CN112958158A - 一类双配体稀土配合物光催化剂及其制备方法和应用 - Google Patents

一类双配体稀土配合物光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112958158A
CN112958158A CN202110215734.1A CN202110215734A CN112958158A CN 112958158 A CN112958158 A CN 112958158A CN 202110215734 A CN202110215734 A CN 202110215734A CN 112958158 A CN112958158 A CN 112958158A
Authority
CN
China
Prior art keywords
rare earth
ligand
photocatalyst
dual
hydroxypyrazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110215734.1A
Other languages
English (en)
Other versions
CN112958158B (zh
Inventor
杨廷海
寇玮智
林陈兰
陈艳飞
王欣
陈超越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN202110215734.1A priority Critical patent/CN112958158B/zh
Publication of CN112958158A publication Critical patent/CN112958158A/zh
Application granted granted Critical
Publication of CN112958158B publication Critical patent/CN112958158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/36Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/37Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/38Lanthanides other than lanthanum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一类双配体稀土配合物光催化剂及其制备方法和应用,该光催化剂的化学表达式为{Ln(NO3)(hpcH)(phen)}n,化学表达式中的hpcH2‑为5‑羟基吡唑‑3‑羧酸有机配体阴离子,phen为1,10‑邻菲罗啉,Ln=Gd、La、Y,Ln3+通过与5‑羟基吡唑‑3‑羧酸有机配体离子连接形成二维层状结构,phen分子和NO3 离子排列在波浪层的两侧;该光催化剂的合成方法简单便捷,反应条件温和;在常温、可见光条件下可高效地催化降解可溶性偶氮染料,且该类催化剂可循环利用并保持结构稳定,这为水体中有机染料污染物的降解提供了新的选择。

Description

一类双配体稀土配合物光催化剂及其制备方法和应用
技术领域
本发明属于配位化合物合成技术领域,具体涉及一类双配体稀土配合物光催化剂及其制备方法和应用。
背景技术
随着科学技术和工业化的快速发展,众多化学品进入了人们的生活,化学材料在丰富人们的物质生活的同时,也给人类的生存环境造成了一定程度的威胁。其中,染料化合物作为工业废水中最常见的有机污染物之一,具有种类繁多、结构复杂和稳定性高的特点。为了使因染料化合物的使用造成的环境污染问题得到有效遏制,各种吸附、膜分离和光催化处理技术都得到了广泛的应用发展。从环境操作条件和成本效益的角度来看,光催化技术可以被认为是一种最有效的策略,其可用于高效去除废水中的染料污染物。
TiO2、ZnO、CdS等半导体光催化剂已被证实可以高效地将多种有机污染物降解为毒性较小的分子或是直接降解为无害的CO2和H2O,但是这些半导体光催化剂存在因带隙窄而导致光能利用率低的问题,且其在光照条件下较易腐蚀,金属离子向水中移动容易造成第二次污染(参见Energy Environ.Sci.,2014,7,2831-2867)。鉴于这些不足,人们在开发新的半导体材料作为光催化材料以降解不同类型的有机污染物方面作出了持续性改进并为此付出了巨大的努力。
配位聚合物(CPs)是一类由金属离子和有机配体自组装形成的配合物,其比表面积大,热稳定性和化学稳定性良好,有序的多孔结构可以大大缩短光产生电子传输到表面的空穴之间的距离,在一定程度上有效地阻断了光-电子-空穴复合,从而提高了光催化性能。与传统的无机材料相比,配位聚合物的合成可以选择合适的有机配体、金属离子或反应条件,实现其对光的吸收能力的可调性。其中,选择合适的有机配体是使配合物半导体催化剂光吸收能力增强的的最佳途径。
5-羟基吡唑-3-羧酸是具有N、O配位原子杂环羧基和羟基三官能团的多齿有机配体。它在构成配合物时可以形成丰富多样的空间结构,也具有很好的吸光系数。1,10-邻菲罗啉作为第二配体,可以调控配合物的结构和吸光性能。基于此,本发明开发一种以5-羟基吡唑-3-羧酸和1,10-邻菲罗啉为双配体的一类稀土配合物光催化剂。此类材料的开发将可弥补现有技术中的不足,给光催化降解有机染料领域提供新的解决途径并拓宽相应问题的解决思路。
发明内容
针对背景技术中存在的问题,本发明的目的在于提供一类双配体稀土配合物光催化剂及其制备方法和应用,该配位聚合物的合成过程简单,光催化效果好。
本发明的技术方案如下:一类双配体稀土配合物光催化剂,该光催化剂的化学表达式为{Ln(NO3)(hpcH)(phen)}n,化学表达式中的hpcH2-为5-羟基吡唑-3-羧酸有机配体阴离子,phen为1,10-邻菲罗啉,Ln=Gd、La、Y,Ln3+通过与5-羟基吡唑-3-羧酸有机配体离子连接形成二维层状结构,phen分子和NO3 -离子排列在波浪层的两侧;其分子结构如下:
Figure BDA0002953681480000021
进一步地,该光催化剂属于单斜晶系,P21/c空间群。
上述双配体稀土配合物光催化剂的制备方法如下:
1)将5-羟基吡唑-3-羧酸和1,10-邻菲罗啉溶于溶剂中,按照一定比例加入稀土金属盐,混合均匀;
2)将步骤1)所得混合物放在烘箱内进行溶剂热反应,反应结束后冷却至室温,得到目标产物。
进一步地,步骤1)中所述稀土金属盐为硝酸钆、硝酸镧或硝酸钇;所述溶剂为蒸馏水。
进一步地,步骤1)中,5-羟基吡唑-3-羧酸与1,10-邻菲罗啉的摩尔比为1:1~1:2,5-羟基吡唑-3-羧酸与稀土金属盐的摩尔比为1:2~1:4;5-羟基吡唑-3-羧酸与溶剂的摩尔体积比为0.04mmol:(3~5)mL。
进一步地,在烘箱内进行反应时,反应温度为120℃~130℃,反应时间为2~3天。
上述双配体稀土配合物光催化剂可在可见光照射条件下催化降解亚甲基蓝和刚果红偶氮染料,且可多次循环利用。
相比于现有技术,本发明具有如下优点:
本发明公开的双配体稀土配合物光催化剂的制备方法简单便捷,反应条件温和,制备效率高;
利用本发明公开方法所制得产物的结构稳定,催化性能优越,可重复循环利用,且多次循环后催化降解效率基本不变、聚合物结构仍能保持稳定,这为水体中有机染料的降解提供了新的选择;
本发明制备的双配体稀土配合物光催化剂在常温、可见光照条件下可高效地催化降解可溶性偶氮染料,其中双配体的镧配合物光催化剂对亚甲基蓝和刚果红的降解效率分别达到86.19%和71.62%,双配体的钇配合物光催化剂对亚甲基蓝和刚果红的降解效率分别达到93.60%和87.12%。
附图说明
图1是实施例所得双配体钆配合物光催化剂的晶体学数据图;
图2是实施例所得双配体钆配合物光催化剂的配位环境图;
图3是应用例1所得镧配合物光催化剂催化光降解亚甲基蓝的可见光吸收光谱图;
图4是应用例1所得镧配合物光催化剂催化光降解亚甲基蓝循环3次浓度变化速率图;
图5是应用例1所得镧配合物光催化剂催化光降解刚果红的可见光吸收光谱图;
图6是应用例1所得镧配合物光催化剂催化光降解刚果红循环3次浓度变化速率图;
图7是应用例1所得钇配合物光催化剂催化光降解亚甲基蓝的可见光吸收光谱图;
图8是应用例1所得钇配合物光催化剂催化光降解亚甲基蓝循环3次浓度变化速率图;
图9是应用例1所得钇配合物光催化剂催化光降解刚果红的可见光吸收光谱图;
图10是应用例1所得钇配合物光催化剂催化光降解刚果红循环3次浓度变化速率图;
图11是应用例1所得镧配合物光催化剂催化光降解循环的PXRD图;
图12是应用例1所得钇配合物光催化剂催化光降解循环的PXRD图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1:
一类双配体稀土配合物光催化剂的制备方法,包括如下步骤:
称取0.0052g 5-羟基吡唑-3-羧酸(0.04mmol)和0.0159g 1,10-邻菲罗啉(0.08mmol)溶于2mL蒸馏水中,制得有机配体溶液;
称取0.04512g硝酸钆(0.1mmol)溶于1mL蒸馏水中形成硝酸钆溶液;或称取0.04332g硝酸镧(0.1mmol)溶于1mL蒸馏水中形成硝酸镧溶液;或称取0.0383g硝酸钇(0.1mmol)溶于1mL蒸馏水中形成硝酸钇溶液;
将硝酸钆溶液或硝酸镧溶液或硝酸钇溶液加入到有机配体溶液中混合均匀,得澄清透明的混合溶液,于120℃的密闭烘箱中反应3天,冷却至室温,得淡黄色块状晶体即为双配体的钆配合物光催化剂或镧配合物光催化剂或钇配合物光催化剂,产率分别为30.3%,19.4%和28.5%。
对本实施例的产物进行红外光谱表征,具体结果为:
钆配合物IR(KBr,cm-1):3232(m),2364(w),1579(s),1531(s),1438(s),1361(m),1267(w),1159(m),1011(m),850(w),758(m),651(w),570(w),461(w)。
镧配合物IR(KBr,cm-1):3321(w),3103(W),1593(s),1560(s),1506(s),1434(s),1367(s),1281(s),1175(w),1103(w),1010(w),851(m),765(w),725(s),682(s),568(s),487(s)。
钇配合物IR(KBr,cm-1):3323(w),1590(s),1518(s),1494(s),1432(s),1374(m),1296(s),1114(w),1106(w),1014(w),856(m),764(w),713(m),673(w)。
实施例2:
一类双配体稀土配合物光催化剂的制备方法,包括如下步骤:
称取0.0052g 5-羟基吡唑-3-羧酸(0.04mmol)和0.0159g 1,10-邻菲罗啉(0.08mmol)溶于2mL蒸馏水中,制得有机配体溶液;
称取0.04512g硝酸钆(0.1mmol)溶于1mL蒸馏水中形成硝酸钆溶液;或称取0.04332g硝酸镧(0.1mmol)溶于1mL蒸馏水中形成硝酸镧溶液;或称取0.0383g硝酸钇(0.1mmol)溶于1mL蒸馏水中形成硝酸钇溶液;
将硝酸钆溶液或硝酸镧溶液或硝酸钇溶液加入到有机配体溶液中混合均匀,得澄清透明的混合溶液,于130℃的密闭烘箱中反应2天,冷却至室温,得淡黄色块状晶体即为双配体的钆配合物光催化剂或镧配合物光催化剂或钇配合物光催化剂,产率分别为33.2%,21.3%和29.4%。
对本实施例所得产物进行红外光谱表征,具体结果为:
钆配合物IR(KBr,cm-1):3232(m),2363(w),1581(s),1532(s),1435(s),1363(m),1264(w),1158(m),1011(m),851(w),756(m),652(w),572(w),460(w)。
镧配合物IR(KBr,cm-1):3320(w),3101(W),1591(s),1559(s),1504(s),1432(s),1368(s),1280(s),1173(w),1105(w),1011(w),850(m),765(w),725(s),681(s),565(s),485(s)。
钇配合物IR(KBr,cm-1):3324(w),1590(s),1517(s),1493(s),1431(s),1375(m),1295(s),1113(w),1105(w),1013(w),857(m),765(w),714(m),674(w)。
实施例3:
一类双配体稀土配合物光催化剂的制备方法,包括如下步骤:
称取0.0052g 5-羟基吡唑-3-羧酸(0.04mmol)和0.0159g 1,10-邻菲罗啉(0.08mmol)溶于2mL蒸馏水中,制得有机配体溶液;
称取0.0675g硝酸钆(0.15mmol)溶于1mL蒸馏水中形成硝酸钆溶液;或称取0.06498g硝酸镧(0.15mmol)溶于1mL蒸馏水中形成硝酸镧溶液;或称取0.0575g硝酸钇(0.15mmol)溶于1mL蒸馏水中形成硝酸钇溶液;
将硝酸钆溶液或硝酸镧溶液或硝酸钇溶液加入到有机配体溶液中混合均匀,得澄清透明的混合溶液,于120℃的密闭烘箱中反应3天,冷却至室温,得淡黄色块状晶体即为双配体的钆配合物光催化剂或镧配合物光催化剂或钇配合物光催化剂,产率分别为29.8%,19.1%和27.2%。
对本实施例所得产物进行红外光谱表征,具体结果为:
钆配合物IR(KBr,cm-1):3230(m,2362(w),1578(s),1532(s),1436(s),1360(m),1269(w),1156(m),1010(m),852(w),756(m),652(w),572(w),461(w)。
镧配合物IR(KBr,cm-1):3324(w),3103(W),1592(s),1566(s),1500(s),1436(s),1361(s),1284(s),1175(w),1102(w),1017(w),853(m),764(w),727(s),683(s),565(s),486(s)。
钇配合物IR(KBr,cm-1):3323(w),1590(s),1515(s),1498(s),1434(s),1379(m),1293(s),1118(w),1106(w),1011(w),854m),762(w),717(m),673(w)。
对上述实施例所制得的产物——双配体的钆配合物光催化剂进行X射线单晶衍射测试,测得的晶体学数据见图1。
由单晶衍射结构测试可知,本发明的双配体的稀土配合物光催化剂化学表达式为{Ln(NO3)(hpcH)(phen)}n(Ln=Gd,La,Y),化学表达式中的hpcH2-为5-羟基吡唑-3-羧酸有机配体离子,phen为1,10-邻菲罗啉,其分子结构为:
Figure BDA0002953681480000061
它的每个不对称单元含有1个稀土离子Ln3+、1个去质子化有机配体(hpcH2-)、1个phen分子和1个NO3 -离子;Ln3+通过与5-羟基吡唑-3-羧酸有机配体离子连接形成波浪型的二维层状结构,phen分子和NO3 -离子排列在波浪层的两侧。
以钆为例,双配体钆配合物光催化剂的配位环境图如图2所示,由图2可知,Gd(Ⅲ)为八配位方式,与五个氧原子(O1B、O2、O3C、O4、O5、O6)和一个氮原子(N1)配位。
应用例1
将实施例1制得的双配体的镧配合物或钇配合物作为光催化剂,在室温下进行可见光催化降解亚甲基蓝和刚果红,采用氙灯模拟可见光光源。
取50mL浓度为5mg/L的亚甲基蓝水溶液或50mL浓度为50mg/L的刚果红水溶液置于石英反应罐中,加入15mg实施例1制备的双配体镧配合物或双配体钇配合物,在黑暗环境下搅拌30min,达到吸附-解吸平衡后,取样一次。采用氙灯模拟可见光光源进行光降解反应,每隔10min取样一次,共取样10次,取出的悬浊液经10000r/min的转速离心4min后取上层清液测其可见光吸收光谱。
双配体镧配合物光催化剂催化光降解亚甲基蓝和刚果红的浓度变化如图3和图5所示,由图3可知,光照90min后,双配体镧配合物对亚甲基蓝的降解率达到86.19%;由图5可知,光照90min后,双配体镧配合物对刚果红的降解率达到71.62%,可见实施例1制备的双配体镧配合物光催化剂对亚甲基蓝和刚果红都具有高效的催化光降解效率。
双配体钇配合物光催化剂催化光降解亚甲基蓝和刚果红的浓度变化如图7和图9所示,由图7可知,光照90min后,双配体钇配合物对亚甲基蓝的降解率达到93.60%;由图9可知,光照90min后,双配体钇配合物对刚果红的降解率达到87.12%,可见实施例1制备的双配体钇配合物光催化剂对亚甲基蓝和刚果红都具有高效的催化光降解效率。
将实施例1制备的双配体镧配合物和双配体钇配合物光催化剂对亚甲基蓝和刚果红进行了3次循环催化光降解过程,3次循环催化光降解过程的浓度变化速率图如图4、6、8、10所示,由图可知,双配体镧配合物和双配体钇配合物光催化剂在经过3次循环催化光降解亚甲基蓝或刚果红后,其催化效果基本不发生变化,具有较高的光化学活性以及较高的稳定性,可循环利用。
将实施例1制备的双配体镧配合物和双配体钇配合物光催化剂在进行3次循环后,分别对配合物进行固液分离,回收的固体部分进行PXRD测试,谱图如图11和12所示,由图11和12可知,回收的双配体镧配合物和双配体钇配合物的结构没有发生明显变化,化合物具有较高的稳定性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一类双配体稀土配合物光催化剂,其特征在于,该光催化剂的化学表达式为{Ln(NO3)(hpcH)(phen)}n,化学表达式中的hpcH2-为5-羟基吡唑-3-羧酸有机配体阴离子,phen为1,10-邻菲罗啉,Ln=Gd、La或Y;其分子结构如下:
Figure FDA0002953681470000011
2.根据权利要求1所述的一类双配体稀土配合物光催化剂,其特征在于,该光催化剂属于单斜晶系,P21/c空间群。
3.根据权利要求1-2中任一项所述的一类双配体稀土配合物光催化剂的制备方法,其特征在于,具体包括如下步骤:
1)将5-羟基吡唑-3-羧酸和1,10-邻菲罗啉溶于溶剂中,按照一定比例加入稀土金属盐,混合均匀;
2)将步骤1)所得混合物放在烘箱内进行溶剂热反应,反应结束后冷却至室温,得到目标产物。
4.根据权利要求3所述的一类双配体稀土配合物光催化剂的制备方法,其特征在于,步骤1)中所述稀土金属盐为硝酸钆、硝酸镧或硝酸钇;所述溶剂为蒸馏水。
5.根据权利要求3所述的一类双配体稀土配合物光催化剂的制备方法,其特征在于,步骤1)中,5-羟基吡唑-3-羧酸与1,10-邻菲罗啉的摩尔比为1:1~1:2,5-羟基吡唑-3-羧酸与稀土金属盐的摩尔比为1:2~1:4;5-羟基吡唑-3-羧酸与溶剂的摩尔体积比为0.04mmol:(3~5)mL。
6.根据权利要求3所述的一类双配体稀土配合物光催化剂的制备方法,其特征在于,在烘箱内进行反应时,反应温度为120℃~130℃,反应时间为2~3天。
7.根据权利要求1所述的一类双配体稀土配合物光催化剂在光催化降解方面的应用,其特征在于,该材料可在可见光照射条件下催化降解亚甲基蓝和刚果红偶氮染料,且可多次循环利用。
CN202110215734.1A 2021-02-26 2021-02-26 一类双配体稀土配合物光催化剂及其制备方法和应用 Active CN112958158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110215734.1A CN112958158B (zh) 2021-02-26 2021-02-26 一类双配体稀土配合物光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110215734.1A CN112958158B (zh) 2021-02-26 2021-02-26 一类双配体稀土配合物光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112958158A true CN112958158A (zh) 2021-06-15
CN112958158B CN112958158B (zh) 2023-03-10

Family

ID=76275956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110215734.1A Active CN112958158B (zh) 2021-02-26 2021-02-26 一类双配体稀土配合物光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112958158B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316286A (zh) * 2021-11-30 2022-04-12 北京建筑材料科学研究总院有限公司 一种稀土金属配合物及其制备方法和应用
CN114768874A (zh) * 2022-04-21 2022-07-22 北京建筑材料科学研究总院有限公司 一种稀土金属配合物及其制备方法和光催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633823A (zh) * 2012-02-23 2012-08-15 沈阳化工大学 一种稀土金属配合物及其制备方法
CN106589396A (zh) * 2016-11-11 2017-04-26 吉林师范大学 基于4‑hncp和对苯二甲酸为混合配体的稀土配合物、制备方法、晶体结构及其应用
CN109320532A (zh) * 2018-10-19 2019-02-12 江苏理工学院 具有催化光降解偶氮染料功能的镉配合物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633823A (zh) * 2012-02-23 2012-08-15 沈阳化工大学 一种稀土金属配合物及其制备方法
CN106589396A (zh) * 2016-11-11 2017-04-26 吉林师范大学 基于4‑hncp和对苯二甲酸为混合配体的稀土配合物、制备方法、晶体结构及其应用
CN109320532A (zh) * 2018-10-19 2019-02-12 江苏理工学院 具有催化光降解偶氮染料功能的镉配合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEILING CHENG ET AL: "《Effect of N ancillary ligands on the structure,nuclearity and magnetic behavior of Cu(II)–pyrazolecarboxylate complexes》" *
翟长伟 等: "《以5-甲基-3-吡唑甲酸和菲咯啉为配体的锰和镉的配合物的合成、晶体结构和荧光性能》" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316286A (zh) * 2021-11-30 2022-04-12 北京建筑材料科学研究总院有限公司 一种稀土金属配合物及其制备方法和应用
CN114768874A (zh) * 2022-04-21 2022-07-22 北京建筑材料科学研究总院有限公司 一种稀土金属配合物及其制备方法和光催化剂

Also Published As

Publication number Publication date
CN112958158B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
Yi et al. A series of multifunctional metal–organic frameworks showing excellent luminescent sensing, sensitization, and adsorbent abilities
CN112958158B (zh) 一类双配体稀土配合物光催化剂及其制备方法和应用
Chang et al. A 3D Ag (I) metal-organic framework for sensing luminescence and photocatalytic activities
Wang et al. Fluorescence detection of anilines and photocatalytic degradation of Rhodamine B by a multifunctional metal–organic framework
CN109395761B (zh) 一种氮掺杂BiOIO3光催化剂的制备方法及其应用
Hou et al. Photocatalytic Application of 4f–5f Inorganic–Organic Frameworks: Influence of Lanthanide Contraction on the Structure and Functional Properties of a Series of Uranyl–Lanthanide Complexes
CN110639610B (zh) 一种富缺陷BiOCl/TPP复合光催化剂的制备方法及其应用
Chen et al. A [Cu4I] cluster based metal-organic framework to detect F− ions
Zuo et al. A 3D binuclear salen-based multifunctional MOF: Degradation of MO dye and highly selective sensing of Fe3+
Su et al. Significant enhancement of pesticide and organic dyes degradation by ion-exchange within a metal–organic framework
CN111004397B (zh) 一类富电子体系的金属有机框架分子材料及其在光催化还原重金属离子中的应用
CN115254189B (zh) 一种铁尾矿砂mof复合光催化剂及其制备方法、应用
Chen et al. An acid-base resistant polyoxometalate-based metal–organic framework constructed from {Cu4Cl} 7+ and {Cu2 (CO2) 4} clusters for photocatalytic degradation of organic dye
CN108640934A (zh) 一种金属镉有机骨架材料及其制备方法和应用
Guo et al. Synthesis, structure and photocatalytic property of the 1D oxalate-bridged coordination polymer of manganese (II)
CN103127958A (zh) 一种金属铜卟啉/二氧化钛复合光催化剂的制备及其应用
CN104262275B (zh) 一种银-偶氮四唑金属有机框架材料及其制备方法和应用
CN108424524A (zh) 一种铜(ii)配位聚合物及其制备方法与应用
Guo et al. Construction of visible‐light‐responsive metal–organic framework with pillared structure for dye degradation and Cr (VI) reduction
Ma et al. Synthesis of two different Ni (II) coordination polymers by introduction of carboxylic acid ligands: Crystal structure and photocatalytic properties
Shi et al. A rigid and porous metal-organic frameworks with 1D rhombus channels and double walls: Selective adsorption of CO2 over N2, iodine capture, and fluorescence
Qiu et al. Cd (II) frameworks with tetracarboxylate and imidazole-containing ligands: Syntheses, structures, adsorption and sensing properties
Wu et al. An uncommon 3D (3, 8)-connected metal-organic framework: Luminescence sensing and photocatalytic properties
Li et al. Synthesis and Characterization of 2D and 3D Zinc (II) Coordination Polymers with High Photocatalytic Activities for Removal of Methylene Blue Dye
CN111518282B (zh) 可见光催化降解有机染料的羟基吡唑羧酸镉配位聚合物及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant