CN112951351B - 一种基于行限制覆盖阵列的药物临床试验设计方法 - Google Patents

一种基于行限制覆盖阵列的药物临床试验设计方法 Download PDF

Info

Publication number
CN112951351B
CN112951351B CN202110345909.0A CN202110345909A CN112951351B CN 112951351 B CN112951351 B CN 112951351B CN 202110345909 A CN202110345909 A CN 202110345909A CN 112951351 B CN112951351 B CN 112951351B
Authority
CN
China
Prior art keywords
row
coverage array
array
coverage
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110345909.0A
Other languages
English (en)
Other versions
CN112951351A (zh
Inventor
彭茂
张媛
卢长娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Desheng pharmaceutical Polytron Technologies Inc. match
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN202110345909.0A priority Critical patent/CN112951351B/zh
Publication of CN112951351A publication Critical patent/CN112951351A/zh
Application granted granted Critical
Publication of CN112951351B publication Critical patent/CN112951351B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/20ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/40ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

本发明公开了一种药物临床试验方案的设计方法,包括以下步骤:步骤1、将临床试验方案转化为行限制覆盖阵列设计问题;步骤2、构造行数较少的覆盖阵列,生成行限制覆盖阵列;步骤3、将生成的行限制覆盖阵列转化为实际的临床试验方案。本发明构造带有行限制的覆盖阵列,进而得到实际的临床测试方案,与普通的启发式方法相比,本发明立足于已有的覆盖阵列,然后进行数学操作即可得到行限制覆盖阵列,最后将生成的行限制覆盖阵列转化为实际的临床测试方案,时效性优势明显。

Description

一种基于行限制覆盖阵列的药物临床试验设计方法
技术领域
本发明涉及医学检验技术领域,尤其涉及一种基于行限制覆盖阵列的药物临床试验设计方法。
背景技术
临床试验是指在人体内进行的药物药理研究,用以证实或揭示试验药物的作用、不良反应及试验药物的吸收、分布、代谢和***等情况。在新药的上市前,临床试验都是必不可少的环节。同时,临床试验的成本一直居高不下,单种药物的临床试验其所需的资金便能轻易达到十亿级别。在新药的上市前,临床试验都是必不可少的环节,在测试不同种药物的互相影响时,常使用正交表或覆盖表用以减少实验次数,同时由于试验志愿者一次所能服用的药物的数量需要严格控制,需要对每次实验的强度进行控制。为了降低试验成本,研究人员开发出了很多方法,正交表便是其中一种。
正交表多用于描述多因素、多指标***的实验方案设计,由于其主要关注对因素之间的两两联系的测试,对多因素之间的互现作用考虑较少,因此在药品资源极大丰富的现代社会有时会稍显不足。有鉴于此,适用于多因素检验的工具“覆盖阵列”便走进人们的视野。
覆盖阵列最初应用在软件的组合测试领域,用来测试软件之间的互相影响。当覆盖阵列应用于药物的临床试验时,在测试不同种药物的互相影响时,会受到更多的制约,例如,由于试验志愿者一次所能服用的药物的数量需要严格控制,即需要对每次同时实验的项目数进行控制,进而得到实际的临床测试方案,这衍生出了新的组合结构“带有行限制的覆盖阵列”。
关于覆盖阵列和行限制覆盖阵列,不同学者提出了各种构造方法,如组合设计构造法,借助数学工具的差方法等,以及基于计算机搜索的贪心法、粒子群算法等等。
在这些方法中,基于数学原理的方法仅在特定参数设定下能得到较好的计算效果,不能推广到一般参数;而计算机搜索算法较少考虑数学结构,其可以给出一般参数下的可行解,但耗时巨大,在计算时间有限的的情况下可行解的质量往往难以保证。
发明内容
本发明的目的在于提供一种适用广泛、直接启发式方法运行时间短、高效率的基于行限制覆盖阵列的药物临床试验设计方法。
本发明的一种基于行限制覆盖阵列的药物临床试验设计方法,包含以下步骤:
步骤1、将临床试验方案转化为行限制覆盖阵列设计问题,若共有k种药物需要进行组合测试,每种药物有v种剂量,实验者只能同时服用w种药物,且满足则将问题转化为构造带有行限制的覆盖阵列CARL(t,k,v:w),其中,t为覆盖强度,取值为正整数;
步骤2、构造行数较少的覆盖阵列,生成行限制覆盖阵列,具体步骤如下:
步骤2.1、生成初始覆盖阵列A=CA(t,w,v),w列,N1行;
步骤2.2、在初始覆盖阵列的基础上,使用矩阵的填充方法扩充阵列,构造满足参数要求的带有行限制的覆盖阵列B=CARL(t,k,v:w);
步骤2.3、进一步降阶得到新的带有行限制的覆盖阵列C=CARL(t-1,k-1,v:w-1);
步骤3、将生成的行限制覆盖阵列转化为实际的临床试验方案。
进一步地,步骤2.1中,所述生成初始覆盖阵列的方法包括组合设计数学构造、贪心法和进化算法,生成一个强度为t、长度为w、阶数为v的覆盖阵列A=CA(t,w,v),w列,N1行。
进一步地,所述步骤2.2的具体步骤如下:
步骤2.2.1、基于初始覆盖阵列A,生成(t+1)N1×k的空矩阵B,从第一行开始,每N1行记为一组,共t+1组;
步骤2.2.2、记s=k-w,依次将如下位置记为空值“-”:第1组的1~s列,第2组的s+1~2s列,…,第t+1组的ts+1~(t+1)s列,由于
有k≥(t+1)s,保证如上操作的可行性;
步骤2.2.3、填充矩阵B,在B的每一组非空值“-”的位置依次有序将覆盖阵列A的各列循环填入,得到的B为CARL(t,k,v:w),N2行,N2=(t+1)N1
进一步地,所述步骤2.3的具体步骤如下:
步骤2.3.1、在矩阵B中任取一列,在其中任取非空值“-”的元素,设为x;
步骤2.3.2、提取B中所有在此列上取值为x的行,并删除该列,生成新矩阵C,C是一个降阶的带有行限制的覆盖阵列CARL(t-1,k-1,v:w-1),N3行,选取适当的元素x,能确保C的行数满足N3≤tN1/v。
有益效果
与现有技术相比,本发明具有如下显著优点:
(1)本发明构造带有行限制的覆盖阵列,进而得到实际的临床测试方案,与普通的启发式方法相比,本发明立足于已有的覆盖阵列,然后进行数学操作即可得到行限制覆盖阵列,最后将生成的行限制覆盖阵列转化为实际的临床测试方案,时效性优势明显。
(2)本发明适用广泛、较直接启发式方法运行时间短、效率高。
附图说明
图1是本发明的流程图。
具体实施方式
实施例
假设有8类药物需要进行三三组合测试,每一类药物有两种备选,实验者只能同时服用6类药物,将问题转化为构造带有行限制的覆盖阵列CARL(3,8,2:6),此时t=3,k=8,v=2,w=6。
首先以任意方法(如贪心法、遗传算法等等)构造出覆盖阵列A=CA(3,6,2),如下表所示,假设我们构造出的基础覆盖阵列的行数为N1=12:
然后将矩阵A复制成t+1=4组,每一组依次添加s=k-w=2个空值列(空值记为“-”),则得到矩阵B:
此时,矩阵B的列数为8、行数为48,每行的非空值元素个数恰为6,任取B中3列,此3列都包含所有的3因子排列,所以矩阵B是一个48行的行限制覆盖阵列CARL(3,8,2:6)。
进一步,若提取矩阵B的第一列元素为0的所有行,并删除第一列,则可得到如下矩阵C:
任取C中2列,此2列都包含所有的2因子排列,此矩阵是一个行数为18的行限制覆盖阵列CARL(2,7,2:5)。
从上述构造行限制覆盖阵列CARL(3,8,2:6)和CARL(2,7,2:5)的过程可以看出,我们的构造只需在小阶数的普通覆盖阵列CA(3,6,2)的基础上进行数学变换,不需额外的计算机搜索;而小阶数的普通覆盖阵列目前学术界的研究已非常成熟,部分构造可以通过查表或者通过标准计算包获得,因此,本发明提出的行限制覆盖阵列的构造方法相较于普通的启发式方法有显然的时间优越性,进而,在具体的临床试验方案设计上有更高的效率。

Claims (4)

1.一种基于行限制覆盖阵列的药物临床试验设计方法,其特征在于,包含以下步骤:
步骤1、将临床试验方案转化为行限制覆盖阵列设计问题,若共有k种药物需要进行组合测试,每种药物有v种剂量,实验者只能同时服用w种药物,且满足则将问题转化为构造带有行限制的覆盖阵列CARL(t,k,v:w),其中,t为覆盖强度,取值为正整数;
步骤2、构造满足参数要求的带有行限制的覆盖阵列,生成行限制覆盖阵列,具体步骤如下:
步骤2.1、生成初始覆盖阵列A=CA(t,w,v),w列,N1行;
步骤2.2、在初始覆盖阵列的基础上,使用矩阵的填充方法扩充阵列,构造满足参数要求的带有行限制的覆盖阵列B=CARL(t,k,v:w);
步骤2.3、进一步降阶得到新的带有行限制的覆盖阵列C=CARL(t-1′k-1,v:w-1);
步骤3、将生成的行限制覆盖阵列转化为实际的临床试验方案;
所述步骤2.2的具体步骤如下:
步骤2.2.1、基于初始覆盖阵列A,生成(t+1)N1×k的空矩阵B,从第一行开始,每N1行记为一组,共t+1组;
步骤2.2.2、记s=k-w,依次将如下位置记为空值“-”:第1组的1~s列,第2组的s+1~2s列,…,第t+1组的ts+1~(t+1)s列,由于
有k≥(t+1)s,保证如上操作的可行性;
步骤2.2.3、填充矩阵B,在B的每一组非空值“-”的位置依次有序将覆盖阵列A的各列循环填入,得到的B为CARL(t,k,v:w),N2行,N2=(t+1)N1
2.根据权利要求1所述的基于行限制覆盖阵列的药物临床试验设计方法,其特征在于,步骤2.1中,所述生成初始覆盖阵列的方法包括组合设计数学构造、贪心法和进化算法。
3.根据权利要求1所述的基于行限制覆盖阵列的药物临床试验设计方法,其特征在于,所述步骤2.3的具体步骤如下:
步骤2.3.1、在矩阵B中任取一列,在其中任取非空值“-”的元素,设为x;
步骤2.3.2、提取B中所有在此列上取值为x的行,并删除该列,生成新矩阵C,C是一个降阶的带有行限制的覆盖阵列CARL(t-1,k-1,v:w-1),N3行。
4.根据权利要求3所述的基于行限制覆盖阵列的药物临床试验设计方法,其特征在于,步骤2.3.2中,选取适当的元素x,确保所述矩阵C的行数满足N3≤tN1/v。
CN202110345909.0A 2021-03-31 2021-03-31 一种基于行限制覆盖阵列的药物临床试验设计方法 Active CN112951351B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110345909.0A CN112951351B (zh) 2021-03-31 2021-03-31 一种基于行限制覆盖阵列的药物临床试验设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110345909.0A CN112951351B (zh) 2021-03-31 2021-03-31 一种基于行限制覆盖阵列的药物临床试验设计方法

Publications (2)

Publication Number Publication Date
CN112951351A CN112951351A (zh) 2021-06-11
CN112951351B true CN112951351B (zh) 2023-08-22

Family

ID=76231294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110345909.0A Active CN112951351B (zh) 2021-03-31 2021-03-31 一种基于行限制覆盖阵列的药物临床试验设计方法

Country Status (1)

Country Link
CN (1) CN112951351B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111400176A (zh) * 2020-03-10 2020-07-10 中国船舶工业综合技术经济研究院 高可信软件的测试序列生成方法及***、测试方法及***
CN112563432A (zh) * 2020-12-04 2021-03-26 深圳市华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010426A1 (en) * 2004-07-09 2006-01-12 Smartware Technologies, Inc. System and method for generating optimized test cases using constraints based upon system requirements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111400176A (zh) * 2020-03-10 2020-07-10 中国船舶工业综合技术经济研究院 高可信软件的测试序列生成方法及***、测试方法及***
CN112563432A (zh) * 2020-12-04 2021-03-26 深圳市华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法

Also Published As

Publication number Publication date
CN112951351A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Greene et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape
Achtziger et al. Equivalent displacement based formulations for maximum strength truss topology design
Aluru et al. Parallel biological sequence comparison using prefix computations
Kaufman et al. A method for separable nonlinear least squares problems with separable nonlinear equality constraints
Beck et al. Computational study and comparisons of LFT reducibility methods
Zhang et al. A novel stochastic optimization method to efficiently synthesize large‐scale nonsharp distillation systems
US20020120618A1 (en) Integrated database system and program storage medium
Berger et al. An extension of the DQA algorithm to convex stochastic programs
Amir et al. Two-dimensional periodicity in rectangular arrays
CN112951351B (zh) 一种基于行限制覆盖阵列的药物临床试验设计方法
Zagaris et al. Two perspectives on reduction of ordinary differential equations
Liu et al. Method of updating the Cholesky factorization for structural reanalysis with added degrees of freedom
CN101980218A (zh) 一种基于模板的集成设计平台
Blythe et al. Stochastic ballistic annihilation and coalescence
Ding et al. Finite approximations of Markov operators
Kepner et al. Associative arrays: Unified mathematics for spreadsheets, databases, matrices, and graphs
Keenan et al. Fast arithmetic in algorithmic self-assembly
Zylka A note on the attainability of states by equalizing processes
Panagiotopoulos et al. A group-based space-filling design of experiments algorithm
Shi et al. Selection of initial designs for multi-objective optimization using classification and regression tree
Bustnay et al. How many systems are there?—using the N2 method for systems partitioning
He et al. Fuzzy clustering method based on perturbation
Castro et al. On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach
Lin et al. Net assignment for the FPGA-based logic emulation system in the folded-clos network structure
Ignatovich et al. Physical surrogates in design optimization for enhanced crashworthiness

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240508

Address after: 101100 No. 558 Chuangyi West Road, East District, Economic Development Zone, Tongzhou District, Beijing

Patentee after: Beijing Desheng pharmaceutical Polytron Technologies Inc. match

Country or region after: China

Address before: 210044 No. 219 Ning six road, Jiangbei new district, Nanjing, Jiangsu

Patentee before: Nanjing University of Information Science and Technology

Country or region before: China