CN112960666B - 叠氮官能化碳纳米管的制备方法 - Google Patents

叠氮官能化碳纳米管的制备方法 Download PDF

Info

Publication number
CN112960666B
CN112960666B CN202110277215.8A CN202110277215A CN112960666B CN 112960666 B CN112960666 B CN 112960666B CN 202110277215 A CN202110277215 A CN 202110277215A CN 112960666 B CN112960666 B CN 112960666B
Authority
CN
China
Prior art keywords
swnts
cooh
solution
preparation
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110277215.8A
Other languages
English (en)
Other versions
CN112960666A (zh
Inventor
高力
王慧星
刘鹏
于鹏澎
时海霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110277215.8A priority Critical patent/CN112960666B/zh
Publication of CN112960666A publication Critical patent/CN112960666A/zh
Application granted granted Critical
Publication of CN112960666B publication Critical patent/CN112960666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于生物化学材料技术领域,具体涉及一种叠氮官能化碳纳米管的制备方法。本发明基于碳纳米管的结构特性,通过SWNTs‑COOH的制备和活化、SWNTs‑N3的制备,逐步制备出叠氮官能化的碳纳米管,从而应用于复合物的制备以及作为荧光传感器中的优良淬灭剂实现对有关靶标的检测,从而应用于临床、医药等领域。

Description

叠氮官能化碳纳米管的制备方法
技术领域
本发明属于生物化学材料技术领域,具体涉及一种叠氮官能化碳纳米管的制备方法。
背景技术:
纳米材料和生物分子的结合在生物传感器领域发挥着越来越重要的作用,碳纳米管作为一种新型的纳米材料由于其具有独特的光电性能和机械性能而得到广泛研究及应用。碳纳米管是由一层或多层石墨烯薄片制成的中空石墨纳米管,通常分为单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbonnanotubes,MWNTs)两种类型。SWNTs相对于MWNTs来说,仅由一层石墨烯薄片制备而成,因此更具有优良的性能,比如超轻的重量、高的热稳定性和机械性能、大的表面积比以及易于表面官能化等,因此常常被用构建纳米生物传感器。此外,经研究表明SWNTs在荧光适体传感器中可通过充当FRET的能量受体而被认为是优良的淬灭剂。因此,基于SWNTs对适体DNA的独特吸附能力以及比较宽泛的能量传递范围的特性,该纳米材料在DNA分析以及蛋白质测定方面具有一定的研究意义和实践应用价值。
发明内容
叠氮官能化单壁碳纳米管的制备方法,包括如下步骤:
(1)SWNTs-COOH的制备:
将碳纳米管SWNTs超声分散,制得SWNTs溶液;
在SWNTs溶液中,依次加入NaOH和氯乙酸超声,将SWNTs表面的-OH官能团转化为–COOH官能团;然后用NaOH中和掉未反应的氯乙酸,离心纯化,冷冻干燥,羧基官能化的SWNTs,即SWNTs-COOH;
(2)活化SWNTs-COOH;
将步骤(1)制备的SWNTs-COOH固体溶于超纯水中,超声分散均匀,得到SWNTs-COOH溶液,然后加入含NHS和EDC的溶液,室温下温育,离心,得到活化的SWNTs-COOH;
(3)SWNTs-N3的制备:
将步骤(2)制得的活化SWNTs-COOH溶于甲醇溶液中,超声分散得SWNTs-COOH的甲醇溶液,然后与N3-PEG-NH2一起加入到HEPES缓冲溶液中充分混合,室温下反应发生共价结合作用,离心,冷冻干燥,得到叠氮官能化的碳纳米管。
步骤(1)中,SWNTs溶液、NaOH和氯乙酸的用量比例为5mL:0.6g:0.5g;其中,SWNTs溶液的浓度为2mg/mL;超声时间为2h。
步骤(2)中,SWNTs-COOH溶液、含NHS和EDC的溶液的体积比为1:1,其中,SWNTs-COOH溶液的浓度为4mg/mL;含NHS和EDC的溶液中,NHS的浓度为50mM,EDC的浓度为200mM。
步骤(2)中,室温下温育的时间为12h。
步骤(3)中,SWNTs-COOH的甲醇溶液、N3-PEG-NH2和HEPES缓冲溶液的用量比为5mL:100mg:10mL,其中,SWNTs-COOH的甲醇溶液浓度为2mg/mL,N3-PEG-NH2的聚合度为6,HEPES缓冲溶液的浓度为0.1M,pH为7.4。
步骤(3)中,甲醇溶液中,甲醇的体积百分数为10%,超声时间为3h;室温下反应时间为12h。
本发明具有以下优点:
(1)本发明过程中所需如氯乙酸、氢氧化钠等试剂是实验室容易获得的常备试剂,比较容易获得。
(2)本发明通过羧基官能团与氨基官能团之间的共价结合作用获得叠氮官能化的碳纳米管,二者结合所需要的剂量较少,是一种实现高效合成该纳米材料的方法。
(3)本发明制备所得的纳米材料与典型的荧光淬灭剂氧化石墨烯(GrapheneOxide)相似,同样能够广泛的应用于荧光生物传感器领域,实现对待测物的灵敏性检测。
附图说明
图1为官能化的碳纳米管的FT-IR光谱图。
具体实施方式
以下结合实施例对本发明做进一步说明,实施例是用于说明本发明,而不是用于限制本发明的范围。
实施例1:
(1)SWNTs-COOH的制备:
使用超声清洗机将SWNTs分散均匀并配制成在2mg/mL的溶液。
在5mL初始的SWNTs溶液中,分别加入0.6g NaOH和0.5g氯乙酸并水浴超声2h,能够将SWNTs表面的-OH转化为–COOH,然后NaOH中和并通过多次冲洗和离心进一步纯化,将溶液通过冷冻真空干燥机中干燥得到羧基官能化的SWNTs,即SWNTs-COOH;
(2)活化SWNTs-COOH;
称取一定量的SWNTs-COOH固体溶于超纯水中,配制成浓度为4mg/mL的溶液,并超声使其分散均匀。
2mL含NHS(50mM)和EDC(200mM)的溶液中加入2mL的SWNTs-COOH(4mg/mL),室温下温育12h,经离心活化羧基官能团,冻干得到固体,即活化的SWNTs-COOH。
(3)SWNTs-N3的制备:
将活化的羧基官能化单壁碳纳米管溶解于10%的甲醇溶液中超声3h左右,然后将5mL SWNTs-COOH(2mg/mL)和100mg N3-PEG-NH2加入到10mL HEPES缓冲溶液(0.1M,pH 7.4)中并充分混合,室温下反应12h,通过-COOH和-NH2的共价结合形成叠氮官能化单壁碳纳米管(SWNTs-N3)。通过离心(12000rpm,30min)除去过量的N3-PEG-NH2等游离分子,然后用冷冻真空干燥机进行干燥后称取一定量SWNTs-N3固体。
图1为官能化的碳纳米管的FT-IR光谱。从图1我们可以明显的观察到未经修饰的SWNTs具有4个具有代表性的特征峰,分别是3438、2925、2852和1633cm-1处的峰值,分别对应于-OH拉伸振动、C-H不对称拉伸振动、C-H对称拉伸振动和C-OH拉伸振动。相对于SWNTs,1633cm-1处的峰值移动到1617cm-1处标志着羧基官能化的单壁碳纳米管(SWNTs-COOH)的成功合成。在SWNTs-COOH的基础上,2104cm-1处的峰值标志着叠氮官能团(-N3)的成功合成,与SWNTs相比,两者在1633cm-1处的峰值几乎未发生明显变化。从整体的FT-IR光谱上我们可以观察到初始的SWNTs、羧化以及叠氮化的SWNTs三者的基本结构并未发生明显的变化。

Claims (6)

1.叠氮官能化碳纳米管的制备方法,其特征在于,包括如下步骤:
(1)SWNTs-COOH的制备:
将碳纳米管SWNTs超声分散,制得SWNTs溶液;
在SWNTs溶液中,依次加入NaOH和氯乙酸超声,将SWNTs表面的-OH官能团转化为–COOH官能团;然后用NaOH中和掉未反应的氯乙酸,离心纯化,冷冻干燥,羧基官能化的SWNTs,即SWNTs-COOH;
(2)活化SWNTs-COOH;
将步骤(1)制备的SWNTs-COOH固体溶于超纯水中,超声分散均匀,得到SWNTs-COOH溶液,然后加入含NHS和EDC的溶液,室温下温育,离心,得到活化的SWNTs-COOH;
(3)SWNTs-N3的制备:
将步骤(2)制得的活化SWNTs-COOH溶于甲醇溶液中,超声分散得SWNTs-COOH的甲醇溶液,然后与N3-PEG-NH2一起加入到HEPES缓冲溶液中充分混合,室温下反应发生共价结合作用,离心,冷冻干燥,得到叠氮官能化的碳纳米管。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中,SWNTs溶液、NaOH和氯乙酸的用量比例为5mL:0.6g:0.5g;其中,SWNTs溶液的浓度为2mg/mL;超声时间为2h。
3.如权利要求1所述的制备方法,其特征在于,步骤(2)中,SWNTs-COOH溶液、含NHS和EDC的溶液的体积比为1:1,其中,SWNTs-COOH溶液的浓度为4mg/mL;含NHS和EDC的溶液中,NHS的浓度为50mM,EDC的浓度为200mM。
4.如权利要求1所述的制备方法,其特征在于,步骤(2)中,室温下温育的时间为12h。
5.如权利要求1所述的制备方法,其特征在于,步骤(3)中,SWNTs-COOH的甲醇溶液、N3-PEG-NH2和HEPES缓冲溶液的用量比为5mL:100mg:10mL,其中,SWNTs-COOH的甲醇溶液浓度为2mg/mL,N3-PEG-NH2的聚合度为6,HEPES缓冲溶液的浓度为0.1M,pH为7.4。
6.如权利要求1所述的制备方法,其特征在于,步骤(3)中,甲醇溶液中,甲醇的体积百分数为10%,超声时间为3h;室温下反应时间为12h。
CN202110277215.8A 2021-03-15 2021-03-15 叠氮官能化碳纳米管的制备方法 Active CN112960666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110277215.8A CN112960666B (zh) 2021-03-15 2021-03-15 叠氮官能化碳纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110277215.8A CN112960666B (zh) 2021-03-15 2021-03-15 叠氮官能化碳纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN112960666A CN112960666A (zh) 2021-06-15
CN112960666B true CN112960666B (zh) 2022-04-26

Family

ID=76279224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110277215.8A Active CN112960666B (zh) 2021-03-15 2021-03-15 叠氮官能化碳纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN112960666B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607947B (zh) * 2021-08-17 2024-02-09 江苏大学 基于聚集诱导发射标记的核酸适配体和叠氮官能化单壁碳纳米管对甲胎蛋白的检测方法
CN114518453B (zh) * 2022-01-26 2023-05-16 东北农业大学 一种多壁碳纳米管复合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559942A (zh) * 2009-05-27 2009-10-21 上海交通大学 逐层点击化学法合成功能化碳纳米管的方法
CN103524791A (zh) * 2013-07-18 2014-01-22 北京化工大学 一种聚丙烯酸共价功能化碳纳米管抗静电剂的制备方法
CN110156962A (zh) * 2018-12-03 2019-08-23 华东理工大学 一种具有聚集诱导发光特性的高分子和其共价修饰碳纳米管及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559942A (zh) * 2009-05-27 2009-10-21 上海交通大学 逐层点击化学法合成功能化碳纳米管的方法
CN103524791A (zh) * 2013-07-18 2014-01-22 北京化工大学 一种聚丙烯酸共价功能化碳纳米管抗静电剂的制备方法
CN110156962A (zh) * 2018-12-03 2019-08-23 华东理工大学 一种具有聚集诱导发光特性的高分子和其共价修饰碳纳米管及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3D, covalent and noncovalent hybrid materials based on 3-phenylcoumarin derivatives and single walled carbon nanotubes as gas sensing layers;Maxim S. Polyakov等;《Applied Surface Science》;20191028;144276-1至144276-8 *
Polysulfone-based composite membranes with functionalized carbon nanotubes show controlled porosity and enhanced electrical conductivity;S. Mangukiya等;《J. APPL. POLYM. SCI.》;20160430;43778-1至43778-8 *

Also Published As

Publication number Publication date
CN112960666A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Zhu et al. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications
CN112960666B (zh) 叠氮官能化碳纳米管的制备方法
Geng et al. A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin
Zhu et al. Recent advances for cyclodextrin-based materials in electrochemical sensing
Cai et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection
Gao et al. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors
Lin et al. Advances toward bioapplications of carbon nanotubes
Zhao et al. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide
Liu et al. Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/CdSe quantum dots nanocomposites for ultrasensitive determination of human interleukin-6
Sobhanie et al. Recent trends and advancements in electrochemiluminescence biosensors for human virus detection
Hong et al. Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: Application to “turn-on” DNA sensing in biological media
Su et al. Graphene and graphene oxides: recent advances in chemiluminescence and electrochemiluminescence
Alhazmi et al. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements
Shao et al. Stretch–stowage–growth strategy to fabricate tunable triply-amplified electrochemiluminescence immunosensor for ultrasensitive detection of pseudorabies virus antibody
Lan et al. Facile synthesis of novel reduced graphene oxide@ polystyrene nanospheres for sensitive label-free electrochemical immunoassay
Chen et al. Exonuclease-assisted target recycling for ultrasensitive electrochemical detection of microRNA at vertically aligned carbon nanotubes
Wang et al. Graphene-assisted label-free homogeneous electrochemical biosensing strategy based on aptamer-switched bidirectional DNA polymerization
Yang et al. Graphene oxide based ultrasensitive flow-through chemiluminescent immunoassay for sub-picogram level detection of chicken interferon-γ
Assali et al. Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail
CN108152260A (zh) 一种检测尿酸的荧光传感器及其制备方法
Sánchez-Pomales et al. DNA-functionalized carbon nanotubes for biosensing applications
Amiri et al. Graphene-family materials in electrochemical aptasensors
Pandey et al. Biosensors: fundamentals and applications
Gao et al. A general strategy to prepare homogeneous and reagentless GO/lucigenin&enzyme biosensors for detection of small biomolecules
Kim et al. Immobilization of avidin on the functionalized carbon nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant