CN112968067A - 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法 - Google Patents

一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN112968067A
CN112968067A CN202110212589.1A CN202110212589A CN112968067A CN 112968067 A CN112968067 A CN 112968067A CN 202110212589 A CN202110212589 A CN 202110212589A CN 112968067 A CN112968067 A CN 112968067A
Authority
CN
China
Prior art keywords
doped
film
agsbs
solar cell
inorganic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110212589.1A
Other languages
English (en)
Inventor
于军胜
唐明睿
张大勇
唐华
程江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110212589.1A priority Critical patent/CN112968067A/zh
Publication of CN112968067A publication Critical patent/CN112968067A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法,涉及无机多元化合物薄膜光伏研究领域,所述无机薄膜太阳能电池采用正置结构,从下到上依次为衬底,透明导电阴极ITO,缓冲层,无机光吸收层,金属阳极,所述无机光吸收层为Bi掺杂AgSbS2无机光吸收层薄膜。本发明通过掺入Bi元素(掺杂摩尔量为Bi/(Bi+Sb)=1~5%),能够对AgSbS2薄膜的表面缺陷进行填充与钝化,提高了薄膜的质量,提高了电池的短路电流密度、开路电压和填充因子,使电池的转换效率得到提高。

Description

一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法
技术领域
本发明涉及无机多元化合物薄膜光伏研究领域,具体的涉及一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法。
背景技术
近年来,由于化石燃料的过度消耗产生的多种有害气体,造成的环境污染及气候变暖等问题的日益严重,因此,作为绿色新型清洁能源之一的太阳能受到广泛关注,其中太阳能光伏产业以其体量大、无地理位置限制等优势得到迅速发展。目前,已经商业化的太阳能电池有单晶硅太阳能电池、多晶硅太阳能电池、铜铟镓硒太阳能电池和碲化镉太阳能电池等,但是这些电池因为制备成本高和有害废料排放的问题还无法适应进一步的商业化发展,众多研究者都在寻找更廉价,适合大规模生产的新型化合物加以替代。其中,AgSbS2因禁带宽度合适、吸收系数高、绿色无毒、价格低廉等优点,是一种合适的无机薄膜太阳能电池吸收层材料。
和其他制备方法相比,采用喷雾热解法制备AgSbS2薄膜不仅成本低,制备过程简单,而且制备得到的AgSbS2薄膜纯度较高。然而,目前通过喷雾热解法制备的AgSbS2薄膜太阳能电池的性能较低,这主要是由于制备的AgSbS2薄膜孔隙较多,致密性差,限制了AgSbS2薄膜太阳能电池的效率,因此,如何研究开发一种新型薄膜制备方式解决AgSbS2薄膜成膜质量问题,是当前该领域亟待解决的重要问题之一。
发明内容
本发明的目的在于:针对喷雾热解法制备的AgSbS2薄膜太阳能电池的不足,提供一种吸光性更好、电池短路电流密度更高、电池转换效率得到改善的基于Bi掺杂AgSbS2的无机薄膜太阳能电池及其制备方法;Bi掺杂可以钝化AgSbS2薄膜表面缺陷,使薄膜更加均匀、致密,减少载流子复合。
本发明采用的技术方案如下:
一种基于Bi掺杂硫锑银的无机薄膜太阳能电池,所述无机薄膜太阳能电池采用正置结构,从下到上依次为衬底,透明导电阴极ITO,缓冲层,无机光吸收层,金属阳极,所述无机光吸收层为Bi掺杂AgSbS2无机光吸收层薄膜。
优选地,所述无机光吸收层中Bi的掺杂摩尔量比例为Bi/(Bi+Sb)=1~5%。
优选地,所述无机光吸收层制备为先将硝酸银、乙酸锑、硫脲和硝酸铋按照摩尔比Ag:Sb:S=1:1:2,Bi掺杂摩尔比Bi/(Bi+Sb)=1%~5%进行混合形成前驱体溶液,经喷雾热解后沉积为Bi掺杂AgSbS2薄膜,所述Bi掺杂AgSbS2薄膜在硒蒸气氛围下进行退火处理得到Bi掺杂AgSbS2无机光吸收层;所述Bi掺杂AgSbS2无机光吸收层厚度范围为800~1000nm。
本发明以硝酸银作为银源,乙酸锑作为锑源,硫脲作为硫源,硝酸铋作为铋源,采取喷雾热解法在缓冲层上沉积Bi掺杂AgSbS2薄膜,Bi掺杂使AgSbS2薄膜表面形貌得到了改善,薄膜孔隙变小,更加均匀、致密,减少了载流子的复合;以此作为薄膜太阳能电池的光吸收层,可使电池的短路电流密度和填充因子得到提高,从而提升电池转换效率。
优选地,所述缓冲层为CdS缓冲层薄膜,CdS缓冲层薄膜厚度为120-180nm。
优选地,所述金属阳极为Au,薄膜厚度为30-90nm。
本发明的另外一种目的是提供一种基于Bi掺杂硫锑银的无机薄膜太阳能电池的制备方法,包括以下步骤:
(1)对由衬底及透明导电阴极ITO所组成的基板进行清洗,后用氮气吹干;
(2)采用化学浴沉积法,在ITO基板上沉积CdS薄膜,然后于350-450℃退火处理3-8min,得到CdS缓冲层;
(3)配置Bi的掺杂摩尔量为Bi/(Bi+Sb)=1~5%的前驱体溶液,采用喷雾热解法在缓冲层上喷涂Bi掺杂AgSbS2薄膜,接着在硒蒸气氛围下,经退火处理,得到Bi掺杂AgSbS2无机光吸收层;
(4)在Bi掺杂AgSbS2无机光吸收层表面采用离子溅射制备金属阳极。
优选地,步骤(2)中化学浴沉积法具体为:首先由去离子水、先氯化镉、氨水和硫脲配制成化学浴溶液,在80-90℃水浴沉积装置中沉积25-35min;沉积后的薄膜依次用丙酮、无水乙醇各超声清洗,清洗薄膜表面大颗粒,并在干燥箱烘干;最后于350-450℃加热台上退火处理3-8min,得到CdS缓冲层。
优选地,步骤(3)中无机光吸收层的制备方法具体为:将每0.58mmol乙酸锑和0.58mmol硝酸银先后溶解于10mL乙二醇甲醚中,并加入40μL浓硝酸抑制水解;然后按Bi的掺杂比例加入硝酸铋,在室温下搅拌至完全溶解;最后加入硫脲,配置成前驱体溶液,摩尔比Ag:Sb:S=1:1:2,掺杂比例Bi/(Bi+Sb)=1~5%;利用喷雾热解设备在CdS缓冲层上沉积Bi掺杂AgSbS2薄膜,沉积温度为300~400℃,动力气流流速为19~23L/min,喷涂时间为6~10min,喷头高度优35~40mm;接着在硒蒸气氛围下,经350~400℃退火处理6~10min,得到Bi掺杂AgSbS2无机光吸收层。
优选地,Bi的摩尔掺杂比例Bi/(Bi+Sb)为1%、3%或5%。
优选地,在Bi掺杂AgSbS2无机光吸收层上利用离子溅射仪溅射Au阳极,制得金属阳极。
与现有的技术相比本发明的有益效果是:
1)本发明通过掺入Bi元素(掺杂摩尔量为Bi/(Bi+Sb)=1~5%),能够对AgSbS2薄膜的表面缺陷进行填充与钝化,提高了薄膜的质量,提高了电池的短路电流密度、开路电压和填充因子,使电池的转换效率得到提高;
2)本发明采用喷雾热解法制备Bi掺杂AgSbS2薄膜,制备薄膜可通过控制前驱体溶液元素化学计量比来控制薄膜成分,成膜时间短,能保证薄膜组分均匀,不发生分相;
3)本发明的原料、设备和工艺步骤简单、能耗低、可重复性强,可有效提升电池的性能。
附图说明
图1是本发明的一种基于Bi掺杂AgSbS2的无机薄膜太阳能电池的结构示意图;
图中标记为:1-衬底,2-透明导电阴极ITO,3-CdS缓冲层,4-Bi掺杂AgSbS2无机光吸收层,5-金属阳极。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明提供了一种基于Bi掺杂AgSbS2的无机薄膜太阳能电池,该太阳能电池结构从下到上依次为衬底,透明导电阴极ITO,CdS缓冲层,Bi掺杂AgSbS2无机光吸收层,金属阳极,其中Bi的掺杂摩尔量为1~5%。
本发明还提供了一种基于Bi掺杂AgSbS2的无机薄膜太阳能电池制备方法,包括以下步骤:
(1)衬底处理:采用ITO透明导电玻璃作为基板,在实验前先对基板进行清洗,其具体是将形状大小合适的透明导电玻璃片先用清洗剂清洗干净,然后用去离子水清洗,接着将其放入超声波清洗器中,依次用ITO清洗剂、去离子水各超声清洗15min,最后用氮气吹干,即得到表面洁净的透明导电阴极ITO玻璃基板;
(2)缓冲层的制备:利用化学浴沉积法在洗净的透明导电阴极ITO玻璃基板上沉积CdS缓冲层薄膜:该化学浴溶液由去离子水、氯化镉、氨水和硫脲组成,在85℃水浴沉积装置中沉积30min;沉积后的薄膜依次用丙酮、无水乙醇各超声清洗1min,清洗薄膜表面大颗粒,并在干燥箱烘干;最后于400℃加热台上退火处理5min,得到CdS缓冲层;
(3)无机光吸收层的制备:将0.58mmol乙酸锑和0.58mmol硝酸银先后溶解于10mL乙二醇甲醚中,并加入40μL浓硝酸抑制水解。然后按Bi的掺杂比例加入硝酸铋,在室温下搅拌至完全溶解。最后加入硫脲,配置成前驱体溶液,摩尔比为Ag:Sb:S=1:1:2,掺杂比例Bi/(Bi+Sb)=1%~5%;利用喷雾热解设备在CdS缓冲层上沉积Bi掺杂AgSbS2薄膜,薄膜沉积温度优选为300~400℃,动力气流流速优选为19~23L/min,喷涂时间优选为6~10min,喷头高度优选为35~40mm;接着在硒蒸气氛围下,经350~400℃退火处理6~10min,得到无机光吸收层;
(4)金属阳极的制备:在无机光吸收层上利用离子溅射仪溅射Au阳极。
为了进一步说明本发明,以下结合实施例对本发明提供的一种基于Bi掺杂AgSbS2的无机薄膜太阳能电池及其制备方法进行详细描述。以下实施例中所用的试剂均为市售。
实施例1
对透明衬底及透明导电电极ITO所组成的基板进行清洗,清洗后用氮气吹干。在透明洗净的基板上利用化学浴沉积法沉积CdS缓冲层薄膜,超声清洗表面大颗粒后烘干,并在400℃下退火处理5min,得到CdS缓冲层。无机光吸收层的制备方法包括:(1)配置前驱体溶液,称取一定比例(摩尔比Ag:Sb:S=1:1:2)的硝酸银、乙酸锑和硫脲作为银源、锑源和硫源,以乙二醇甲醚为溶剂,配置成前驱体溶液;(2)利用喷雾热解设备在CdS缓冲层上沉积AgSbS2薄膜,薄膜沉积温度为350℃,动力气流流速为21L/min,喷涂时间为6min,喷头高度为37mm;接着在硒蒸气氛围下,380℃退火处理6min,得到无机光吸收层。在吸收层表面采用离子溅射制备Au阳极。在标准测试条件下:AM 1.5,100mW/cm2,测得器件的短路电流密度(JSC)=3.194mA/cm2、开路电压(VOC)=436mV、填充因子(FF)=40%、光电转换效率(PCE)=0.558%。
实施例2
对透明衬底及透明导电电极ITO所组成的基板进行清洗,清洗后用氮气吹干。在透明洗净的基板上利用化学浴沉积法沉积CdS缓冲层薄膜,超声清洗表面大颗粒后烘干,并在400℃下退火处理5min,得到CdS缓冲层。无机光吸收层的制备方法包括:(1)配置前驱体溶液,称取一定比例的硝酸银、乙酸锑、硝酸铋和硫脲分别作为银源、锑源、铋源和硫源,以乙二醇甲醚为溶剂,配置成前驱体溶液。其中,摩尔比Ag:Sb:S=1:1:2,掺杂比例Bi/(Bi+Sb)=1%;(2)利用喷雾热解设备在CdS缓冲层上沉积AgSbS2薄膜,薄膜沉积温度为350℃,动力气流流速为21L/min,喷涂时间为6min,喷头高度为37mm;接着在硒蒸气氛围下,380℃退火处理6min,得到无机光吸收层。在吸收层表面采用离子溅射制备Au阳极。在标准测试条件下:AM 1.5,100mW/cm2,测得器件的短路电流密度(JSC)=3.225mA/cm2、开路电压(VOC)=446mV、填充因子(FF)=42%、光电转换效率(PCE)=0.611%。
实施例3
对透明衬底及透明导电电极ITO所组成的基板进行清洗,清洗后用氮气吹干。在透明洗净的基板上利用化学浴沉积法沉积CdS缓冲层薄膜,超声清洗表面大颗粒后烘干,并在400℃下退火处理5min,得到CdS缓冲层。无机光吸收层的制备方法包括:(1)配置前驱体溶液,称取一定比例的硝酸银、乙酸锑、硝酸铋和硫脲分别作为银源、锑源、铋源和硫源,以乙二醇甲醚为溶剂,配置成前驱体溶液。其中,摩尔比Ag:Sb:S=1:1:2,掺杂比例Bi/(Bi+Sb)=3%;(2)利用喷雾热解设备在CdS缓冲层上沉积AgSbS2薄膜,薄膜沉积温度为350℃,动力气流流速为21L/min,喷涂时间为6min,喷头高度为37mm;接着在硒蒸气氛围下,380℃退火处理6min,得到无机光吸收层。在吸收层表面采用离子溅射制备Au阳极。在标准测试条件下:AM 1.5,100mW/cm2,测得器件的短路电流密度(JSC)=3.418mA/cm2、开路电压(VOC)=466mV、填充因子(FF)=45%、光电转换效率(PCE)=0.713%。
实施例4
对透明衬底及透明导电电极ITO所组成的基板进行清洗,清洗后用氮气吹干。在透明洗净的基板上利用化学浴沉积法沉积CdS缓冲层薄膜,超声清洗表面大颗粒后烘干,并在400℃下退火处理5min,得到CdS缓冲层。无机光吸收层的制备方法包括:(1)配置前驱体溶液,称取一定比例的硝酸银、乙酸锑、硝酸铋和硫脲分别作为银源、锑源、铋源和硫源,以乙二醇甲醚为溶剂,配置成前驱体溶液。其中,摩尔比Ag:Sb:S=1:1:2,掺杂比例Bi/(Bi+Sb)=5%;(2)利用喷雾热解设备在CdS缓冲层上沉积AgSbS2薄膜,薄膜沉积温度为350℃,动力气流流速为21L/min,喷涂时间为6min,喷头高度为37mm;接着在硒蒸气氛围下,380℃退火处理6min,得到无机光吸收层。在吸收层表面采用离子溅射制备Au阳极。在标准测试条件下:AM 1.5,100mW/cm2,测得器件的短路电流密度(JSC)=3.300mA/cm2、开路电压(VOC)=447mV、填充因子(FF)=44%、光电转换效率(PCE)=0.648%。
可以看出:通过一种基于Bi掺杂AgSbS2的无机薄膜太阳能电池(实施例2~4制备而成的无机薄膜太阳能电池),相比于未掺杂的AgSbS2无机薄膜太阳能电池(实施例1制备而成的无机薄膜太阳能电池),电池的短路电流密度、开路电压和填充因子均得到提高。
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (10)

1.一种基于Bi掺杂硫锑银的无机薄膜太阳能电池,所述无机薄膜太阳能电池采用正置结构,从下到上依次为衬底,透明导电阴极ITO,缓冲层,无机光吸收层,金属阳极,其特征在于,所述无机光吸收层为Bi掺杂AgSbS2无机光吸收层薄膜。
2.根据权利要求1所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池,其特征在于,所述无机光吸收层中Bi的掺杂摩尔量比例为Bi/(Bi+Sb)=1~5%。
3.根据权利要求1所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池,其特征在于,所述无机光吸收层制备为先将硝酸银、乙酸锑、硫脲和硝酸铋按照摩尔比Ag:Sb:S=1:1:2,Bi掺杂摩尔比Bi/(Bi+Sb)=1%~5%进行混合形成前驱体溶液,经喷雾热解后沉积为Bi掺杂AgSbS2薄膜,所述Bi掺杂AgSbS2薄膜在硒蒸气氛围下进行退火处理得到Bi掺杂AgSbS2无机光吸收层;所述Bi掺杂AgSbS2无机光吸收层厚度范围为800~1000nm。
4.根据权利要求1所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池,其特征在于,所述缓冲层为CdS缓冲层薄膜,CdS缓冲层薄膜厚度为120-180nm。
5.根据权利要求1所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池,其特征在于,所述金属阳极为Au,薄膜厚度为30-90nm。
6.根据权利要求1所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池的制备方法,其特征在于,包括以下步骤:
(1)对由衬底及透明导电阴极ITO所组成的基板进行清洗,后用氮气吹干;
(2)采用化学浴沉积法,在ITO基板上沉积CdS薄膜,然后于350-450℃退火处理3-8min,得到CdS缓冲层;
(3)配置Bi的掺杂摩尔量为Bi/(Bi+Sb)=1~5%的前驱体溶液,采用喷雾热解法在缓冲层上喷涂Bi掺杂AgSbS2薄膜,接着在硒蒸气氛围下,经退火处理,得到Bi掺杂AgSbS2无机光吸收层;
(4)在Bi掺杂AgSbS2无机光吸收层表面采用离子溅射制备金属阳极。
7.根据权利要求6所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池的制备方法,其特征在于,步骤(2)中化学浴沉积法具体为:首先由去离子水、先氯化镉、氨水和硫脲配制成化学浴溶液,在80-90℃水浴沉积装置中沉积25-35min;沉积后的薄膜依次用丙酮、无水乙醇各超声清洗,清洗薄膜表面大颗粒,并在干燥箱烘干;最后于350-450℃加热台上退火处理3-8min,得到CdS缓冲层。
8.根据权利要求6所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池的制备方法,其特征在于,步骤(3)中无机光吸收层的制备方法具体为:将每0.58mmol乙酸锑和0.58mmol硝酸银先后溶解于10mL乙二醇甲醚中,并加入40μL浓硝酸抑制水解;然后按Bi的掺杂比例加入硝酸铋,在室温下搅拌至完全溶解;最后加入硫脲,配置成前驱体溶液,摩尔比Ag:Sb:S=1:1:2,掺杂比例Bi/(Bi+Sb)=1~5%;利用喷雾热解设备在CdS缓冲层上沉积Bi掺杂AgSbS2薄膜,沉积温度为300~400℃,动力气流流速为19~23L/min,喷涂时间为6~10min,喷头高度优35~40mm;接着在硒蒸气氛围下,经350~400℃退火处理6~10min,得到Bi掺杂AgSbS2无机光吸收层。
9.根据权利要求6所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池的制备方法,其特征在于,Bi的摩尔掺杂比例Bi/(Bi+Sb)为1%、3%或5%。
10.根据权利要求6所述的一种基于Bi掺杂硫锑银的无机薄膜太阳能电池的制备方法,其特征在于,在Bi掺杂AgSbS2无机光吸收层上利用离子溅射仪溅射Au阳极,制得金属阳极。
CN202110212589.1A 2021-02-25 2021-02-25 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法 Pending CN112968067A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110212589.1A CN112968067A (zh) 2021-02-25 2021-02-25 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110212589.1A CN112968067A (zh) 2021-02-25 2021-02-25 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN112968067A true CN112968067A (zh) 2021-06-15

Family

ID=76286147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110212589.1A Pending CN112968067A (zh) 2021-02-25 2021-02-25 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112968067A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291841A (zh) * 2021-11-05 2022-04-08 华中科技大学 一种金属元素掺杂硫化铅材料及其制备方法和在金属元素掺杂硫化铅薄膜中的应用
CN115101611A (zh) * 2022-06-17 2022-09-23 电子科技大学 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB928562A (en) * 1960-07-18 1963-06-12 Western Electric Co Methods of varying carrier mobility in semiconductive bodies
JP2009004773A (ja) * 2007-06-21 2009-01-08 Aisin Seiki Co Ltd アンチモンおよび銀の硫化物の化合物またはアンチモンおよび銅の硫化物の化合物をベースとする吸収層を備えた固体光起電装置
CN103137437A (zh) * 2011-11-22 2013-06-05 吕宗昕 制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池
US20140246083A1 (en) * 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
CN107623046A (zh) * 2017-08-25 2018-01-23 中国科学院上海微***与信息技术研究所 铜铟镓硒吸收层后处理方法及基于其的太阳电池制备方法
CN108899377A (zh) * 2018-07-17 2018-11-27 福州大学 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法
CN109256468A (zh) * 2018-07-31 2019-01-22 中国科学院合肥物质科学研究院 一种基于多种异质结性能集成的杂化太阳电池及其制备方法
CN110040980A (zh) * 2018-01-17 2019-07-23 松下知识产权经营株式会社 光吸收材料和使用该光吸收材料的太阳能电池
CN110444673A (zh) * 2019-08-27 2019-11-12 电子科技大学 一种基于无机化合物添加剂的有机薄膜太阳能电池及其制备方法
CN110676351A (zh) * 2019-10-17 2020-01-10 中山大学 一种化合物薄膜及其制备方法、化合物薄膜太阳电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB928562A (en) * 1960-07-18 1963-06-12 Western Electric Co Methods of varying carrier mobility in semiconductive bodies
JP2009004773A (ja) * 2007-06-21 2009-01-08 Aisin Seiki Co Ltd アンチモンおよび銀の硫化物の化合物またはアンチモンおよび銅の硫化物の化合物をベースとする吸収層を備えた固体光起電装置
CN103137437A (zh) * 2011-11-22 2013-06-05 吕宗昕 制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池
US20140246083A1 (en) * 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
CN107623046A (zh) * 2017-08-25 2018-01-23 中国科学院上海微***与信息技术研究所 铜铟镓硒吸收层后处理方法及基于其的太阳电池制备方法
CN110040980A (zh) * 2018-01-17 2019-07-23 松下知识产权经营株式会社 光吸收材料和使用该光吸收材料的太阳能电池
CN108899377A (zh) * 2018-07-17 2018-11-27 福州大学 一种Ti掺杂硫化锑的薄膜太阳能电池及其制备方法
CN109256468A (zh) * 2018-07-31 2019-01-22 中国科学院合肥物质科学研究院 一种基于多种异质结性能集成的杂化太阳电池及其制备方法
CN110444673A (zh) * 2019-08-27 2019-11-12 电子科技大学 一种基于无机化合物添加剂的有机薄膜太阳能电池及其制备方法
CN110676351A (zh) * 2019-10-17 2020-01-10 中山大学 一种化合物薄膜及其制备方法、化合物薄膜太阳电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN XIE等: "Thin-Film Solar Cells using a Selenized Silver Antimony Sulfide Absorber Prepared by Spray Pyrolysis Deposition", 《PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291841A (zh) * 2021-11-05 2022-04-08 华中科技大学 一种金属元素掺杂硫化铅材料及其制备方法和在金属元素掺杂硫化铅薄膜中的应用
CN114291841B (zh) * 2021-11-05 2024-04-05 华中科技大学 一种金属元素掺杂硫化铅材料及其制备方法和在金属元素掺杂硫化铅薄膜中的应用
CN115101611A (zh) * 2022-06-17 2022-09-23 电子科技大学 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法
CN115101611B (zh) * 2022-06-17 2024-02-13 电子科技大学 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
Zhou et al. Perovskite-based solar cells: materials, methods, and future perspectives
CN109904318B (zh) 一种基于反溶液浴的钙钛矿薄膜制备方法及太阳能电池
CN106898662B (zh) 一种p-i-n型硒化锑太阳电池
WO2022206038A1 (zh) 一种铜锌锡硫硒半透明太阳能电池器件及其制备方法
CN107946393B (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
CN108063186A (zh) 锌掺杂氧化镍空穴传输层反置钙钛矿太阳能电池及制备方法
CN107093650A (zh) 一种制备铜锑硫太阳能电池吸收层的方法
CN112968067A (zh) 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法
CN112201725A (zh) 一种硒化锑薄膜太阳能电池的制备方法
CN109609122A (zh) 一种诱导钙钛矿晶体抗拉伸弯折的柔性光伏器件的制备方法
CN111192964B (zh) 一种钙钛矿量子点太阳能电池及其制备方法
CN111129310B (zh) 一种引入辣椒素的钙钛矿薄膜制备方法
CN104916714B (zh) 以La‑TiO2为电子传输层的有机光伏电池及其制备方法
CN103187480A (zh) 光吸收层的改质方法
CN105489672A (zh) 一种氯化物体系两步法制备铜铟硒光电薄膜的方法
CN112837997B (zh) 一种ZnCdS薄膜的制备方法及铜锌锡硫硒太阳电池的制备方法
CN105552166A (zh) 一种硝酸盐体系两步法制备铜铟硒光电薄膜的方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN115101611B (zh) 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法
CN114188442A (zh) 一种锑掺杂电化学沉积铜锌锡硫太阳能电池吸收层制备方法
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
Aziz et al. Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries
CN208028076U (zh) 一种新型节能电池片
CN112510157A (zh) 一种全空气大面积制备钙钛矿太阳能电池的方法
CN111435686A (zh) 铜铟镓硒薄膜太阳能电池及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20231208

AD01 Patent right deemed abandoned