CN112986069A - 一种道砟颗粒劣化指数分析仪及分析方法 - Google Patents

一种道砟颗粒劣化指数分析仪及分析方法 Download PDF

Info

Publication number
CN112986069A
CN112986069A CN202110216183.0A CN202110216183A CN112986069A CN 112986069 A CN112986069 A CN 112986069A CN 202110216183 A CN202110216183 A CN 202110216183A CN 112986069 A CN112986069 A CN 112986069A
Authority
CN
China
Prior art keywords
coefficient
ballast
deterioration
degradation
ballast particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110216183.0A
Other languages
English (en)
Other versions
CN112986069B (zh
Inventor
徐旸
李录壮
郄录朝
余文颖
王红
王树国
许良善
杨轶科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Railway Sciences Corp Ltd CARS
Railway Engineering Research Institute of CARS
China State Railway Group Co Ltd
Original Assignee
China Academy of Railway Sciences Corp Ltd CARS
Railway Engineering Research Institute of CARS
China State Railway Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Railway Sciences Corp Ltd CARS, Railway Engineering Research Institute of CARS, China State Railway Group Co Ltd filed Critical China Academy of Railway Sciences Corp Ltd CARS
Priority to CN202110216183.0A priority Critical patent/CN112986069B/zh
Publication of CN112986069A publication Critical patent/CN112986069A/zh
Application granted granted Critical
Publication of CN112986069B publication Critical patent/CN112986069B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种道砟颗粒劣化指数分析仪及分析方法,包括壳体(1)、位置调节装置(2)、成像装置(3)和检测仪(4),所述位置调节装置(2)设置于所述壳体(1)上,所述成像装置(3)和所述检测仪(4)通过所述位置调节装置(2)搭载,所述检测仪(4)功能区设置于所述成像装置(3)成像范围内,所述检测仪(4)用于检测道砟劣化指数并分析劣化状况。检测仪通过提取道砟颗粒的特征信息,基于理论算法进行道砟颗粒的三维模型重建。将道砟颗粒外形函数化,提取道砟颗粒的形状特征进行分析。分别给出针状系数、片状系数、棱角系数和球形度,并通过加权系数得出道砟颗粒的劣化系数和评价标准。

Description

一种道砟颗粒劣化指数分析仪及分析方法
技术领域
本发明涉及轨道检测领域,具体涉及一种道砟颗粒劣化指数分析仪及分析方法。
背景技术
道床即铁路轨枕下面,路基面上铺设的石碴(道碴)垫层,主要由道砟颗粒构成,其主要作用是支撑轨枕,将轨枕上部的巨大压力均匀地传递给路基面,并固定轨枕的位置,阻止轨枕纵向或横向移动,大大减少路基变形的同时还缓和了机车车辆轮对钢轨的冲击,便于排水。
道砟颗粒是构成散体道床的碎石颗粒,散体道床承受轨枕荷载,并将荷载分散传递至下部结构。对道砟颗粒的三维廓形研究具有重要意义,具体体现在如下两个方面:一方面做道床评估,级配优化;另一方面用作散粒体力学仿真的输入。
专利CN107169981A公开了提供了一种道砟颗粒三维廓形的检测方法及装置,包括:获取道砟颗粒在多个旋转角度下的多张二维图像;根据二维图像中道砟颗粒的色彩明度特征,提取每一张二维图像中道砟颗粒的二维廓形边界图像;根据预设角度采样点以及预设三维廓形边界半径,构建用于描述道砟颗粒的三维廓形表面点的球坐标系;根据球坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与二维廓形边界图像的位置关系以及设定调整次数,对预设三维廓形边界半径进行调整处理,确定道砟颗粒的三维廓形边界半径;每一个经纬度以及与每一组经纬度匹配的三维廓形边界半径组成三维廓形;其获取二维图片的测量方式简单,应用设备成本极低,用户操作简单。
但其检测过程复杂,需要提取多张照片的道砟特征参数,同时只有轮廓特征提取方法,没有对轮廓特征进一步分析和评价。
现需一种道砟颗粒劣化指数分析仪可以解决上述问题。
发明内容
本发明为了解决现有技术中检测过程复杂,需要提取多张照片的道砟特征参数,只有轮廓特征提取方法,没有对轮廓特征进一步分析和评价的问题,提供了一种道砟颗粒劣化指数分析仪,通过特征分析得出了道砟颗粒的劣度系数,从而导出道砟颗粒形状特征的评价结果,解决了上述问题。
本发明提供一种道砟颗粒劣化指数分析仪,包括壳体、位置调节装置、成像装置和检测仪,位置调节装置设置于壳体上,成像装置和检测仪通过位置调节装置搭载,检测仪功能区设置于成像装置成像范围内,检测仪用于检测道砟劣化指数并分析劣化状况。
本发明所述的一种道砟颗粒劣化指数分析仪,作为一种优选方式,检测仪包括数据采集装置和检测分析仪,数据采集装置采集区与成像装置成像区重叠,检测仪接收数据采集装置采集的图像数据。
本发明所述的一种道砟颗粒劣化指数分析仪,作为一种优选方式,位置调节装置包括角度调节装置、垂直调节装置和纵向调节装置,角度调节装置用于调节成像装置的角度,垂直调节装置连接壳体和成像装置,用于调节成像装置高度,纵向调节装置连接检测仪和壳体,用于调节检测仪到成像装置的距离,纵向调节装置移动延长线穿过垂直调节装置垂心。
本发明所述的一种道砟颗粒劣化指数分析仪,作为一种优选方式,成像装置包括双面镜组、双面镜安装架和照明底座,照明底座设置于垂直调节装置顶端,照明底座水平设置,双面镜安装架以垂直调节装置轴线为中心在水平方向上呈放射状排布,双面镜安装在双面镜安装架上,角度调节装置设置在双面镜安装架轴心位置,用于调节双面镜安装架角度。
本发明所述的一种道砟颗粒劣化指数分析仪的分析方法,作为一种优选方式,包括以下步骤:
S1、打开壳体,将道砟颗粒放入道砟颗粒放置区,开启照明底座;
S2、移动道砟颗粒至成像装置中显示道砟颗粒的3个视角轮廓;
S3、调节垂向调节装置和纵向调节装置至显示效果清晰;
S4、通过数据采集装置采集道砟颗粒的轮廓特征信息,传输至检测仪;
S5、检测仪从细观角度对道砟颗粒的形状特征进行提取,通过劣度公式,得到道砟颗粒的劣度系数;
S6、当劣化系数大于等于0小于等于α时,导出道砟颗粒劣化度为优良的结果;当劣化系数大于α小于等于β时,导出道砟颗粒劣化度为轻度劣化的结果;当劣化系数大于β小于等于δ时,导出道砟颗粒劣化度为中等劣化;当劣化系数大于δ小于等于1时,导出道砟颗粒劣化度为严重劣化;
S7、导出劣化度作为指导清筛的指标。
本发明从细观角度对道砟颗粒的形状特征进行分析,结合道砟颗粒形状特征的量化方法,得出了道砟颗粒的劣度系数,依据道砟颗粒形状特征的评价标准,按照劣度系数对道砟颗粒进行评价分析。
本发明所述的一种道砟颗粒劣化指数分析仪的分析方法,作为一种优选方式,步骤S4具体包括:
S41、数据采集装置拍摄道砟颗粒在双面镜组内的二维图像,获得一张道砟颗粒在同一时刻多角度的成像;
S42、根据二维图像中道砟颗粒的色彩明度特征,提取二维图像中道砟颗粒各个角度的二维廓形边界图像。
本发明所述的一种道砟颗粒劣化指数分析仪的分析方法,作为一种优选方式,步骤S5具体包括:
S51、根据预设角度采样点以及道砟颗粒的预设三维廓形边界半径,构建用于描述道砟颗粒的三维廓形表面点的坐标系;
S52、根据坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与二维廓形边界图像的位置关系以及设定调整次数,对预设三维廓形边界半径进行调整处理,确定道砟颗粒的三维廓形边界半径;
S53、根据每一个预设角度采样点对应的经纬度以及与每一组经纬度匹配的三维廓形边界半径,确定道砟颗粒的三维廓形;
S54、根据道砟颗粒的三维廓形提取针状系数AI和片状系数CI;
S55、根据第一劣度公式得到第一劣化系数,第一劣度公式为:
A1*AI+B1*CI=DB1,A1+B1=1,
其中A1为第一针状系数权重、B1为第一片状系数权重,DB1为第一劣化系数,
若DB1≤α或DB1≥δ则输出第一劣化系数DB1至步骤S58,作为最终劣化系数DB,若不是则进行步骤S56;
S56、根据道砟颗粒的三维廓形提取棱角系数NI和球形度SI;
S57、根据第二劣度公式得到第二劣化系数,第二劣度公式为:
A2*AI+B2*CI+C*NI+D*SI=DB2,A2+B2+C+D=1,
其中C为棱角系数权重,D为球形度权重,DB2为第二劣化系数,将第二劣化系数DB2输送出步骤S58,作为最终劣化系数DB;
S58、输出最终劣化系数DB。
本发明所述的一种道砟颗粒劣化指数分析仪的分析方法,作为一种优选方式,包括以下步骤:
S1、打开壳体,将道砟颗粒放入道砟颗粒放置区,开启照明底座;
S2、移动道砟颗粒至成像装置中显示道砟颗粒的5个视角轮廓;
S3、调节垂向调节装置和纵向调节装置至显示效果清晰;
S4、通过数据采集装置采集道砟颗粒的轮廓特征信息,传输至检测仪;
S5、检测仪从细观角度对道砟颗粒的形状特征进行提取,通过劣度公式,得到道砟颗粒的劣度系数;
S6、当劣化系数大于等于0小于等于α时,导出道砟颗粒劣化度为优良的结果;当劣化系数大于α小于等于β时,导出道砟颗粒劣化度为轻度劣化的结果;当劣化系数大于β小于等于δ时,导出道砟颗粒劣化度为中等劣化;当劣化系数大于δ小于等于1时,导出道砟颗粒劣化度为严重劣化;
S7、导出劣化度作为指导清筛的指标。
本发明所述的一种道砟颗粒劣化指数分析仪的分析方法,作为一种优选方式,步骤S4具体包括:
S41、数据采集装置拍摄道砟颗粒在双面镜组内的二维图像,获得一张道砟颗粒在同一时刻多角度的成像;
S42、根据二维图像中道砟颗粒的色彩明度特征,提取二维图像中道砟颗粒各个角度的二维廓形边界图像。
本发明所述的一种道砟颗粒劣化指数分析仪的分析方法,作为一种优选方式,步骤S5具体包括:
S51、根据预设角度采样点以及道砟颗粒的预设三维廓形边界半径,构建用于描述道砟颗粒的三维廓形表面点的坐标系;
S52、根据坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与二维廓形边界图像的位置关系以及设定调整次数,对预设三维廓形边界半径进行调整处理,确定道砟颗粒的三维廓形边界半径;
S53、根据每一个预设角度采样点对应的经纬度以及与每一组经纬度匹配的三维廓形边界半径,确定道砟颗粒的三维廓形;
S54、根据道砟颗粒的三维廓形提取针状系数AI和片状系数CI;
S55、根据第一劣度公式得到第一劣化系数,第一劣度公式为:
A1*AI+B1*CI=DB1,A1+B1=1,
其中A1为第一针状系数权重、B1为第一片状系数权重,DB1为第一劣化系数,
若DB1≤α或DB1≥δ则输出第一劣化系数DB1,若不是则将第一劣化系数DB1赋值为0,输出第一劣化系数DB1
S56、根据道砟颗粒的三维廓形提取棱角系数NI和球形度SI;
S57、根据第二劣度公式得到第二劣化系数,第二劣度公式为:
A2*AI+B2*CI+C*NI+D*SI=DB2,A2+B2+C+D=1,
其中C为棱角系数权重,D为球形度权重,DB2为第二劣化系数,输出第二劣化系数DB2;
S58、比较第一劣化系数DB1和第二劣化系数DB2,取大值作为最终劣化系数DB。
在成像装置中显示道砟颗粒的3个视角轮廓,对道砟颗粒的特征提取速度较快,对劣度系数的分析评价时间短。但是结果准确较低。二是成像装置中显示道砟颗粒的5个视角轮廓,具有较高的还原精度,对道砟颗粒的特征提取速度较慢,对劣度系数的分析评价时间长,结果准确较高。
本发明有益效果如下:
检测仪通过提取道砟颗粒的特征信息,基于理论算法进行道砟颗粒的三维模型重建。将道砟颗粒外形函数化,提取道砟颗粒的形状特征进行分析。分别给出针状系数、片状系数、棱角系数和球形度,并通过加权系数得出道砟颗粒的劣化系数和评价标准。
附图说明
图1是一种道砟颗粒劣化指数分析仪示意图;
图2是一种道砟颗粒劣化指数分析仪检测仪示意图;
图3是一种道砟颗粒劣化指数分析仪位置调节装置示意图;
图4是一种道砟颗粒劣化指数分析仪成像装置示意图;
图5是一种道砟颗粒劣化指数分析仪的快速分析方法流程图;
图6是一种道砟颗粒劣化指数分析仪的精确分析方法流程图。
附图标记:
1、壳体;2、位置调节装置;21、角度调节装置;22、垂直调节装置;23、纵向调节装置;3、成像装置;31、双面镜组;32、双面镜安装架;33、照明底座;4、检测仪;41、数据采集装置;42、检测分析仪。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
如图1所示,一种道砟颗粒劣化指数分析仪,包括壳体1、位置调节装置2、成像装置3和检测仪4,位置调节装置2设置于壳体1上,成像装置3和检测仪4通过位置调节装置2搭载,检测仪4功能区设置于成像装置3成像范围内,检测仪4用于检测道砟劣化指数并分析劣化状况。
如图2所示,检测仪4包括数据采集装置41和检测分析仪42,数据采集装置41采集区与成像装置3成像区重叠,检测仪4接收数据采集装置41采集的图像数据。
如图3所示,位置调节装置2包括角度调节装置21、垂直调节装置22和纵向调节装置23,角度调节装置21用于调节成像装置3的角度,垂直调节装置22连接壳体1和成像装置3,用于调节成像装置3高度,纵向调节装置23连接检测仪4和壳体1,用于调节检测仪4到成像装置3的距离,纵向调节装置23移动延长线穿过垂直调节装置22垂心。
如图4所示,成像装置3包括双面镜组31、双面镜安装架32和照明底座33,照明底座33设置于垂直调节装置22顶端,照明底座33水平设置,双面镜安装架32以垂直调节装置22轴线为中心在水平方向上呈放射状排布,双面镜安装在双面镜安装架32上,角度调节装置21设置在双面镜安装架32轴心位置,用于调节双面镜安装架32角度。
如图5所示,本装置在快速分析的使用条件下,包括以下步骤:
S1、打开壳体1,将道砟颗粒放入道砟颗粒放置区,开启照明底座33;
S2、移动道砟颗粒至成像装置3中显示道砟颗粒的3个视角轮廓;
S3、调节垂向调节装置和纵向调节装置23至显示效果清晰;
S4、数据采集装置41拍摄道砟颗粒在双面镜组31内的二维图像,获得一张道砟颗粒在同一时刻多角度的成像;
S5、根据二维图像中道砟颗粒的色彩明度特征,提取二维图像中道砟颗粒各个角度的二维廓形边界图像;
S6、根据预设角度采样点以及道砟颗粒的预设三维廓形边界半径,构建用于描述道砟颗粒的三维廓形表面点的坐标系;
S7、根据坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与二维廓形边界图像的位置关系以及设定调整次数,对预设三维廓形边界半径进行调整处理,确定道砟颗粒的三维廓形边界半径;
S8、根据每一个预设角度采样点对应的经纬度以及与每一组经纬度匹配的三维廓形边界半径,确定道砟颗粒的三维廓形;
S9、根据道砟颗粒的三维廓形提取针状系数AI和片状系数CI;
S10、根据第一劣度公式得到第一劣化系数,第一劣度公式为:
A1*AI+B1*CI=DB1,A1+B1=1,
其中A1为第一针状系数权重、B1为第一片状系数权重,DB1为第一劣化系数,
若DB1≤α或DB1≥δ则输出第一劣化系数DB1至步骤S13,作为最终劣化系数DB,若不是则进行步骤S11;
S11、根据道砟颗粒的三维廓形提取棱角系数NI和球形度SI;
S12、根据第二劣度公式得到第二劣化系数,第二劣度公式为:
A2*AI+B2*CI+C*NI+D*SI=DB2,A2+B2+C+D=1,
其中C为棱角系数权重,D为球形度权重,DB2为第二劣化系数,将第二劣化系数DB2输送出步骤S13,作为最终劣化系数DB;
S13、输出最终劣化系数DB;
S14、根据劣度系数对道砟颗粒劣化程度进行分析;
S15、导出所述劣化度作为指导清筛的指标。
实施例2
如图6所示,在实施例1的基础上,本装置在精确分析的使用条件下,包括以下步骤:
S1、打开壳体1,将道砟颗粒放入道砟颗粒放置区,开启照明底座33;
S2、移动道砟颗粒至成像装置3中显示道砟颗粒的5个视角轮廓;
S3、调节垂向调节装置和纵向调节装置23至显示效果清晰;
S4、数据采集装置41拍摄道砟颗粒在双面镜组31内的二维图像,获得一张道砟颗粒在同一时刻多角度的成像;
S5、根据二维图像中道砟颗粒的色彩明度特征,提取二维图像中道砟颗粒各个角度的二维廓形边界图像;
S6、根据预设角度采样点以及道砟颗粒的预设三维廓形边界半径,构建用于描述道砟颗粒的三维廓形表面点的坐标系;
S7、根据坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与二维廓形边界图像的位置关系以及设定调整次数,对预设三维廓形边界半径进行调整处理,确定道砟颗粒的三维廓形边界半径;
S8、根据每一个预设角度采样点对应的经纬度以及与每一组经纬度匹配的三维廓形边界半径,确定道砟颗粒的三维廓形;
S9、根据道砟颗粒的三维廓形提取针状系数AI和片状系数CI;
S10、根据第一劣度公式得到第一劣化系数,第一劣度公式为:
A1*AI+B1*CI=DB1,A1+B1=1,
其中A1为第一针状系数权重、B1为第一片状系数权重,DB1为第一劣化系数,
若DB1≤α或DB1≥δ则输出第一劣化系数DB1,若不是则将第一劣化系数DB1赋值为0,输出第一劣化系数DB1
S11、根据道砟颗粒的三维廓形提取棱角系数NI和球形度SI;
S12、根据第二劣度公式得到第二劣化系数,第二劣度公式为:
A2*AI+B2*CI+C*NI+D*SI=DB2,A2+B2+C+D=1,
其中C为棱角系数权重,D为球形度权重,DB2为第二劣化系数,输出第二劣化系数DB2
S13、比较第一劣化系数DB1和第二劣化系数DB2,取大值作为最终劣化系数DB;
S14、当劣化系数大于等于0小于等于α时,导出道砟颗粒劣化度为优良的结果;当劣化系数大于α小于等于β时,导出道砟颗粒劣化度为轻度劣化的结果;当劣化系数大于β小于等于δ时,导出道砟颗粒劣化度为中等劣化;当劣化系数大于δ小于等于1时,导出道砟颗粒劣化度为严重劣化;
S15、导出所述劣化度作为指导清筛的指标。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种道砟颗粒劣化指数分析仪,其特征在于:包括壳体(1)、位置调节装置(2)、成像装置(3)和检测仪(4),所述位置调节装置(2)设置于所述壳体(1)上,所述成像装置(3)和所述检测仪(4)通过所述位置调节装置(2)搭载,所述检测仪(4)功能区设置于所述成像装置(3)成像范围内,所述检测仪(4)用于检测道砟劣化指数并分析劣化状况。
2.根据权利要求1所述的一种道砟颗粒劣化指数分析仪,其特征在于:所述检测仪(4)包括数据采集装置(41)和检测分析仪(42),所述数据采集装置(41)采集区与所述成像装置(3)成像区重叠,所述检测仪(4)接收所述数据采集装置(41)采集的图像数据。
3.根据权利要求2所述的一种道砟颗粒劣化指数分析仪,其特征在于:所述位置调节装置(2)包括角度调节装置(21)、垂直调节装置(22)和纵向调节装置(23),所述角度调节装置(21)用于调节所述成像装置(3)的角度,所述垂直调节装置(22)连接所述壳体(1)和所述成像装置(3),用于调节所述成像装置(3)高度,所述纵向调节装置(23)连接所述检测仪(4)和所述壳体(1),用于调节所述检测仪(4)到所述成像装置(3)的距离,所述纵向调节装置(23)移动延长线穿过所述垂直调节装置(22)垂心。
4.根据权利要求3所述的一种道砟颗粒劣化指数分析仪,其特征在于:所述成像装置(3)包括双面镜组(31)、双面镜安装架(32)和照明底座(33),所述照明底座(33)设置于所述垂直调节装置(22)顶端,所述照明底座(33)水平设置,所述双面镜安装架(32)以所述垂直调节装置(22)轴线为中心在水平方向上呈放射状排布,所述双面镜安装在所述双面镜安装架(32)上,所述角度调节装置(21)设置在所述双面镜安装架(32)轴心位置,用于调节所述双面镜安装架(32)角度。
5.根据权利要求4所述的一种道砟颗粒劣化指数分析仪的分析方法,其特征在于:包括以下步骤:
S1、打开所述壳体(1),将道砟颗粒放入道砟颗粒放置区,开启所述照明底座(33);
S2、移动道砟颗粒至成像装置(3)中显示道砟颗粒的3个视角轮廓;
S3、调节所述垂向调节装置和所述纵向调节装置(23)至显示效果清晰;
S4、通过数据采集装置(41)采集道砟颗粒的轮廓特征信息,传输至检测仪(4);
S5、检测仪(4)从细观角度对道砟颗粒的形状特征进行提取,通过劣度公式,得到道砟颗粒的劣度系数;
S6、当劣化系数大于等于0小于等于α时,导出道砟颗粒劣化度为优良的结果;当劣化系数大于α小于等于β时,导出道砟颗粒劣化度为轻度劣化的结果;当劣化系数大于β小于等于δ时,导出道砟颗粒劣化度为中等劣化;当劣化系数大于δ小于等于1时,导出道砟颗粒劣化度为严重劣化;
S7、导出所述劣化度作为指导清筛的指标。
6.根据权利要求4所述的一种道砟颗粒劣化指数分析仪的分析方法,其特征在于:包括以下步骤:
S1、打开所述壳体(1),将道砟颗粒放入道砟颗粒放置区,开启所述照明底座(33);
S2、移动道砟颗粒至成像装置(3)中显示道砟颗粒的5个视角轮廓;
S3、调节所述垂向调节装置和所述纵向调节装置(23)至显示效果清晰;
S4、通过数据采集装置(41)采集道砟颗粒的轮廓特征信息,传输至检测仪(4);
S5、检测仪(4)从细观角度对道砟颗粒的形状特征进行提取,通过劣度公式,得到道砟颗粒的劣度系数;
S6、当劣化系数大于等于0小于等于α时,导出道砟颗粒劣化度为优良的结果;当劣化系数大于α小于等于β时,导出道砟颗粒劣化度为轻度劣化的结果;当劣化系数大于β小于等于δ时,导出道砟颗粒劣化度为中等劣化;当劣化系数大于δ小于等于1时,导出道砟颗粒劣化度为严重劣化;
S7、导出所述劣化度作为指导清筛的指标。
7.根据权利要求5所述的一种道砟颗粒劣化指数分析仪的分析方法,其特征在于:所述步骤S4具体包括:
S41、所述数据采集装置(41)拍摄所述道砟颗粒在所述双面镜组(31)内的二维图像,获得一张所述道砟颗粒在同一时刻多角度的成像;
S42、根据所述二维图像中所述道砟颗粒的色彩明度特征,提取所述二维图像中所述道砟颗粒各个角度的二维廓形边界图像。
8.根据权利要求7所述的一种道砟颗粒劣化指数分析仪的分析方法,其特征在于:
所述步骤S5具体包括:
S51、根据预设角度采样点以及道砟颗粒的预设三维廓形边界半径,构建用于描述所述道砟颗粒的三维廓形表面点的坐标系;
S52、根据所述坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与所述二维廓形边界图像的位置关系以及设定调整次数,对所述预设三维廓形边界半径进行调整处理,确定所述道砟颗粒的三维廓形边界半径;
S53、根据每一个预设角度采样点对应的经纬度以及与每一组经纬度匹配的三维廓形边界半径,确定所述道砟颗粒的三维廓形;
S54、根据所述道砟颗粒的所述三维廓形提取针状系数AI和片状系数CI;
S55、根据第一劣度公式得到第一劣化系数,所述第一劣度公式为:
A1*AI+B1*CI=DB1,A1+B1=1,
其中所述A1为第一针状系数权重、所述B1为第一片状系数权重,所述DB1为第一劣化系数,
若DB1≤α或DB1≥δ则输出所述第一劣化系数DB1至步骤S58,作为最终劣化系数DB,若不是则进行步骤S56;
S56、根据所述道砟颗粒的所述三维廓形提取棱角系数NI和球形度SI;
S57、根据第二劣度公式得到第二劣化系数,所述第二劣度公式为:
A2*AI+B2*CI+C*NI+D*SI=DB2,A2+B2+C+D=1,
其中所述C为棱角系数权重,所述D为球形度权重,所述DB2为第二劣化系数,将所述第二劣化系数DB2输送出步骤S58,作为最终劣化系数DB;
S58、输出最终劣化系数DB。
9.根据权利要求6所述的一种道砟颗粒劣化指数分析仪的分析方法,其特征在于:
步骤S4具体包括:
S41、所述数据采集装置(41)拍摄所述道砟颗粒在所述双面镜组(31)内的二维图像,获得一张所述道砟颗粒在同一时刻多角度的成像;
S42、根据所述二维图像中所述道砟颗粒的色彩明度特征,提取所述二维图像中所述道砟颗粒各个角度的二维廓形边界图像。
10.根据权利要求9所述的一种道砟颗粒劣化指数分析仪的分析方法,其特征在于:
所述步骤S5具体包括:
S51、根据预设角度采样点以及道砟颗粒的预设三维廓形边界半径,构建用于描述所述道砟颗粒的三维廓形表面点的坐标系;
S52、根据所述坐标系中任意一个点在多个旋转角度下投射到二维平面上的二维投影点与所述二维廓形边界图像的位置关系以及设定调整次数,对所述预设三维廓形边界半径进行调整处理,确定所述道砟颗粒的三维廓形边界半径;
S53、根据每一个预设角度采样点对应的经纬度以及与每一组经纬度匹配的三维廓形边界半径,确定所述道砟颗粒的三维廓形;
S54、根据所述道砟颗粒的所述三维廓形提取针状系数AI和片状系数CI;
S55、根据第一劣度公式得到第一劣化系数,所述第一劣度公式为:
A1*AI+B1*CI=DB1,A1+B1=1,
其中所述A1为第一针状系数权重、所述B1为第一片状系数权重,所述DB1为第一劣化系数,
若DB1≤α或DB1≥δ则输出所述第一劣化系数DB1,若不是则将所述第一劣化系数DB1赋值为0,输出所述第一劣化系数DB1
S56、根据所述道砟颗粒的所述三维廓形提取棱角系数NI和球形度SI;
S57、根据第二劣度公式得到第二劣化系数,所述第二劣度公式为:
A2*AI+B2*CI+C*NI+D*SI=DB2,A2+B2+C+D=1,
其中所述C为棱角系数权重,所述D为球形度权重,所述DB2为第二劣化系数,输出所述第二劣化系数DB2
S58、比较所述第一劣化系数DB1和所述第二劣化系数DB2,取大值作为最终劣化系数DB。
CN202110216183.0A 2021-02-26 2021-02-26 一种道砟颗粒劣化指数分析仪 Active CN112986069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110216183.0A CN112986069B (zh) 2021-02-26 2021-02-26 一种道砟颗粒劣化指数分析仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110216183.0A CN112986069B (zh) 2021-02-26 2021-02-26 一种道砟颗粒劣化指数分析仪

Publications (2)

Publication Number Publication Date
CN112986069A true CN112986069A (zh) 2021-06-18
CN112986069B CN112986069B (zh) 2023-01-17

Family

ID=76350949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110216183.0A Active CN112986069B (zh) 2021-02-26 2021-02-26 一种道砟颗粒劣化指数分析仪

Country Status (1)

Country Link
CN (1) CN112986069B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964037A (zh) * 2022-05-06 2022-08-30 重庆交通大学 岩石颗粒形状测试装置及其试验方法
CN117490577A (zh) * 2023-12-25 2024-02-02 甘肃建投交通建设有限公司 一种用于测量铁路有砟轨道道砟颗粒运移的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142462A (zh) * 2004-06-30 2008-03-12 乔治敦铁轨设备公司 用于检查铁路轨道的***和方法
US20090073428A1 (en) * 2007-08-22 2009-03-19 Steven Magnus Rail measurement system
CN103047942A (zh) * 2012-12-26 2013-04-17 浙江大学 铁路公路基床级配碎石几何特征可视化采集***及方法
CN103063134A (zh) * 2012-12-26 2013-04-24 浙江大学 碎石几何特征采集***及采集方法
CN103150684A (zh) * 2012-12-28 2013-06-12 中国电力科学研究院 一种基于层次分析法的评估指标劣化影响分析方法
CN106969725A (zh) * 2017-05-12 2017-07-21 西南交通大学 道砟颗粒的角度调整设备及其多角度二维图像的测量装置
CN107169981A (zh) * 2017-05-12 2017-09-15 西南交通大学 一种道砟颗粒三维廓形的检测方法及装置
CN110632946A (zh) * 2019-10-18 2019-12-31 昆明理工大学 一种道砟形态特征的提取装置
CN111515138A (zh) * 2020-04-26 2020-08-11 同济大学 基于颗粒形态识别的道砟智能筛分装置
CN211347411U (zh) * 2019-12-30 2020-08-25 武汉理工大学 模拟列车转弯处轨枕不平衡力对道床影响的试验平台

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142462A (zh) * 2004-06-30 2008-03-12 乔治敦铁轨设备公司 用于检查铁路轨道的***和方法
US20090073428A1 (en) * 2007-08-22 2009-03-19 Steven Magnus Rail measurement system
CN103047942A (zh) * 2012-12-26 2013-04-17 浙江大学 铁路公路基床级配碎石几何特征可视化采集***及方法
CN103063134A (zh) * 2012-12-26 2013-04-24 浙江大学 碎石几何特征采集***及采集方法
CN103150684A (zh) * 2012-12-28 2013-06-12 中国电力科学研究院 一种基于层次分析法的评估指标劣化影响分析方法
CN106969725A (zh) * 2017-05-12 2017-07-21 西南交通大学 道砟颗粒的角度调整设备及其多角度二维图像的测量装置
CN107169981A (zh) * 2017-05-12 2017-09-15 西南交通大学 一种道砟颗粒三维廓形的检测方法及装置
CN110632946A (zh) * 2019-10-18 2019-12-31 昆明理工大学 一种道砟形态特征的提取装置
CN211347411U (zh) * 2019-12-30 2020-08-25 武汉理工大学 模拟列车转弯处轨枕不平衡力对道床影响的试验平台
CN111515138A (zh) * 2020-04-26 2020-08-11 同济大学 基于颗粒形态识别的道砟智能筛分装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
SEYED MOHAMMAD ASADZADEH ET AL.: "An integrated methodology for the prognosis of ballast degradation in railway turnouts", 《INSTITUTION OF MECHANICAL ENGINEERS》 *
SEYED MOHAMMAD ASADZADEH ET AL.: "An integrated methodology for the prognosis of ballast degradation in railway turnouts", 《INSTITUTION OF MECHANICAL ENGINEERS》, vol. 234, no. 8, 31 December 2020 (2020-12-31), pages 1 - 17 *
井国庆 等: "基于洛杉矶磨耗试验和图像分析道砟劣化研究", 《铁道科学与工程学报》 *
井国庆 等: "基于洛杉矶磨耗试验和图像分析道砟劣化研究", 《铁道科学与工程学报》, vol. 13, no. 08, 31 August 2016 (2016-08-31), pages 1486 - 1491 *
郭云龙: "基于图形分析法道砟劣化研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
郭云龙: "基于图形分析法道砟劣化研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, no. 01, 15 January 2017 (2017-01-15), pages 7 - 28 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964037A (zh) * 2022-05-06 2022-08-30 重庆交通大学 岩石颗粒形状测试装置及其试验方法
CN117490577A (zh) * 2023-12-25 2024-02-02 甘肃建投交通建设有限公司 一种用于测量铁路有砟轨道道砟颗粒运移的方法
CN117490577B (zh) * 2023-12-25 2024-03-15 甘肃建投交通建设有限公司 一种用于测量铁路有砟轨道道砟颗粒运移的方法

Also Published As

Publication number Publication date
CN112986069B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN112986069B (zh) 一种道砟颗粒劣化指数分析仪
CN109870456B (zh) 一种路面健康状况快速检测***及方法
CN106053475B (zh) 基于主动式全景视觉的隧道病害全断面动态快速检测装置
CN102297660B (zh) 一种盾构隧道衬砌管片接缝张开宽度的测量方法及装置
CN111855664A (zh) 一种可调节隧道病害三维检测***
CN101514993B (zh) 基于线阵ccd摄像机的车辆速度测量装置
CN101655614B (zh) 液晶显示面板云纹缺陷的检测方法和检测装置
CN102737370B (zh) 检测图像前景的方法及设备
CN104964708B (zh) 一种基于车载双目视觉的路面坑槽检测方法
CN111485475B (zh) 一种路面坑槽识别方法及其装置
CN105261018A (zh) 基于光学模型和暗原色先验理论的能见度检测方法
CN109214331B (zh) 一种基于图像频谱的交通雾霾能见度检测方法
CN110189375A (zh) 一种基于单目视觉测量的图像目标识别方法
WO2024012189A1 (zh) 基于包络特征的路面抗滑性能评价方法及评价装置
CN107341781A (zh) 基于改进相位一致性特征矢量底图匹配的sar影像校正方法
CN107525768A (zh) 一种dna倍体分析设备的质量控制方法
CN106022354B (zh) 基于svm的图像mtf测量方法
CN111598845A (zh) 基于深度学习与neo-6m定位模块的路面裂缝检测与定位的方法
CN107169969B (zh) 一种基于fpga的公路危岩崩塌堆积物大小测量及报警***
CN109374644A (zh) 基于图像识别的隧道衬砌缺陷智能检测模拟实验装置
CN109767490B (zh) 用于投影光栅建模的影像分析***及方法
CN109815784A (zh) 一种基于红外热像仪的智能分类方法、***及存储介质
CN110261642B (zh) 适用于气液界面的立体式粒子图像测速方法
Erikson et al. A method to extract wave tank data using video imagery and its comparison to conventional data collection techniques
CN203100694U (zh) 一种铁路公路基床级配碎石几何特征可视化采集***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant