CN112974812A - 一种高燃烧、低感度的稀土合金氢化物材料及其制备方法 - Google Patents

一种高燃烧、低感度的稀土合金氢化物材料及其制备方法 Download PDF

Info

Publication number
CN112974812A
CN112974812A CN202110153900.XA CN202110153900A CN112974812A CN 112974812 A CN112974812 A CN 112974812A CN 202110153900 A CN202110153900 A CN 202110153900A CN 112974812 A CN112974812 A CN 112974812A
Authority
CN
China
Prior art keywords
rare earth
aluminum alloy
hydride
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110153900.XA
Other languages
English (en)
Other versions
CN112974812B (zh
Inventor
杜淼
米菁
郝雷
李帅
王吉宁
许科
付正盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN202110153900.XA priority Critical patent/CN112974812B/zh
Publication of CN112974812A publication Critical patent/CN112974812A/zh
Application granted granted Critical
Publication of CN112974812B publication Critical patent/CN112974812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了属于含能材料技术领域的一种高燃烧、低感度的稀土合金氢化物材料及其制备方法。该稀土合金氢化物材料为核壳式结构,外壳为金属层,内核为稀土铝合金氢化物;所述稀土铝合金氢化物中稀土氢化物弥散分布于稀土铝合金。本发明不需要特殊的工艺流程和复杂的处理过程,在轻稀土金属氢化物弥散分布于稀土合金第二相,并包覆高燃烧热金属层,具有操作简单、实验条件容易达到、安全可靠的特点,便于后期的使用。

Description

一种高燃烧、低感度的稀土合金氢化物材料及其制备方法
技术领域
本发明属于含能材料技术领域,特别涉及一种高燃烧、低感度的稀土合金氢化物材料及其制备方法。
背景技术
稀土金属的化学活性很强,从发现到至今,随着科学技术的发展,其应用范围也越来越广泛,已经应用到科学研究、日常生活等各个方面。稀土金属可以作为性能良好的永磁材料,石油裂化及汽车尾气处理过程中的催化剂以及性能良好的电光源。稀土金属所蕴藏的优异的特性和功能是21世纪重要的研究方向之一,具有良好的发展应用前景。
稀土金属氢化物由于其优异的性能,被广泛应用于军事、民用及能源化工各个领域。轻稀土金属氢化物具有极高的能量,其典型代表氢化铈的能量约217.6MJ/kg,是环四亚甲基四硝胺(HMX)能量的40倍,属于超高能***添加剂。将轻稀土金属氢化物应用到活性材料中,能够提高活性材料的燃烧热能,此外,氢化铈具有很高的化学反应活性,极易发生引燃引爆,并且氢化铈能量密度较高,因此,可以作为较好的含能材料***过程中高能添加剂。轻稀土金属氢化物也是未来新型活性材料的重要添加剂之一。
含能材料在坚硬的表面摩擦是导致其意外***的主要因素之一。因此摩擦感度测试对新型含能材料的优化配方和改善生产环境是必不可少的一部分,也是确定杂质或老化对其性能影响的重要环节。目前降低材料感度的方法主要有:采用特殊的生产工艺对金属氢化物表面进行改性降低材料的感度(刘吉平,毕晓露,金属氢化物安定性处理方案,CN201310293795.5);有机胶液包覆法(张卫山,轻稀土金属氢化物活性破片制备及毁伤实验研究,北京理工大学硕士论文)。而为了防止轻稀土氢化物发生意外自燃,传统的储存方式大多为将轻稀土氢化物保存在密闭容器中进行密封保存,以隔绝空气和水。
上述这些措施与方法,虽然可以降低轻稀土金属氢化物的感度,但处理过程繁琐,后期使用仍要从器皿或惰性气体中取出来,还是存在瞬时与空气接触发生氧化甚至自燃的风险,这就带来了安全、使用等一系列问题。
发明内容
本发明的目的在于提供一种高燃烧、低感度的稀土合金氢化物材料及其制备方法,具体技术方案如下:
一种高燃烧、低感度的稀土合金氢化物材料,为核壳式结构,外壳为金属层,内核为稀土铝合金氢化物;所述稀土铝合金氢化物中稀土氢化物弥散分布于稀土铝合金。
进一步地,所述金属层的材料选用具有高燃烧热的金属,优选为Al、Mg、Cu、Ni、Ti、Zr、Cr或B;金属层厚度为1-1000nm。
更进一步地,采用物理气相沉积方法将金属材料包覆在稀土铝合金氢化物表面。
其中,所述物理气相沉积方法包括磁控溅射、电子束蒸发中的任意一种;磁控溅射的沉积工艺为预抽真空度小于5×10-3Pa、溅射气压0.1~1.0Pa、溅射功率1~20kW、沉积时间0.1~10h。
进一步地,用作内核材料的稀土铝合金氢化物通过稀土铝合金吸氢发生氢致歧化反应得到。
其中,稀土铝合金为粉末状,粒径为-20~+800目;吸氢条件为0.1~5.0MPa、0℃~200℃。
其中,稀土铝合金通过稀土和铝熔炼得到,所述稀土为La、Ce、Y、Dy、Er、Yb、Sm中任意一种或多种。所述稀土铝合金中稀土和铝的摩尔比为5:1~1:10,所述熔炼方法为中频感应熔炼、悬浮熔炼或电子束熔炼。
本发明所述稀土合金氢化物材料的制备方法包括以下步骤:
(1)熔炼稀土和铝,得到稀土铝合金;
(2)破碎步骤(1)所得稀土铝合金至-20~+800目得到稀土铝合金粉末;
(3)步骤(2)所得稀土铝合金粉末吸氢直至饱和,发生氢致歧化反应,得到稀土铝合金氢化物粉体;其中吸氢饱和的判断标准为:材料吸氢直至氢气压力不再变化,此时材料吸氢饱和。
(4)采用物理气相沉积方法,在步骤(3)所得稀土铝合金氢化物表面包覆金属层。
其中,所述步骤(2)中,稀土铝合金经破碎机或气雾化破碎至-20~+800目,得到稀土铝合金粉末。
步骤(3)目的是有效降低高活性稀土氢化物与外界氧化环境的接触,降低了稀土氢化物的感度。
步骤(4)包覆前,预先采用高频震动或超声震动分散稀土铝合金氢化物粉体;步骤(4)目的是在稀土铝合金氢化物表面形成完整、均匀的金属包覆层,以降低高活性稀土铝合金氢化物与外界氧化环境彻底隔绝,有效降低稀土合金氢化物的感度。按照GB/T21566《危险品***品摩擦感度试验方法》使用摩擦感度仪进行测试,采用本技术方案进行稳定化处理的粉体摩擦感度超过360N,可满足后续使用要求。
本发明的有益效果为:本发明不需要特殊的工艺流程和复杂的处理过程,在轻稀土金属氢化物弥散分布于稀土合金第二相,并包覆高燃烧热金属层,具有操作简单、实验条件容易达到、安全可靠的特点,便于后期的使用。
附图说明
图1实施例1吸氢后的CeAl合金氢化物XRD图谱。
图2是实施例1中CeAl合金氢化物包覆铝的微观形貌图;图2-a是低倍下粉体的微观形貌,图2-b是高倍下粉体的微观形貌。
图3是实施例2中YAl合金氢化物包覆铜的微观形貌图;图3-a是低倍下粉体的微观形貌,图3-b是高倍下粉体的微观形貌。
具体实施方式
本发明提供了一种高燃烧、低感度的稀土合金氢化物材料及其制备方法,下面结合实施例对本发明做进一步的说明,但并不意味着对本发明保护范围的限制,在不改变本发明权利要求的范围内适当进行调整,同样能够实施本发明。
具体地,本发明提供的稀土合金氢化物材料的制备方法包括以下步骤:
(1)熔炼稀土和铝,得到稀土铝合金;其中,稀土为La、Ce、Y、Dy、Er、Yb、Sm中任意一种或多种,稀土和铝的摩尔比为5:1~1:10,熔炼方法为中频感应熔炼、悬浮熔炼或电子束熔炼。
(2)采用破碎机或气雾化,破碎步骤(1)所得稀土铝合金至-20~+800目得到稀土铝合金粉末。
(3)步骤(2)所得稀土铝合金粉末至于氢化设备中吸氢直至饱和,发生氢致歧化反应,形成高活性稀土氢化物弥散分布于稀土铝合金的结构,得到稀土铝合金氢化物粉体。其中,吸氢条件为0.1~5.0MPa,0℃~200℃。
步骤(3)目的是有效降低高活性稀土氢化物与外界氧化环境的接触,降低了稀土氢化物的感度。
(4)先采用高频震动或超声震动分散步骤(3)稀土铝合金氢化物粉体,然后采用磁控溅射、电子束蒸发等物理气相沉积方法,在分散的稀土铝合金氢化物粉体表面包覆金属层,得到的是以金属层为壳、以稀土铝合金氢化物为核的核壳式结构的稀土合金氢化物材料。其中,金属层的材料选用具有高燃烧热的金属,优选为Al、Mg或B;金属层厚度为1-1000nm。所述物理气相沉积方法中磁控溅射的沉积工艺为预抽真空度小于5×10-3Pa、溅射气压0.1~1.0Pa、溅射功率1~20kW、沉积时间0.1~10h。
步骤(4)目的是在稀土铝合金氢化物表面形成完整、均匀的金属包覆层,以降低高活性稀土铝合金氢化物与外界氧化环境彻底隔绝,有效降低稀土合金氢化物的感度。
实施例1
(1)分别称取纯金属铈280g,纯金属铝81g,使用悬浮熔炼炉,加热温度1000℃,熔炼得到CeAl合金。
(2)采用机械制粉的方法制取CeAl合金粉末。
(3)在1.0MPa、100℃的环境中进行吸氢,发生氢致歧化反应,形成了CeHx弥散分布于CeAl合金基体的结构。使用分级筛分技术对粉体进行筛分,得到-20~+800目的合金氢化物粉体。
(4)使用磁控溅射技术对CeAl合金氢化物粉体表面包覆金属Al,采用高频振动装置对粉体进行分散,振动频率为5kHz,预抽真空度达到3×10-3Pa,通入氩气,流量为60sccm,溅射功率为1.5kW,沉积时间为3h,得到CeAl合金氢化物为核、金属Al为壳的核壳结构粉体。
图1为实施例1吸氢后的CeAl合金氢化物的XRD图谱。从图1可以看出,合金吸氢后发生歧化反应生成了CeH2.53和CeAl2两相,而非常规的合金氢化物Ce3Al2Hx
图2为实施例1磁控溅射包覆后的粉体微观形貌;其中,图2-a是低倍下粉体的微观形貌,图2-b是高倍下粉体的微观形貌。从图2-b可以看出,粉体表面均匀包覆了金属Al,厚度约为68.9nm,该包覆层有效将高活性稀土氢化物与空气进行了隔绝。
经测试,实施例1所得产品稀土铝合金氢化物的燃烧热为9.98MJ/Kg,并可直接暴露于大气中,材料的摩擦感度为400N,显著降低了材料的感度。
对比例1
(1)分别称取纯金属铈280g,纯金属铝81g,使用悬浮熔炼炉,加热温度1000℃,熔炼得到CeAl合金。
(2)采用机械制粉的方法制取CeAl合金粉末。
(3)在1.0MPa、100℃的环境中进行吸氢,发生氢致歧化反应,形成了CeHx弥散分布于CeAl合金基体的结构。使用分级筛分技术对粉体进行筛分,得到-20~+800目的合金氢化物粉体。
经测试,对比例1所得产品稀土铝合金氢化物的燃烧热为9.57MJ/Kg,但该粉体无法直接暴露于大气中,在大气中极易自燃,不能满足使用要求。
实施例2
(1)分别称取纯金属钇216g,纯金属铝24g,使用悬浮熔炼炉熔炼YAl合金。
(2)采用气雾化的方法制取YAl合金粉末。
(3)在2.5MPa、160℃的环境中进行吸氢,发生氢致歧化反应,形成了YHx弥散分布于YAl合金基体的结构。使用分级筛分技术对粉体进行筛分,得到-20~+800目的合金氢化物粉体。
(4)使用电子束蒸发对YAl合金氢化物粉体表面包覆金属Cu,采用超声振动装置对粉体进行分散,振动频率为2kHz,预抽真空度达到3*10-3Pa,通入氩气,流量为100sccm,溅射功率为2.4kW,沉积时间为2h,得到YAl合金氢化物为核,金属Cu为壳的核壳结构粉体。
图3为实施例2电子束蒸发包覆后的粉体微观形貌;其中,图3-a是低倍下粉体的微观形貌,图3-b是高倍下粉体的微观形貌。从图3-b可以看出,粉体表面均匀包覆了金属Cu,该包覆层有效将高活性稀土氢化物与空气进行了隔绝。
经测试,该稀土铝合金氢化物燃烧热为7.69MJ/Kg,并可直接暴露于大气中,材料的摩擦感度为360N,显著降低了材料的感度。

Claims (10)

1.一种高燃烧、低感度的稀土合金氢化物材料,其特征在于,所述稀土合金氢化物材料为核壳式结构,外壳为金属层,内核为稀土铝合金氢化物;所述稀土铝合金氢化物中稀土氢化物弥散分布于稀土铝合金。
2.根据权利要求1所述的稀土合金氢化物材料,其特征在于,所述金属层的材料为Al、Mg、Cu、Ni、Ti、Zr、Cr或B;金属层厚度为1-1000nm。
3.根据权利要求2所述的稀土合金氢化物材料,其特征在于,采用物理气相沉积方法将金属材料包覆在稀土铝合金氢化物表面。
4.根据权利要求3所述的稀土合金氢化物材料,其特征在于,所述物理气相沉积方法包括磁控溅射、电子束蒸发中的任意一种;磁控溅射的沉积工艺为预抽真空度小于5×10-3Pa、溅射气压0.1~1.0Pa、溅射功率1~20kW、沉积时间0.1~10h。
5.根据权利要求3所述的稀土合金氢化物材料,其特征在于,所述稀土铝合金氢化物通过稀土铝合金吸氢发生氢致歧化反应得到。
6.根据权利要求5所述的稀土合金氢化物材料,其特征在于,稀土铝合金材料为粉末状,粒径为-20~+800目;吸氢条件为0.1~5.0MPa、0℃~200℃。
7.根据权利要求5所述的稀土合金氢化物材料,其特征在于,所述稀土铝合金通过稀土和铝熔炼得到,所述稀土为La、Ce、Y、Dy、Er、Yb、Sm中任意一种或多种。
8.根据权利要求7所述的稀土合金氢化物材料,其特征在于,所述稀土铝合金中稀土和铝的摩尔比为5:1~1:10,所述熔炼方法为中频感应熔炼、悬浮熔炼或电子束熔炼。
9.权利要求1-8任一项所述稀土合金氢化物材料的制备方法,其特征在于,包括以下步骤:
(1)熔炼稀土和铝,得到稀土铝合金;
(2)破碎步骤(1)所得稀土铝合金,得到稀土铝合金粉末;
(3)步骤(2)所得稀土铝合金粉末吸氢直至饱和,发生氢致歧化反应,得到稀土铝合金氢化物粉体;
(4)采用物理气相沉积方法,在步骤(3)所得稀土铝合金氢化物表面包覆金属层。
10.根据权利要求9所述的方法,其特征在于,所述步骤(2)中,稀土铝合金经破碎机或气雾化破碎至-20~+800目,得到稀土铝合金粉末;步骤(4)包覆前,预先采用高频震动或超声震动分散稀土铝合金氢化物粉体。
CN202110153900.XA 2021-02-04 2021-02-04 一种高燃烧、低感度的稀土合金氢化物材料及其制备方法 Active CN112974812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110153900.XA CN112974812B (zh) 2021-02-04 2021-02-04 一种高燃烧、低感度的稀土合金氢化物材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110153900.XA CN112974812B (zh) 2021-02-04 2021-02-04 一种高燃烧、低感度的稀土合金氢化物材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112974812A true CN112974812A (zh) 2021-06-18
CN112974812B CN112974812B (zh) 2023-01-10

Family

ID=76346903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110153900.XA Active CN112974812B (zh) 2021-02-04 2021-02-04 一种高燃烧、低感度的稀土合金氢化物材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112974812B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115519119A (zh) * 2022-09-23 2022-12-27 江苏智仁景行新材料研究院有限公司 一种含内生氢化物的铝合金粉及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240234A (zh) * 1998-06-16 2000-01-05 三菱麻铁里亚尔株式会社 吸氢合金
US20090113795A1 (en) * 2007-11-01 2009-05-07 Honeywell International Inc. Hydrogen producing fuel for power generator
CN101642703A (zh) * 2009-09-03 2010-02-10 浙江大学 铝氢化钠配位氢化物的催化剂及其制备方法
CN104046957A (zh) * 2014-06-06 2014-09-17 华中科技大学 一种三氢化铝表面包覆改性方法
US20180333774A1 (en) * 2017-05-17 2018-11-22 Alliance For Sustainable Energy, Llc Nanostructured composite metal hydrides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240234A (zh) * 1998-06-16 2000-01-05 三菱麻铁里亚尔株式会社 吸氢合金
US20090113795A1 (en) * 2007-11-01 2009-05-07 Honeywell International Inc. Hydrogen producing fuel for power generator
CN101642703A (zh) * 2009-09-03 2010-02-10 浙江大学 铝氢化钠配位氢化物的催化剂及其制备方法
CN104046957A (zh) * 2014-06-06 2014-09-17 华中科技大学 一种三氢化铝表面包覆改性方法
US20180333774A1 (en) * 2017-05-17 2018-11-22 Alliance For Sustainable Energy, Llc Nanostructured composite metal hydrides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. K. JAIN等: "Electrical and optical properties of hydrogenated RNi5/Co (R="Ce, La) bi-layer systems", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115519119A (zh) * 2022-09-23 2022-12-27 江苏智仁景行新材料研究院有限公司 一种含内生氢化物的铝合金粉及其制备方法

Also Published As

Publication number Publication date
CN112974812B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
Hongo et al. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion
Balcerzak et al. Hydrogenation and electrochemical studies of La–Mg–Ni alloys
Lee et al. Effect of the second phase on the initiation of hydrogenation of TiFe1− xMx (M= Cr, Mn) alloys
RU2388839C2 (ru) Неиспаряющиеся газопоглотительные сплавы для сорбции водорода
Puszkiel et al. Thermodynamic and kinetic studies of Mg–Fe–H after mechanical milling followed by sintering
CN112974812B (zh) 一种高燃烧、低感度的稀土合金氢化物材料及其制备方法
CN111533086B (zh) 一种利用含氢化合物快速活化储氢合金的短流程制备方法
Gkanas et al. Synthesis, characterisation and hydrogen sorption properties of mechanically alloyed Mg (Ni1-xMnx) 2
CN111484384B (zh) 一种金属/碳包覆硼基复合燃料及其制备方法
US8163267B1 (en) Method of synthesizing magnesium-cobalt pentahydride
CN106381460A (zh) 一种镁及其合金的防腐蚀方法及MgCO3层作为抗腐蚀层的应用
Jurczyk et al. Nanocrystalline LaNi5-type electrode materials for Ni-MHx batteries
Li et al. Microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95–xNix (x= 5, 10, 15) alloys
Yamamoto et al. Hydriding properties of the heat-treated MgNi alloys with nanostructural designed multiphase
Cheng et al. The hydrogen storage properties of MgH 2–Fe 7 S 8 composites
Hu et al. Development of Ti–V–Cr–Mn–Mo–Ce high-entropy alloys for high-density hydrogen storage in water bath environments
Yin et al. Microstructure and hydrogen storage properties of Mg-based Mg 85 Zn 5 Ni 10 alloy powders
El-Eskandarany et al. Environmentally friendly nanocrystalline magnesium hydride decorated with metallic glassy-zirconium palladium nanopowders for fuel cell applications
CN114293086A (zh) 一种储氢高熵合金及其制备方法
CN113042728B (zh) Mg-Li合金纳米粉体及其制备方法与应用
Yoozbashizadeh et al. Effect of rare earth elements on the sorption characteristics of nanostructured Zr-base sinter porous getter prepared by mechanical alloying
Chen et al. Influence of TiC catalyst on absorption/desorption behaviors and microstructures of sodium aluminum hydride
Sakaguchi et al. Effect of hydrogen on damping capacity of Ti50Ni25Cu25 alloy
Tai et al. Study of an industrially oriented Mg content control technology during annealing process for the LaMg (NiAl) 3.5 hydrogen storage alloy
Ayyavu et al. Does aluminum and niobium substitution for nickel actually improve the electrochemical performance of Mg2 Ni?

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant