CN112981215A - 一种热稳定性良好含铌纳米贝氏体钢的制备方法 - Google Patents

一种热稳定性良好含铌纳米贝氏体钢的制备方法 Download PDF

Info

Publication number
CN112981215A
CN112981215A CN202110148605.5A CN202110148605A CN112981215A CN 112981215 A CN112981215 A CN 112981215A CN 202110148605 A CN202110148605 A CN 202110148605A CN 112981215 A CN112981215 A CN 112981215A
Authority
CN
China
Prior art keywords
temperature
bainite
niobium
bainite steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110148605.5A
Other languages
English (en)
Other versions
CN112981215B (zh
Inventor
武会宾
于新攀
顾洋
张游游
袁睿
宁博
汤启波
刘金旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110148605.5A priority Critical patent/CN112981215B/zh
Publication of CN112981215A publication Critical patent/CN112981215A/zh
Application granted granted Critical
Publication of CN112981215B publication Critical patent/CN112981215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种热稳定性良好的含铌纳米贝氏体钢的制备方法,属于钢铁材料领域。将含铌纳米贝氏体钢坯料在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s的速率直接冷却到马氏体开始相变温度(Ms)以上5~15℃进行等温贝氏体转变,等温时间为1.0~2.0h;或直接冷却到马氏体开始相变温度(Ms)以下5~8℃形成少量马氏体,随后升温到马氏体开始相变温度(Ms)以上5~15℃进行二步等温贝氏体转变,等温时间为0.5~1.0h。最后空冷至室温。所述纳米贝氏体钢的化学成分为:C 0.25~0.30%;Si 1.2~1.5%;Mn 1.0~1.7%;Cr 1.2~1.5%;Al 1.5~2.0%;Mo 0.8~1.0%;Ni 0.6~1.0%;Nb 0.015~0.020%,其余为铁及不可避免的杂质。本发明涉及工艺无需复杂的轧制变形,相变完成时间短,在细化纳米贝氏体显微组织的同时还可保证纳米贝氏体钢在高温时的力学稳定性。

Description

一种热稳定性良好含铌纳米贝氏体钢的制备方法
技术领域
本发明属于钢铁材料领域,具体涉及一种热稳定性良好含铌纳米贝氏体钢的制备方法。
背景技术
纳米贝氏体钢,又称低温贝氏体钢或超细贝氏体钢,多采用高碳高硅的合金成分,在马氏体相变开始温度(Ms)以上(200~300℃)进行长时间等温贝氏体相变,以获得纳米级别贝氏体铁素体板条和薄膜状残余奥氏体。硬相的贝氏体铁素体板条内的高位错密度可提供较高的强度,软相的残余奥氏体(薄膜状残余奥氏体和块状残余奥氏体)可保证材料有相当的塑性和韧性。但高碳高硅贝氏体钢中纳米贝氏体相变时间随相变温度的降低而延长,且所得显微组织中含有较多的块状残余奥氏体(~20%),在塑性变形过程中发生形变诱导相变现象,将有损于贝氏体钢的韧性。此外,高碳高硅纳米贝氏体钢的热稳定性较差。受热时薄膜状残余奥氏体因其较高的碳含量容易分解为碳化物,对贝氏体铁素体板条的粗化作用减弱,从而明显降低纳米贝氏体钢的强度和韧性。
现已公布的“一种微纳结构贝氏体钢的热处理方法”(CN110527794A)实施两步等温贝氏体相变,低温贝氏体+碳配分转变和低温贝氏体+深冷处理三种热处理方法,可明显加速贝氏体相变,细化块状残余奥氏体。公开号为CN109897943B的发明专利通过对纳米贝氏体尺寸及该尺寸对应的组织含量进行控制,从而精确地把握材料的力学性能。“一种低温贝氏体钢的制备方法”(CN110129525A)针对高碳(0.77~0.84%)化学成分,完全奥氏体化后淬火至Ms点以下形成少量马氏体,随后进行等温贝氏体相变,可缩短相变孕育期。但是,生产工艺相对复杂,而且难以精确控制。并且对制备出的纳米贝氏体钢的热稳定性的研究尚未报道。
发明内容
本发明为弥补上述技术和产品存在的缺陷与不足,提供了一种热稳定性良好含铌纳米贝氏体钢及制备方法,该方法添加少量的铌元素,在加速贝氏体相变的同时还提高了纳米贝氏体钢在高温时的力学稳定性,在工业生产上具有重要的推广价值。
一种热稳定性良好的含铌纳米贝氏体钢的制备方法,其特征在于所述纳米结构贝氏体钢的化学成分中:C 0.25~0.30%;Si 1.2~1.5%;Mn 1.0~1.7%;Cr 1.2~1.5%;Al 1.5~2.0%;Mo 0.8~1.0%;Ni 0.6~1.0%;Nb 0.015~0.020%,其余为铁及不可避免的杂质。将纳米贝氏体钢在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s的速率直接冷却到马氏体相变开始温度(Ms)以上5~15℃进行等温贝氏体转变,等温时间为1.0~2.0h,最后空冷至室温;
或将纳米贝氏体钢在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s快速冷却到马氏体相变开始温度(Ms)以下5~8℃形成少量马氏体,随后升温到马氏体相变开始温度(Ms)以上5~15℃进行二步等温贝氏体转变,等温时间为0.5~1.0h。最后空冷至室温。
本发明所述含铌贝氏体钢为0.25~0.30%中碳微合金钢,相比于高碳合金成分,中碳钢的贝氏体相变温度更高,可获得更多的贝氏体铁素体;1.2~1.5%Si的添加可抑制等温贝氏体相变过程中渗碳体的析出;1.0~1.7%Mn和1.2~1.5%Cr的添加可提高中碳贝氏体钢的淬透性;1.5~2.0%Al的添加可加速贝氏体相变动力学;0.6~1.0%Ni和0.8~1.0%Mo的添加可降低马氏体相变开始温度,增加与贝氏体相变开始温度之间的温度差,促进贝氏体相变的发生。特别的0.015~0.020%Nb的加入一方面细化奥氏体晶粒,缩短贝氏体相变孕育期;另一方面在回火过程中可与碳原子形成热稳定性良好的MC型碳化物,抑制贝氏体铁素体板条的回复,保证了纳米贝氏体钢在600℃回火后仍具有较高的强度。
进一步地,本发明所述含铌纳米贝氏体钢等温相变完成后的力学性能为,屈服强度Rel为900~1000MPa,抗拉强度Rm为1200~1400MPa,延伸率为25~33%,室温下冲击功为20~45J;所述纳米贝氏体钢在600℃回火1h后的力学性能为,屈服强度Rel为850~950MPa,抗拉强度为1100~1300MPa,延伸率为25~31%,室温下冲击功为15~30J。表明所述含铌纳米贝氏体钢在600℃回火1h后的力学性能与回火前的力学性能相差不大。
由于采用所述主要合金成分和技术方案,本发明与现有技术和产品相比具有如下积极效果:
(1)本发明采用两步等温贝氏体相变或通过快冷引起马氏体预相变,工艺简单,易于操作;
(2)本发明所述纳米贝氏体钢中添加0.015~0.020%的铌元素,一方面,可细化奥氏体晶粒,为贝氏体相变提供更多形核点,加速纳米贝氏体相变。另一方面,受热时铌元素与残余奥氏体中扩散出的碳原子形成弥散分布的含铌碳化物,所带来的析出强化在一定程度上弥补了由于贝氏体铁素体板条粗化和位错密度降低引起的强度的降低。同时热稳定性优良的含铌碳化物可抑制贝氏体铁素体板条的回复,二者的综合作用保证了纳米贝氏体钢在高温(500~600℃)仍具有较高的强度。
(3)本发明所述纳米贝氏钢热处理方法,针对现有纳米贝氏体钢制备周期较长的缺陷,在等温相变前形成少量马氏体,一方面,明显缩短贝氏体相变孕育期。另一方面,受热时固溶在马氏体晶粒内部的碳原子向周围扩散,使得薄膜状残余奥氏体保持膜状结构,抑制贝氏体铁素体板条的粗化与回复。在加速贝氏体相变的同时提高了纳米贝氏体钢的热稳定性,在工业生产上具有重要的推广价值。
附图说明
图1是本发明将一种无铌纳米贝氏体钢采用实例1中直接等温相变的制备方法得到的显微组织图;
图2是本发明将一种含铌纳米贝氏体钢采用实例1中奥氏体化后冷却到马氏体相变开始温度(Ms)以上5~15℃等温相变的制备方法得到的显微组织图;
图3是图2所述纳米贝氏体钢在600℃回火1h后的显微组织图;
图4是本发明将一种含铌纳米贝氏体钢采用实例2中奥氏体化后冷却到马氏体相变开始温度(Ms)以上5~15℃等温相变的制备方法得到的显微组织图;
图5是图4所述纳米贝氏体钢在600℃回火1h后的显微组织图;
图6是本发明将一种含铌纳米贝氏体钢采用实例2中完全奥氏体化后冷却到马氏体相变开始温度(Ms)以下5~8℃形成少量马氏体,而后升温到马氏体相变开始温度(Ms)以上5~15℃进行二步等温相变的制备方法得到的显微组织图;
图7是图4所述纳米贝氏体钢经600℃回火1h后的显微组织图。
具体实施方式
以下将结合附图对本发明的具体实施方案进行详细说明。
实施例1
本发明实施例提供了一种热稳定性良好含铌纳米贝氏体钢的制备方法,该贝氏体钢的化学成分及其含量为:C 0.28%;Si 1.50%;Mn 1.5%;Cr 1.2%;Al 1.97%;Mo0.80%;Ni 0.62%;Nb 0.018%;其余为Fe和不可避免杂质。
其热处理方法具体包括以下步骤:
将纳米贝氏体钢坯料在真空条件下1200℃均匀化24h,以减小合金元素的偏聚。冷却至室温后取
Figure BDA0002928944750000051
圆柱状试样。用Gleeble3500热模拟试验机,测定该纳米贝氏体钢的马氏体相变开始温度为330℃。
该纳米贝氏体钢在980℃,奥氏体化0.5h;随后以20℃/s的速率冷却至330℃,保温1h。最后空冷至室温。
图1和图2分别为采用相同工艺制备出无铌和含铌纳米贝氏体钢显微组织图。对比分析可知0.018%铌元素的添加不仅细化贝氏体铁素体板条,还可细化块状残余奥氏体。
本实施例所制备的纳米贝氏体钢的基本力学性能为:屈服强度Rel为953MPa,抗拉强度Rm为1292MPa,延伸率为27%,室温下冲击功为35J。兼顾了高强度和良好的塑韧性。
图3为600℃回火1h后含铌纳米贝氏体钢的显微组织图,基本力学性能为:屈服强度Rel为935MPa,抗拉强度Rm为1104MPa,延伸率为21.8%,室温下冲击功为20J。
实施例2
本发明实施例提供了一种热稳定性良好含铌纳米贝氏体钢的制备方法,该贝氏体钢的化学成分及其含量为:C 0.29%;Si 1.40%;Mn 1.50%;Cr 1.30%;Al 1.6%;Mo0.89%;Ni 0.61%;Nb 0.019%;其余为Fe和不可避免杂质。
其热处理方法具体包括以下步骤:
将纳米贝氏体钢坯料在真空条件下1200℃均匀化24h,以减少合金元素的偏聚。冷却至室温后取
Figure BDA0002928944750000061
圆柱状试样。用Gleeble3500热模拟试验机,测定该纳米贝氏体钢的马氏体相变开始温度为332℃。
该纳米贝氏体钢在1000℃,奥氏体化0.5h;随后以20℃/s的速度冷却至335℃,保温1h。最后空冷至室温。
图4为本实施例所制备的纳米贝氏体钢的显微组织图,其基本力学性能为:屈服强度Rel为930MPa,抗拉强度Rm为1251MPa,延伸率为28%,室温下冲击功为30J。
图5为600℃回火1h后含铌纳米贝氏体钢的显微组织图,基本力学性能为:屈服强度Rel为859MPa,抗拉强度Rm为1043MPa,延伸率为25%,室温下的冲击功为18J。
结合显微组织图分析,由薄膜状残余奥氏体分解而来的碳化物引发的析出强化弥补了由于贝氏体铁素体板条粗化带来的强度的降低,保证了高温时仍有较高的强度水平。但硬相碳化物的出现容易成为形变过程中微裂纹的起源,导致含铌纳米贝氏体钢的延伸率和冲击功略微降低。
实施例3
本发明实施例提供了一种热稳定性良好含铌纳米贝氏体钢的制备方法,该纳米贝氏体钢的化学成分及其含量为:C 0.32%;Si 1.40%;Mn 1.51%;Cr 1.18%;Al 1.16%;Mo 0.49%;B 0.003%;Ni 0.61%;Nb 0.019%;其余为Fe和不可避免杂质。
其热处理方法具体包括以下步骤:
将纳米贝氏体钢坯料在真空条件下1200℃均匀化24h,以减小合金元素的偏聚。冷却至室温后取
Figure BDA0002928944750000071
圆柱状试样。用Gleeble3500热模拟试验机,测定该纳米贝氏体钢的马氏体相变开始温度为328℃。
该纳米贝氏体钢在1000℃,奥氏体化0.5h;随后以30℃/s的速率快冷至323℃,保温5s;然后在340℃保温1h;最后空冷至室温。
图6为采用预相变马氏体工艺制备出含铌纳米贝氏体钢的显微组织图。其基本力学性能为:屈服强度Rel为967MPa,抗拉强度Rm为1322MPa,冲击功为15J,延伸率为25%。兼顾了高强度和良好的塑韧性。
图7为采用预相变马氏体工艺制备的含铌纳米贝氏体钢在600℃回火1h后的显微组织图。其基本力学性能为:屈服强度Rel为930MPa,抗拉强度为1204MPa,冲击功为17J,延伸率为30.8%。
综合对比分析回火前后含铌纳米贝氏体钢的显微组织,600℃回火后预相变马氏体内呈片层状分布的碳化物延缓了马氏体的回复,同时固溶于马氏体晶粒内的碳原子在回火过程中扩散至周围的残余奥氏体内,保证了高温时残余奥氏体仍能保持薄膜状形貌,抑制了贝氏体铁素体板条的粗化与回复。而远离马氏体晶粒的残余奥氏体发生分解,形成的弥散碳化物,弥补了由于马氏体回复和贝氏体铁素体板条粗化造成强度的降低。马氏体内晶格畸变程度的降低有利于含铌纳米贝氏体钢塑韧性的提高。
本具体实施方式所述的两种热处理方法得到的显微组织是贝氏体铁素体板条、马氏体、薄膜状残余奥氏体和块状残余奥氏体。0.015~0.020%的铌元素的添加可明显细化奥氏体晶粒,增加贝氏体相变形核点,导致相变过程中碳原子由贝氏体铁素体向邻近的残余奥氏体发生短程扩散,结果不仅细化残余奥氏体,还提高残余奥氏体内的碳含量。高温回火后,铌元素与由残余奥氏体扩散的碳原子形成含铌碳化物,因其高温时良好的稳定性抑制了贝氏体铁素体板条的粗化与回复,保证了纳米贝氏体钢具有较高的热稳定性。此外,少量预先形成的马氏体在回火后优先分解,维持残余奥氏体的薄膜状形貌,进一步抑制高温时贝氏体铁素体板条的粗化,再次提高纳米贝氏体钢的热稳定性。

Claims (2)

1.一种热稳定性良好的含铌纳米贝氏体钢的制备方法,其特征在于所述含铌纳米结构贝氏体钢的化学成分中:C 0.25~0.30%;Si 1.2~1.5%;Mn 1.0~1.7%;Cr 1.2~1.5%;Al 1.5~2.0%;Mo 0.8~1.0%;Ni 0.6~1.0%;Nb 0.015~0.020%,其余为铁及不可避免的杂质;制备方法是将纳米贝氏体钢在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s的速率直接冷却到马氏体相变开始温度(Ms)以上5~15℃进行等温贝氏体转变,等温时间为1.0~2.0h,最后空冷至室温;
或将纳米贝氏体钢在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s快速冷却到马氏体相变开始温度(Ms)以下5~8℃形成少量马氏体,随后升温到马氏体相变开始温度(Ms)以上5~15℃进行二步等温贝氏体转变,等温时间为0.5~1.0h,最后空冷至室温。
2.根据权利要求1所述的热稳定性良好的含铌纳米贝氏体钢的制备方法,其特征在于,所述含铌纳米贝氏体钢等温相变完成后的力学性能为,屈服强度Rel为900~1000MPa,抗拉强度Rm为1200~1400MPa,延伸率为25~33%,室温下冲击功为20~45J;所述纳米贝氏体钢在600℃回火1h后的力学性能为,屈服强度Rel为850~950MPa,抗拉强度为1100~1300MPa,延伸率为25~31%,室温下冲击功为15~30J。
CN202110148605.5A 2021-02-02 2021-02-02 一种热稳定性良好含铌纳米贝氏体钢的制备方法 Active CN112981215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110148605.5A CN112981215B (zh) 2021-02-02 2021-02-02 一种热稳定性良好含铌纳米贝氏体钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110148605.5A CN112981215B (zh) 2021-02-02 2021-02-02 一种热稳定性良好含铌纳米贝氏体钢的制备方法

Publications (2)

Publication Number Publication Date
CN112981215A true CN112981215A (zh) 2021-06-18
CN112981215B CN112981215B (zh) 2022-04-12

Family

ID=76346422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110148605.5A Active CN112981215B (zh) 2021-02-02 2021-02-02 一种热稳定性良好含铌纳米贝氏体钢的制备方法

Country Status (1)

Country Link
CN (1) CN112981215B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058558A (zh) * 2022-05-20 2022-09-16 本钢板材股份有限公司 一种贝氏体热成型钢的加工方法
CN116732433A (zh) * 2023-05-30 2023-09-12 北京科技大学 一种热稳定性良好中碳超细贝氏体钢的制备方法
CN116855829A (zh) * 2023-07-07 2023-10-10 天津市产品质量监督检测技术研究院检测技术研究中心 一种低碳纳米贝氏体钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693332A (ja) * 1992-09-11 1994-04-05 Sumitomo Metal Ind Ltd 高張力・高靱性微細ベイナイト鋼の製造法
US20140102600A1 (en) * 2011-05-30 2014-04-17 Tata Steel Limited Bainitic Steel of High Strength and High Elongation and Method to Manufacture Said Bainitic Steel
CN107354385A (zh) * 2017-07-11 2017-11-17 北京科技大学 一种汽车用超高强热成形钢的制备方法
CN109295389A (zh) * 2018-11-13 2019-02-01 江西理工大学 一种快速相变的纳米贝氏体钢及其制备方法
CN109930082A (zh) * 2018-11-20 2019-06-25 吉林农业科技学院 一种高强度高韧性高碳贝氏体钢及其制备方法
CN111286585A (zh) * 2020-03-19 2020-06-16 紫荆浆体管道工程股份公司 一种超级贝氏体钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693332A (ja) * 1992-09-11 1994-04-05 Sumitomo Metal Ind Ltd 高張力・高靱性微細ベイナイト鋼の製造法
US20140102600A1 (en) * 2011-05-30 2014-04-17 Tata Steel Limited Bainitic Steel of High Strength and High Elongation and Method to Manufacture Said Bainitic Steel
CN107354385A (zh) * 2017-07-11 2017-11-17 北京科技大学 一种汽车用超高强热成形钢的制备方法
CN109295389A (zh) * 2018-11-13 2019-02-01 江西理工大学 一种快速相变的纳米贝氏体钢及其制备方法
CN109930082A (zh) * 2018-11-20 2019-06-25 吉林农业科技学院 一种高强度高韧性高碳贝氏体钢及其制备方法
CN111286585A (zh) * 2020-03-19 2020-06-16 紫荆浆体管道工程股份公司 一种超级贝氏体钢及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058558A (zh) * 2022-05-20 2022-09-16 本钢板材股份有限公司 一种贝氏体热成型钢的加工方法
CN116732433A (zh) * 2023-05-30 2023-09-12 北京科技大学 一种热稳定性良好中碳超细贝氏体钢的制备方法
CN116855829A (zh) * 2023-07-07 2023-10-10 天津市产品质量监督检测技术研究院检测技术研究中心 一种低碳纳米贝氏体钢及其制备方法
CN116855829B (zh) * 2023-07-07 2024-02-27 天津市产品质量监督检测技术研究院检测技术研究中心 一种低碳纳米贝氏体钢及其制备方法

Also Published As

Publication number Publication date
CN112981215B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN112981215B (zh) 一种热稳定性良好含铌纳米贝氏体钢的制备方法
CN103045950B (zh) 一种低合金高强韧性复相钢及其热处理方法
CN108486494B (zh) 钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法
CN114959197B (zh) 一种含有全薄膜状残余奥氏体的高塑性钢及其处理工艺
CN103131962A (zh) 一种高韧性的低合金高强度钢及其调质热处理方法
CN104805258B (zh) 一种42CrMo钢快速球化退火的方法
CN112981277B (zh) 一种超高强度中碳纳米贝氏体钢的制备方法
CN103320701B (zh) 一种铁素体贝氏体先进高强度钢板及其制造方法
CN108660395A (zh) 一种690MPa级低碳中锰高强度中厚板及淬火-动态配分生产工艺制备方法
CN105463307B (zh) 一种具有梯度组织的q&p钢及其制备方法
CN102766818B (zh) 一种基于动态碳配分原理的马氏体钢
CN108707819B (zh) 一种含δ铁素体高性能钢及其制备方法
CN113930670B (zh) 低成本nm400热轧耐磨钢板及其生产方法
CN103555896B (zh) 一种超高强度高韧性多步等温贝氏体钢及其制备方法
CN107326302A (zh) 一种耐蚀贝氏体钢、钢轨及制备方法
CN104962806A (zh) 一种低碳纳米贝氏体钢及其制备方法
CN110129525B (zh) 一种低温贝氏体钢的制备方法
CN102260823B (zh) 一种屈服强度690MPa级高强钢板及其制造方法
CN115612813A (zh) 一种提高低碳高合金马氏体不锈钢综合力学性能的热处理方法
CN102747273A (zh) 一种含铌高锰无磁钢及其制备方法
CN105256229B (zh) 一种高氮纳米贝氏体钢及其制备方法
CN113584267A (zh) 一种高碳纳米贝氏体钢组织的动态等温处理方法
CN112048668B (zh) 一种高硬度盾构刀具用钢及其制造方法
CN108570543A (zh) 一种超高强韧含镍纳米级贝氏体钢及其制备方法
CN115181894B (zh) 590MPa级别高成形性热镀锌双相钢及快速热处理热镀锌制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant