制器14操作在该转移函数的正斜率,且该非对称光调制器14的该偏压点在其正弦电-光(E/O)转换的该转移函数的不同位置时,该光调制信号Lm的眼图变化。该光调制信号Lm为一PAM-4光信号,其眼图具有一电平0、一电平1、一电平2,及一电平3,且具有三个眼图开度(eye opening),该电平0至该电平1为第一个眼图开度,该电平1至该电平2为第二个眼图开度,该电平2至该电平3为第三个眼图开度。该光调制信号Lm的第一种眼图Lm1,其为该偏压点在该转移函数正斜率的该正交点时(即,图6参数B1处),由于相对于该正交点的正弦对称性质,该电平0至该电平1的一垂直高度VH01、该电平1至该电平2的一垂直高度VH12,及该电平2至该电平3的一垂直高度VH23为相等(即,VH01=VH12=VH23,该光通信***10可获得最大的信噪比(signal-to-noise ratio,SNR))。然而,由于该转移函数的非线性,当该偏压点在该正交点上方时(即,图6参数B2处),该光调制信号Lm的第二种眼图Lm2中,该垂直高度VH23变小,而该垂直高度VH01变大,当该偏压点在该正交点下方时(即,图6参数B3处),该光调制信号Lm的第三种眼图Lm3中,该垂直高度VH23变大,而该垂直高度VH01变小,如此将造成该光通信***10最大可获得的信噪比因而降低,导致该光通信***10的传输性能下降。
因此,在将该多阶脉冲振幅调制信号Pam传输至该非对称光调制器14前,需调整该多阶脉冲振幅调制信号Pam的该第一及第二电平(即,图6中参数L1、L2分别为该第一及第二电平),以使得该非对称光调制器14的该偏压点偏离该转移函数的该正交点以调整该非对称光调制器14的该啁啾参数大小时,该等垂直高度VH01、VH12、VH23彼此仍具有相同的垂直高度。也就是说,最后,该电平调整器114根据该偏压偏移调整信号Ba产生及输出该电平调整信号La至该多阶脉冲振幅调制器12,以致该多阶脉冲振幅调制器12据以调整该多阶脉冲振幅调制信号Pam的该等第一电平L1及第二电平L2。在本实施例中,当该非对称光调制器14操作在该转移函数的正斜率,且该非对称光调制器14受该偏压偏移调整信号Ba控制而将其自身的该偏压点偏至该转移函数正斜率的该正交点上方时,该多阶脉冲振幅调制器12根据该电平调整信号La对该数据输入Di进行调制,以致其所产生的该多阶脉冲振幅调制信号Pam中的该等第一电平L1及第二电平L2往该第零电平偏移(即,图6中参数L0为该第零电平),而当该非对称光调制器14是受该偏压偏移调整信号Ba控制而将其自身的该偏压点偏至该转移函数正斜率的该正交点下方时,该多阶脉冲振幅调制器12根据该电平调整信号La对该数据输入Di进行调制,以致其所产生的该多阶脉冲振幅调制信号Pam中的该等第一电平L1及第二电平L2往该第三电平偏移(即,图6中参数L3为该第三电平),以使得该偏压点偏离该正交点时,该光调制信号Lm眼图的该等垂直高度VH01、VH12、VH23彼此仍具有相同的高度,进而提升该光通信***10的传输性能。
同理,当该非对称光调制器14操作在该转移函数的负斜率时,若该非对称光调制器14受该偏压偏移调整信号Ba控制而将其自身的该偏压点偏至该转移函数负斜率的该正交点上方,则该多阶脉冲振幅调制器12根据该电平调整信号La对该数据输入Di进行调制,以致其所产生的该多阶脉冲振幅调制信号Pam中的该等第一电平L1及第二电平L2往该第三电平L3偏移;而若该非对称光调制器14受该偏压偏移调整信号Ba控制而将其自身的该偏压点偏至该转移函数负斜率的该正交点下方,则该多阶脉冲振幅调制器12根据该电平调整信号La对该数据输入Di进行调制,以致其所产生的该多阶脉冲振幅调制信号Pam中的该等第一电平L1及第二电平L2往该第零电平L0偏移,以达到当该偏压点偏离该正交点时,该光调制信号Lm眼图的每一垂直高度相同的目的,以提升该光通信***10的传输性能。
<第二实施例>
参阅图7,在该第二实施例中,该光传送装置1适用于另一光通信***100,该第二实施例与该第一实施例相似,二者不同之处在于:该光通信***100为用于长距离传输(如,40km),且还包括一光放大器5及一检测器6;该光接收器41连接该光放大器5;该控制模块11还连接该检测器6。
该光放大器5经由该光纤3连接该非对称光调制器14以接收该光调制信号Lm,并将该光调制信号Lm放大,以产生一光放大信号Lma。
该光接收器41接收来自该光放大器5的该光放大信号Lma,且将该光放大信号Lma转换成另一电信号Es并输出至该多阶脉冲振幅解调器42。该多阶脉冲振幅解调器42将该另一电信号Es进行解调处理,以产生该数据输出Do。在本实施例中,该光接收器41为一基于雪崩光电二极管(Avalanche Photodiode,APD)及PIN光电二极管中之一的光接收器。
该检测器6连接该多阶脉冲振幅解调器42及该控制模块11,并根据该数据输出Do产生一测量信号Ms且输出至该控制模块11。该测量信号Ms指示该数据输出Do的一误码率(Bit Error Rate,BER)、一纠错码(FEC,Forward Error Coding)及一信噪比中之一。
在该控制模块11中,该斜率控制器111还连接该检测器6以接收该测量信号Ms,且根据该输入信号Is的该色散量的极性及该测量信号Ms,产生该斜率调整信号Sa。该偏压偏移控制器112还连接该检测器6以接收该测量信号Ms,并根据该输入信号Is的该色散量的大小及该测量信号Ms,产生该偏压偏移调整信号Ba。该电平调整器114还连接该检测器6以接收该测量信号Ms,且根据该测量信号Ms与该偏压偏移调整信号Ba产生及输出该电平调整信号La。
详细来说,该第二实施例的该光传送装置1的操作与该第一实施例的该光传送装置1的动作相似,故其相似处于此不再赘述。在此实施例中,为用于长距离传输,通过该光放大器5将光功率提高到该光接收器41中,或通过在该光接收器41上使用APD来改善该光接收器41的灵敏度。但是,随着该激光光源2、该光放大器5或APD而引起的一相关于信号的噪声(signal-dependent noise)会降低光通信***的链路性能。为了减少该相关于信号的噪声,需调整该多阶脉冲振幅调制信号Pam内的电平,及将该非对称光调制器14的该偏压点偏至该正交点下方,以致该光调制信号Lm的该垂直高度VH23最大以改善该相关于信号的噪声问题。因此,在此实施例中,考虑到光纤色散引起的符号间干扰(Inter symbolinterference,ISI)与该相关于信号的噪声间的权衡取舍,该偏压偏移控制器112还根据该测量信号Ms产生该偏压偏移调整信号Ba,该电平调整器114还根据该测量信号Ms产生该电平调整信号La,以优化该光通信***100的链路性能。此外,该斜率控制器111还根据该测量信号Ms产生该斜率调整信号Sa,以确保其所产生的该斜率调整信号Sa符合该光通信***100所需。举例来说,当该斜率控制器111初始产生的该斜率调整信号Sa使该非对称光调制器14操作在该转移函数的正斜率时,若此时该斜率控制器111根据该测量信号Ms得知其所指示的该误码率过大或该信噪比过小,表示初始产生的该斜率调整信号Sa不符合该光通信***100所需,进而调整该斜率调整信号Sa使该非对称光调制器14操作在该转移函数的负斜率,但不以此为限。
综上所述,本发明利用调整该非对称光调制器14操作在其自身的该转移函数的正斜率或负斜率来改变该非对称光调制器14的该啁啾参数的极性,及利用该非对称光调制器14的该偏压点偏离该转移函数的该正交点来改变该非对称光调制器14的该啁啾参数的大小,以致该光调制信号Lm的该啁啾非定值。如此一来,本发明该光传送装置1所传送出的该光调制信号Lm具有优化的该啁啾,可降低该光纤3所引起的色散对光通信***10、100传输的影响,使得该光接收器41所接收到的色散引起的光功率代价减小,进而提升光通信***10、100的传输性能,并增加光传输距离。同时,因为该多阶脉冲振幅调制信号Pam具有多个电平,在没有相关于信号的噪声的该光通信***10中,调整该电平调整器114使得该光调制信号Lm的各个眼图开度的垂直高度相同,进而提升该光通信***10的信噪比来提高传输性能,并增加光传输距离。另外,在有相关于信号的噪声的该光通信***100中,调整该电平调整器114使得该光调制信号Lm的各个眼图开度的垂直高度不同,进而提升该光通信***100的信噪比来提高传输性能,并增加光传输距离。
但以上所述者,仅为本发明的实施例而已,当不能以此限定本发明实施的范围,凡是依本发明权利要求范围及说明书内容所作的简单的等效变化与修饰,均仍属本发明专利涵盖的范围内。

Claims (19)

1.一种光传送装置,包含:
一控制模块,用于接收一指示一色散量的输入信号,并根据该输入信号产生一包括一斜率调整信号与一偏压偏移调整信号的控制信号输出,及一随该偏压偏移调整信号变化而改变的电平调整信号,该斜率调整信号及该偏压偏移调整信号分别随该色散量的极性及大小的变化而改变;
一多阶脉冲振幅调制器,用于接收一数据输入,且连接该控制模块以接收该电平调整信号,并至少根据该电平调整信号对该数据输入进行调制,以产生一多阶脉冲振幅调制信号;及
一非对称光调制器,用于接收一光信号,且连接该多阶脉冲振幅调制器及该控制模块以分别接收该多阶脉冲振幅调制信号及该控制信号输出,该非对称光调制器受该控制信号输出的该斜率调整信号控制而操作在其自身的一转移函数的正斜率及负斜率二者其中之一,且受该控制信号输出的该偏压偏移调整信号控制而将其自身的一偏压点偏离该转移函数的一正交点,并将该多阶脉冲振幅调制信号调制至该光信号以产生一具有一啁啾的光调制信号,该啁啾的极性及大小分别随该斜率调整信号及该偏压偏移调整信号的变化而改变。
2.如权利要求1所述的光传送装置,其中:
该控制模块还根据该斜率调整信号产生一随该斜率调整信号变化而改变的极性调整信号;及
该多阶脉冲振幅调制器还接收来自该控制模块的该极性调整信号,且还根据该极性调整信号对该数据输入进行调制,以产生该多阶脉冲振幅调制信号。
3.如权利要求2所述的光传送装置,其中,该控制模块包括:
一斜率控制器,连接该多阶脉冲振幅调制器,且根据该输入信号的该色散量的极性,产生该斜率调整信号,并根据该斜率调整信号,产生及输出该极性调整信号至该多阶脉冲振幅调制器;
一偏压偏移控制器,根据该输入信号的该色散量的大小,产生该偏压偏移调整信号;
一光调制器偏压控制器,连接该非对称光调制器、该斜率控制器及该偏压偏移控制器,接收分别来自该斜率控制器及该偏压偏移控制器的该斜率调整信号及该偏压偏移调整信号,并据以产生及输出该控制信号输出至该非对称光调制器;及
一电平调整器,连接该多阶脉冲振幅调制器及该偏压控制器,并根据该偏压偏移调整信号产生及输出该电平调整信号至该多阶脉冲振幅调制器。
4.如权利要求2所述的光传送装置,其中,当该非对称光调制器受该斜率调整信号控制而操作在其自身的该转移函数的负斜率时,该控制模块产生及输出该极性调整信号至该多阶脉冲振幅调制器,以致该多阶脉冲振幅调制器所产生的该多阶脉冲振幅调制信号的极性反转。
5.如权利要求1所述的光传送装置,其中,当该色散量的极性为正极性时,该非对称光调制器具有的一啁啾参数为负极性,当该色散量的极性为负极性时,该非对称光调制器的该啁啾参数为正极性。
6.如权利要求1所述的光传送装置,其中:
该多阶脉冲振幅调制信号为一四阶脉冲振幅调制信号,且该四阶脉冲振幅调制信号具有一第零电平、一第一电平、一第二电平及一第三电平;
当该非对称光调制器操作在该转移函数的正斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数正斜率的该正交点上方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第零电平偏移;及
当该非对称光调制器操作在该转移函数的正斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数正斜率的该正交点下方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第三电平偏移。
7.如权利要求6所述的光传送装置,其中:
当该非对称光调制器操作在该转移函数的负斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数负斜率的该正交点上方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第三电平偏移;及
当该非对称光调制器操作在该转移函数的负斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数负斜率的该正交点下方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第零电平偏移。
8.如权利要求1所述的光传送装置,还包含一放大器,连接在该多阶脉冲振幅调制器与该非对称光调制器间,该放大器将来自该多阶脉冲振幅调制器的该多阶脉冲振幅调制信号放大并输出至该非对称光调制器。
9.如权利要求1所述的光传送装置,其中,该非对称光调制器为一马赫-詹德调制器,该马赫-詹德调制器由一铌酸锂基、一硅及一磷化铟中的一者制成。
10.一种光通信***,包含:
一光传送装置,包括
一控制模块,用于接收一指示一色散量的输入信号及一测量信号,并根据该输入信号及该测量信号产生一包括一斜率调整信号与一偏压偏移调整信号的控制信号输出,该斜率调整信号及该偏压偏移调整信号分别随该色散量的极性及大小的变化而改变,
一多阶脉冲振幅调制器,用于接收一数据输入,并对该数据输入进行调制,以产生一多阶脉冲振幅调制信号,及
一非对称光调制器,用于接收一光信号,且连接该多阶脉冲振幅调制器及该控制模块以分别接收该多阶脉冲振幅调制信号及该控制信号输出,该非对称光调制器受该控制信号输出的该斜率调整信号控制而操作在其自身的一转移函数的正斜率及负斜率二者其中之一,且受该控制信号输出的该偏压偏移调整信号控制而将其自身的一偏压点偏离该转移函数的一正交点,并将该多阶脉冲振幅调制信号调制至该光信号以产生一具有一啁啾的光调制信号,该啁啾的极性及大小分别随该斜率调整信号及该偏压偏移调整信号的变化而改变;
一光放大器,经由一光纤连接该非对称光调制器以接收该光调制信号,并将该光调制信号放大,以产生一光放大信号;
一光接收装置,连接该光放大器以接收该光放大信号,并根据该光放大信号产生一数据输出;及
一检测器,连接该光接收装置及该控制模块,并根据该数据输出产生该测量信号且输出至该控制模块,该测量信号指示该数据输出的一误码率、一纠错码及一信噪比中的一者。
11.如权利要求10所述的光通信***,其中:
该控制模块还根据该偏压偏移调整信号及该测量信号产生一随该偏压偏移调整信号变化而改变的电平调整信号,及还根据该斜率调整信号产生一随该斜率调整信号变化而改变的极性调整信号;及
该多阶脉冲振幅调制器还连接该控制模块以接收该电平调整信号及该极性调整信号,且还根据该电平调整信号及该极性调整信号对该数据输入进行调制,以产生该多阶脉冲振幅调制信号。
12.如权利要求11所述的光通信***,其中,该控制模块包括
一斜率控制器,连接该检测器以接收该测量信号,及连接该多阶脉冲振幅调制器,且根据该输入信号的该色散量的极性及该测量信号,产生该斜率调整信号,并根据该斜率调整信号,产生及输出该极性调整信号至该多阶脉冲振幅调制器,
一偏压偏移控制器,连接该检测器以接收该测量信号,并根据该输入信号的该色散量的大小及该测量信号,产生该偏压偏移调整信号,
一光调制器偏压控制器,连接该非对称光调制器、该斜率控制器及该偏压偏移控制器,接收分别来自该斜率控制器及该偏压偏移控制器的该斜率调整信号及该偏压偏移调整信号,并据以产生及输出该控制信号输出至该非对称光调制器,及
一电平调整器,连接该检测器以接收该测量信号,且连接该多阶脉冲振幅调制器及该偏压偏移控制器,并根据该测量信号与该偏压偏移调整信号产生及输出该电平调整信号至该多阶脉冲振幅调制器。
13.如权利要求11所述的光通信***,其中,当该非对称光调制器受该斜率调整信号控制而操作在其自身的该转移函数的负斜率时,该控制模块产生及输出该极性调整信号至该多阶脉冲振幅调制器,以致该多阶脉冲振幅调制器所产生的该多阶脉冲振幅调制信号的极性反转。
14.如权利要求10所述的光通信***,其中,当该色散量的极性为正极性时,该非对称光调制器具有的一啁啾参数为负极性,当该色散量的极性为负极性时,该非对称光调制器的该啁啾参数为正极性。
15.如权利要求11所述的光通信***,其中:
该多阶脉冲振幅调制信号为一四阶脉冲振幅调制信号,且该四阶脉冲振幅调制信号具有一第零电平、一第一电平、一第二电平及一第三电平;
当该非对称光调制器操作在该转移函数的正斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数正斜率的该正交点上方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第零电平偏移;及
当该非对称光调制器操作在该转移函数的正斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数正斜率的该正交点下方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第三电平偏移。
16.如权利要求15所述的光通信***,其中:
当该非对称光调制器操作在该转移函数的负斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数负斜率的该正交点上方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第三电平偏移;及
当该非对称光调制器操作在该转移函数的负斜率且受该偏压偏移调整信号控制而将其自身的该偏压点偏至该转移函数负斜率的该正交点下方时,该多阶脉冲振幅调制器根据该电平调整信号对该数据输入进行调制,以致其所产生的该多阶脉冲振幅调制信号中的该第一电平及该第二电平往该第零电平偏移。
17.如权利要求10所述的光通信***,还包含一放大器,连接在该多阶脉冲振幅调制器与该非对称光调制器间,该放大器将来自该多阶脉冲振幅调制器的该多阶脉冲振幅调制信号放大并输出至该非对称光调制器。
18.如权利要求10所述的光通信***,其中,该非对称光调制器为一马赫-詹德调制器,该马赫-詹德调制器由一铌酸锂基、一硅及一磷化铟中的一者制成。
19.如权利要求10所述的光通信***,其中,该光接收装置包括一接收该光放大信号的光接收器,该光接收器为一基于雪崩光电二极管及PIN光电二极管中之一的光接收器。
CN201911323318.2A 2019-12-20 2019-12-20 光传送装置及光通信*** Active CN113014323B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911323318.2A CN113014323B (zh) 2019-12-20 2019-12-20 光传送装置及光通信***
PCT/US2020/065783 WO2021127299A1 (en) 2019-12-20 2020-12-18 Optical transmission device and optical communication system
US17/784,104 US11942993B2 (en) 2019-12-20 2020-12-18 Optical transmission device and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911323318.2A CN113014323B (zh) 2019-12-20 2019-12-20 光传送装置及光通信***

Publications (2)

Publication Number Publication Date
CN113014323A CN113014323A (zh) 2021-06-22
CN113014323B true CN113014323B (zh) 2024-02-09

Family

ID=76382077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911323318.2A Active CN113014323B (zh) 2019-12-20 2019-12-20 光传送装置及光通信***

Country Status (3)

Country Link
US (1) US11942993B2 (zh)
CN (1) CN113014323B (zh)
WO (1) WO2021127299A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014323B (zh) * 2019-12-20 2024-02-09 光联通讯技术有限公司美国分部 光传送装置及光通信***
KR102639754B1 (ko) * 2021-01-05 2024-02-23 한국전자통신연구원 Pam-4 광 신호 생성 방법 및 장치
JP2023003580A (ja) * 2021-06-24 2023-01-17 住友電工デバイス・イノベーション株式会社 通信システム、光トランシーバ、通信システムの制御方法および光トランシーバの制御方法
US11616578B2 (en) 2021-08-13 2023-03-28 Macom Technology Solutions Holdings, Inc. Adjusting eye heights and optical power levels of a multi-level optical signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006769B1 (en) * 1998-03-18 2006-02-28 Fujitsu Limited Method for optical fiber communication, and device and system for use in carrying out the method
JP2012128165A (ja) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp 光送信機、光通信システムおよび光送信方法
CN107104736A (zh) * 2016-02-19 2017-08-29 光联通讯有限公司 一种具有马赫‑詹德调制器的光传送器及其操作方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303079A (en) 1992-04-09 1994-04-12 At&T Bell Laboratories Tunable chirp, lightwave modulator for dispersion compensation
JP3490486B2 (ja) 1993-12-28 2004-01-26 富士通株式会社 光変調器
US5524076A (en) 1994-01-28 1996-06-04 Northern Telecom Limited Chirp control of a Mach-Zehnder optical modulator using non-equal power splitting
US5621560A (en) 1995-06-07 1997-04-15 Lucent Technologies Inc. Method and system for reducing chirp in external modulation
US5778113A (en) 1996-11-07 1998-07-07 Northern Telecom Limited Configurable chirp Mach-Zehnder optical modulator
JP3337980B2 (ja) * 1998-06-29 2002-10-28 沖電気工業株式会社 光送信器及び光伝送システム
CN1207855C (zh) 2000-01-31 2005-06-22 住友电气工业株式会社 波长色散补偿模块以及包含它的光传输***
US6381379B1 (en) 2000-02-10 2002-04-30 Codeon Corporation Optical modulator having coplanar electrodes for controlling chirp
JP4278332B2 (ja) * 2001-06-29 2009-06-10 日本電信電話株式会社 光送信器および光伝送システム
US6879755B2 (en) 2001-07-25 2005-04-12 Teraxion Inc. Optical structure for the compensation of chromatic dispersion and dispersion slope in a light signal
US20030218790A1 (en) * 2002-05-14 2003-11-27 Mintera Corporation Chirp control in a high speed optical transmission system
CN2552019Y (zh) 2002-05-16 2003-05-21 武汉光迅科技有限责任公司 多波长色散/色散斜率补偿器
US7668459B2 (en) 2002-07-23 2010-02-23 Nippon Telegraph And Telephone Corporation Dispersion monitoring method and apparatus and dispersion slope temperature dependency compensation method and apparatus
WO2005088876A1 (ja) * 2004-03-17 2005-09-22 Nippon Telegraph And Telephone Corporation 光伝送システム、光伝送システムの光送信装置及び光受信装置
EP2458433B1 (en) 2004-05-13 2016-11-02 Fujitsu Limited Optical modulator and manufacturing method of the optical modulator
US7504610B2 (en) * 2004-09-03 2009-03-17 Mindspeed Technologies, Inc. Optical modulation amplitude compensation system having a laser driver with modulation control signals
US8520984B2 (en) 2009-06-12 2013-08-27 Cisco Technology, Inc. Silicon-based optical modulator with improved efficiency and chirp control
EP2323287A1 (en) * 2009-11-12 2011-05-18 Intune Networks Limited Modulator control system and method in an optical network
US8280201B2 (en) 2009-12-08 2012-10-02 COGO Oprtonics, Inc. Traveling wave Mach-Zehnder optical device
US9372381B2 (en) 2012-10-18 2016-06-21 Acacia Communications, Inc. Robust modulator circuits using lateral doping junctions
US9059805B2 (en) * 2013-04-11 2015-06-16 Ciena Corporation Optimum modulator bias systems and methods in coherent optical transmitters
US9632390B1 (en) 2015-03-06 2017-04-25 Inphi Corporation Balanced Mach-Zehnder modulator
JP6717294B2 (ja) * 2015-03-26 2020-07-01 日本電気株式会社 光送信装置とその制御方法
US9323128B1 (en) 2015-05-07 2016-04-26 Inphi Corporation Off quadrature biasing of mach zehnder modulator for improved OSNR performance
US20170054533A1 (en) 2015-08-21 2017-02-23 Multiphy Ltd. Optimization of bit error rate performance of high order modulated optical signals having signal-dependent noise
US10401655B2 (en) * 2016-12-16 2019-09-03 Elenion Technologies, Llc Bias control of optical modulators
CN113014323B (zh) * 2019-12-20 2024-02-09 光联通讯技术有限公司美国分部 光传送装置及光通信***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006769B1 (en) * 1998-03-18 2006-02-28 Fujitsu Limited Method for optical fiber communication, and device and system for use in carrying out the method
JP2012128165A (ja) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp 光送信機、光通信システムおよび光送信方法
CN107104736A (zh) * 2016-02-19 2017-08-29 光联通讯有限公司 一种具有马赫‑詹德调制器的光传送器及其操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高速光纤通信***的色散调节技术;张成良,韦乐平;电信科学(第09期);全文 *

Also Published As

Publication number Publication date
WO2021127299A1 (en) 2021-06-24
CN113014323A (zh) 2021-06-22
US20230034936A1 (en) 2023-02-02
US11942993B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
CN113014323B (zh) 光传送装置及光通信***
US7978390B2 (en) Optical modulator
AU2005317102B2 (en) Method and apparatus for bias and alignment control in an optical signal transmitter
JP4740053B2 (ja) マルチモード光ファイバー通信システム
US20150236790A1 (en) Mach-Zehnder Modulator Bias Control for Arbitrary Waveform Generation
US10341027B2 (en) Optical transmitter and control method for optical transmitter
US20150236792A1 (en) Optical transmitter and dc bias control method
US10587346B2 (en) Optical transmitter and method of controlling the same
US9735883B2 (en) Intensity modulated direct detection optical transceiver
US7155071B2 (en) Device for Mach-Zehnder modulator bias control for duobinary optical transmission and associated system and method
JP5061854B2 (ja) 光送信器および光伝送システム
JP2004191979A (ja) マッハツェンダ変調器を用いた光crz送信装置
US20210364879A1 (en) Optical modulating device
CN112005159B (zh) 光调制器
TWI722727B (zh) 光傳送裝置及光通訊系統
US10367585B2 (en) Methods and systems for multi-level beacon tone modulation of an optical data signal
US20030218790A1 (en) Chirp control in a high speed optical transmission system
JP6927785B2 (ja) 光増幅装置の制御方法および光増幅装置
KR20110067777A (ko) 광송수신 제어장치
JP2014531779A (ja) 光出力装置および光送信機の制御方法
US20200033642A1 (en) Optical transmitter and optical transmission method
JP2024004988A (ja) 光デバイス及び光送信機
US8064778B2 (en) Method and apparatus for controlling tunable transmitter chirp
JP2006203766A (ja) 光送受信装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant