CN112946343B - 一种架空线工频电压测量装置及测量方法 - Google Patents

一种架空线工频电压测量装置及测量方法 Download PDF

Info

Publication number
CN112946343B
CN112946343B CN202110123117.9A CN202110123117A CN112946343B CN 112946343 B CN112946343 B CN 112946343B CN 202110123117 A CN202110123117 A CN 202110123117A CN 112946343 B CN112946343 B CN 112946343B
Authority
CN
China
Prior art keywords
voltage
overhead line
induction sheet
metal induction
circuit module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110123117.9A
Other languages
English (en)
Other versions
CN112946343A (zh
Inventor
卢斌先
黄未啸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202110123117.9A priority Critical patent/CN112946343B/zh
Publication of CN112946343A publication Critical patent/CN112946343A/zh
Application granted granted Critical
Publication of CN112946343B publication Critical patent/CN112946343B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明公开了一种架空线工频电压测量装置及测量方法。该装置包括:高压导体段、第一测量电路模块、第二测量电路模块和处理装置;高压导体段设置在高压架空线上,处理装置分别与第一测量电路模块和第二测量电路模块连接,处理装置用于根据第一电压信号和第二电压信号进行高压架空线高度校准,得到高压架空线的高度;处理装置还用于根据高压架空线的高度和工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。采用本发明的装置及方法,能够直接对高压架空线的高度进行准确的实时校准,并能够准确测量任意架设高度和任意电压等级的高压架空线电压。

Description

一种架空线工频电压测量装置及测量方法
技术领域
本发明涉及架空线电压测量技术领域,特别是涉及一种架空线工频电压测量装置及测量方法。
背景技术
随着智能电网的迅速发展以及电压等级的提高,电力***对实时的电压测量要求更为严格。当前主要的架空线电压测量方法有,仪用变压器、电容耦合电压变压器和光电电压传感技术,但是,这些方法在安装维护、测量准确性、使用寿命以及测量的成本等方面的不足也越来越明显,难以满足快速、准确以及稳定测量的需求。并且,现有电子式架空线电压测量方法无法实现直接的、实时的、准确的电压自校准功能,测量方法的抗干扰性能较差,导致电压测量精度无法得到更进一步的保证。
发明内容
本发明的目的是提供一种架空线工频电压测量装置及测量方法,能够直接对高压架空线的高度进行准确的实时校准,并能够准确测量任意架设高度和任意电压等级的高压架空线电压。
为实现上述目的,本发明提供了如下方案:
一种架空线工频电压测量装置,包括:
高压导体段、第一测量电路模块、第二测量电路模块和处理装置;
所述高压导体段设置在高压架空线上;在所述高压导体段上的第一切割位置切割得到第一金属感应片,在所述高压导体段上的第二切割位置切割得到第二金属感应片;所述第一金属感应片通过第一绝缘膜粘贴在所述第一切割位置处,所述第二金属感应片通过第二绝缘膜粘贴在所述第二切割位置处;
所述第一测量电路模块的第一固定端与所述第一金属感应片连接,所述第一测量电路模块的第二固定端与所述高压导体段连接,所述第一测量电路模块的输出端与所述处理装置连接;
所述第二测量电路模块的第一固定端与所述第二金属感应片连接,所述第二测量电路模块的第二固定端与所述高压导体段连接,所述第二测量电路模块的输出端与所述处理装置连接;
所述处理装置用于在所述第一金属感应片工作且所述第二金属感应片非工作时接收所述第一测量电路模块输出的第一电压信号,在所述第二金属感应片工作且所述第一金属感应片非工作时接收所述第二测量电路模块输出的第二电压信号,根据所述第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度;
所述处理装置还用于在所述第一金属感应片工作或所述第二金属感应片工作时,接收工作的金属感应片对应的测量电路模块输出的电压信号,并根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
可选的,还包括:
均压环和连接件;
所述均压环通过所述连接件与所述高压架空线连接;
所述高压导体段通过所述连接件与所述高压架空线连接。
可选的,还包括:
天线;
所述天线设置在所述高压导体段上,所述天线分别与所述第一测量电路模块和所述第二测量电路模块连接,所述天线用于将所述第一电压信号和所述第二电压信号传输至所述处理装置。
可选的,
所述第一测量电路模块,具体包括:
第一测量电阻、第一开关和第一电压测量单元;
所述第一测量电阻、所述第一开关和所述第一电压测量单元并联设置;
所述第二测量电路模块,具体包括:
第二测量电阻、第二开关和第二电压测量单元;
所述第二测量电阻、所述第二开关和所述第二电压测量单元并联设置;
所述第一开关和所述第二开关均为电子开关;
所述处理装置用于在所述第一开关断开且所述第二开关闭合时接收所述第一电压测量单元输出的第一电压信号,在所述第一开关闭合且所述第二开关断开时接收所述第二电压测量单元输出的第二电压信号,根据所述第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度。
可选的,所述处理装置,具体包括:
信号接收及储存模块、第一数据处理模块、第二数据处理模块;
所述信号接收及储存模块分别与所述第一测量电路模块和第二测量电路模块连接;所述信号接收及储存模块用于接收并存储所述第一电压信号和所述第二电压信号;
所述第一数据处理模块与所述信号接收及储存模块连接;所述第一数据处理模块用于根据所述第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度;
所述第二数据处理模块分别与所述信号接收及储存模块和所述第一数据处理模块连接;所述第二数据处理模块用于根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
可选的,所述处理装置,还包括:
显示模块;
所述显示模块分别与所述第一数据处理模块和所述第二数据处理模块连接;所述显示模块用于显示高压架空线高度和高压架空线电压。
本发明还提供一种架空线工频电压测量方法,应用于上述的架空线工频电压测量装置,所述方法包括:
处理装置获取第一电压信号和第二电压信号;所述第一电压信号为在第一金属感应片工作且第二金属感应片非工作时,第一测量电路模块输出的电压信号;所述第二电压信号为在所述第二金属感应片工作且所述第一金属感应片非工作时,第二测量电路模块输出的电压信号;
所述处理装置根据第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度;
所述处理装置获取工作的金属感应片对应的测量电路模块输出的电压信号;所述工作的金属感应片为所述第一金属感应片工作或所述第二金属感应片工作;
所述处理装置根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
可选的,所述处理装置根据第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度,具体包括:
根据所述第一电压信号计算所述第一金属感应片的初始位移电流,根据所述第二电压信号计算所述第二金属感应片的初始位移电流;
根据所述第一金属感应片的初始位移电流和所述第二金属感应片的初始位移电流,采用迭代法对高压架空线的高度进行计算,得到高压架空线的第一计算高度;
根据所述第一计算高度,采用有限元的数值仿真方法,分别对所述第一金属感应片的初始位移电流和所述第二金属感应片的初始位移电流进行校准,得到第一金属感应片的校准位移电流和第二金属感应片的校准位移电流;
根据所述第一金属感应片的校准位移电流和所述第二金属感应片的校准位移电流,采用迭代法对高压架空线的高度进行校准,得到高压架空线的第二计算高度;将所述高压架空线的第二计算高度确定为高压架空线的高度。
可选的,
根据如下公式计算所述第一金属感应片的初始位移电流:
Figure BDA0002922795880000041
式中,
Figure BDA0002922795880000042
为第一金属感应片的初始位移电流的相量,
Figure BDA0002922795880000043
为第一测量电路模块输出电压的相量,R1为第一测量电阻,C1为第一金属感应片与高压导体段的互有部分电容;
根据如下公式计算所述第二金属感应片的初始位移电流:
Figure BDA0002922795880000044
式中,
Figure BDA0002922795880000045
为第二金属感应片的初始位移电流的相量,
Figure BDA0002922795880000046
为第二测量电路模块输出电压的相量,R2为第二测量电阻,C2为第二金属感应片与高压导体段的互有部分电容;
根据如下公式计算高压架空线的第一计算高度:
Figure BDA0002922795880000051
式中,r为高压导体段外半径,H为高压架空线的第一计算高度,d为电轴距离地面的高度,2ψ为金属感应片相同位置对应的圆心角;
根据如下公式计算第一金属感应片的校准位移电流:
Figure BDA0002922795880000052
式中,
Figure BDA0002922795880000053
为第一金属感应片的校准位移电流的相量,
Figure BDA0002922795880000054
为通过有限元的数值仿真方法计算得到的第一金属感应片的位移电流的相量;
根据如下公式计算第二金属感应片的校准位移电流:
Figure BDA0002922795880000055
式中,
Figure BDA0002922795880000056
为第二金属感应片的校准位移电流的相量,
Figure BDA0002922795880000057
为通过有限元的数值仿真方法计算得到的第二金属感应片的位移电流的相量;
根据如下公式计算高压架空线的第二计算高度:
Figure BDA0002922795880000058
式中,H'为高压架空线的第二计算高度。
可选的,所述处理装置根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压,具体包括:
根据所述高压架空线的高度对测量电路模块的输出电压与高压架空线的电压的比例系数进行校准,得到高压架空线的电压;
其中,
测量电路模块的输出电压与高压架空线的电压的比例系数如下:
Figure BDA0002922795880000059
式中,k为比例系数,
Figure BDA00029227958800000510
为高压架空线的电压的相量,
Figure BDA00029227958800000511
为工作的金属感应片对应的测量电路模块输出电压的相量,R为工作的金属感应片对应的测量电路模块中的测量电阻,C为工作的金属感应片与高压导体段的互有部分电容,C'为工作的金属感应片的自有部分电容。
与现有技术相比,本发明的有益效果是:
本发明提出了一种架空线工频电压测量装置及测量方法,该装置包括高压导体段、第一测量电路模块、第二测量电路模块和处理装置,相比于现在常用的电压互感器电压测量方法具有体积小、便于安装、成本低的优点。由于高压导体段与高压架空线连接,同时,金属感应片制作在与高压架空线等电位的高压导体段上,因此,金属感应片具有较高的灵敏性。本发明能够准确并且快速的对高压架空线的高度进行校准,基于金属感应片是从高压导体段切割并绝缘处理得到,通过两个金属感应片所对应的测量电路模块的输出电压信号能够直接对架空线高度进行校准,不需要对过去数据进行处理,校准速度很快,高压架空线高度校准结果非常准确,进一步提高电压的测量精度。本发明通过第一测量电路模块输出的第一电压信号和第二测量电路模块输出的第二电压信号,能够准确的计算出高压架空线的电压。此外,本发明能够准确测量不同架设高度,不同电压等级高压架空线的电压,根据高度自校准,可以准确的得到高压架空线的架设高度,同时能够实现对不同架设高度的高压架空线电压进行测量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中架空线工频电压测量装置结构图;
图2为本发明实施例中测量电路模块的电路结构图;
图3为本发明实施例中等效电路图;
图4为本发明实施例中镜像法计算原理图;
图5为本发明实施例中架空线高度校准流程图;
图6为本发明实施例中架空线工频电压测量方法流程图;
图7为本发明实施例中金属感应片示意图;
标记说明:
1.第一金属感应片,2.第一绝缘膜,3.第一测量电路模块,4.均压环,5.高压架空线,6.连接件,7.高压导体段,8.第二测量电路模块,9.第二绝缘膜,10.第二金属感应片,11.天线,12.信号接收及储存模块,13.第一数据处理模块,14.第二数据处理模块,15.显示模块,16.电压测量单元,17.电子开关,18.测量电阻。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种架空线工频电压测量装置及测量方法,能够直接对高压架空线的高度进行准确的实时校准,并能够准确测量任意架设高度和任意电压等级的高压架空线电压。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例
图1为本发明实施例中架空线工频电压测量装置结构图,图2为本发明实施例中测量电路模块的电路结构图,如图1-2所示,一种架空线工频电压测量装置,包括:高压导体段7、第一测量电路模块3、第二测量电路模块8、处理装置、均压环4、连接件6和天线11。
高压导体段设置在高压架空线5上;在高压导体段上的第一切割位置切割得到第一金属感应片1,在高压导体段上的第二切割位置切割得到第二金属感应片10;第一金属感应片通过第一绝缘膜2粘贴在第一切割位置处,第二金属感应片通过第二绝缘膜9粘贴在第二切割位置处。
第一测量电路模块的第一固定端与第一金属感应片连接,第一测量电路模块的第二固定端与高压导体段连接,第一测量电路模块的输出端与处理装置连接。第二测量电路模块的第一固定端与第二金属感应片连接,第二测量电路模块的第二固定端与高压导体段连接,第二测量电路模块的输出端与处理装置连接。
处理装置用于在第一金属感应片工作且第二金属感应片非工作时接收第一测量电路模块输出的第一电压信号,在第二金属感应片工作且第一金属感应片非工作时接收第二测量电路模块输出的第二电压信号,根据第一电压信号和第二电压信号进行高压架空线高度校准,得到高压架空线的高度;处理装置还用于在第一金属感应片工作或第二金属感应片工作时,接收工作的金属感应片对应的测量电路模块输出的电压信号,并根据高压架空线的高度和工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
均压环通过连接件与高压架空线连接;高压导体段通过连接件与高压架空线连接。天线设置在高压导体段上,天线分别与第一测量电路模块和第二测量电路模块连接,天线用于将第一电压信号和第二电压信号传输至处理装置。
第一测量电路模块,具体包括:第一测量电阻、第一开关和第一电压测量单元。第一测量电阻、第一开关和第一电压测量单元并联设置。第二测量电路模块,具体包括:第二测量电阻、第二开关和第二电压测量单元;第二测量电阻、第二开关和第二电压测量单元并联设置。第一开关和第二开关均为电子开关。处理装置用于在第一开关断开且第二开关闭合时接收第一电压测量单元输出的第一电压信号,在第一开关闭合且第二开关断开时接收第二电压测量单元输出的第二电压信号,根据第一电压信号和第二电压信号进行高压架空线高度校准,得到高压架空线的高度。图2中的电压测量单元16为第一电压测量单元或第二电压测量单元,电子开关17为第一开关或第二开关,测量电阻18为第一测量电阻或第二测量电阻。
处理装置,具体包括:信号接收及储存模块12、第一数据处理模块13、第二数据处理模块14和显示模15块。信号接收及储存模块分别与第一测量电路模块和第二测量电路模块连接;信号接收及储存模块用于接收并存储第一电压信号和第二电压信号;第一数据处理模块与信号接收及储存模块连接;第一数据处理模块用于根据第一电压信号和第二电压信号进行高压架空线高度校准,得到高压架空线的高度;第二数据处理模块分别与信号接收及储存模块和第一数据处理模块连接;第二数据处理模块用于根据高压架空线的高度和工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。显示模块分别与第一数据处理模块和第二数据处理模块连接;显示模块用于显示高压架空线高度和高压架空线电压。
如图6所示,本发明还提供一种架空线工频电压测量方法,包括:
步骤一:处理装置获取第一电压信号和第二电压信号;第一电压信号为在第一金属感应片工作且第二金属感应片非工作时,第一测量电路模块输出的电压信号;第二电压信号为在第二金属感应片工作且第一金属感应片非工作时,第二测量电路模块输出的电压信号。
步骤二:处理装置根据第一电压信号和第二电压信号进行高压架空线高度校准,得到高压架空线的高度。
步骤二,具体包括:
根据第一电压信号计算第一金属感应片的初始位移电流,根据第二电压信号计算第二金属感应片的初始位移电流;
根据第一金属感应片的初始位移电流和第二金属感应片的初始位移电流,采用迭代法对高压架空线的高度进行计算,得到高压架空线的第一计算高度;
根据第一计算高度,采用有限元的数值仿真方法,分别对第一金属感应片的初始位移电流和第二金属感应片的初始位移电流进行校准,得到第一金属感应片的校准位移电流和第二金属感应片的校准位移电流;
根据第一金属感应片的校准位移电流和第二金属感应片的校准位移电流,采用迭代法对高压架空线的高度进行校准,得到高压架空线的第二计算高度;将高压架空线的第二计算高度确定为高压架空线的高度。
其中,
根据如下公式计算第一金属感应片的初始位移电流:
Figure BDA0002922795880000091
式中,
Figure BDA0002922795880000092
为第一金属感应片的初始位移电流的相量,
Figure BDA0002922795880000093
为第一测量电路模块输出电压的相量,R1为第一测量电阻,C1为第一金属感应片与高压导体段的互有部分电容;
根据如下公式计算第二金属感应片的初始位移电流:
Figure BDA0002922795880000101
式中,
Figure BDA0002922795880000102
为第二金属感应片的初始位移电流的相量,
Figure BDA0002922795880000103
为第二测量电路模块输出电压的相量,R2为第二测量电阻,C2为第二金属感应片与高压导体段的互有部分电容;
根据如下公式计算高压架空线的第一计算高度:
Figure BDA0002922795880000104
式中,r为高压导体段外半径,H为高压架空线的第一计算高度,d为电轴距离地面的高度,2ψ为金属感应片相同位置对应的圆心角;
根据如下公式计算第一金属感应片的校准位移电流:
Figure BDA0002922795880000105
式中,
Figure BDA0002922795880000106
为第一金属感应片的校准位移电流的相量,
Figure BDA0002922795880000107
为通过有限元的数值仿真方法计算得到的第一金属感应片的位移电流的相量;
根据如下公式计算第二金属感应片的校准位移电流:
Figure BDA0002922795880000108
式中,
Figure BDA0002922795880000109
为第二金属感应片的校准位移电流的相量,
Figure BDA00029227958800001010
为通过有限元的数值仿真方法计算得到的第二金属感应片的位移电流的相量;
根据如下公式计算高压架空线的第二计算高度:
Figure BDA00029227958800001011
式中,H'为高压架空线的第二计算高度。
步骤三:处理装置获取工作的金属感应片对应的测量电路模块输出的电压信号;工作的金属感应片为第一金属感应片工作或第二金属感应片工作;
步骤四:处理装置根据高压架空线的高度和工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
步骤四,具体包括:
根据高压架空线的高度对测量电路模块的输出电压与高压架空线的电压的比例系数进行校准,得到高压架空线的电压;
其中,
测量电路模块的输出电压与高压架空线的电压的比例系数如下:
Figure BDA0002922795880000111
式中,k为比例系数,
Figure BDA0002922795880000112
为高压架空线的电压的相量,
Figure BDA0002922795880000113
为工作的金属感应片对应的测量电路模块输出电压的相量,R为工作的金属感应片对应的测量电路模块中的测量电阻,C为工作的金属感应片与高压导体段的互有部分电容,C'为工作的金属感应片的自有部分电容。
本发明提供一种具有高度自校准功能的架空线工频电压测量方法与装置,连接件6的作用是紧固高压架空线5与高压导体段7之间的连接以及高压架空线5与均压环4之间的连接;均压环4的作用是均匀电场,减小两侧高压架空线产生的电场强度对高压导体段7附近电场强度的影响,进而保证电压测量的准确性。
第一金属感应片1是从高压导体段7切割下来的一部分,将第一金属感应片1通过第一绝缘膜2重新粘贴到高压导体段7切口位置,实现第一金属感应片1与高压导体段7之间的绝缘;第一测量电路模块3一端连接到第一金属感应片1表面,另一端连接到高压导体段7表面,第一测量电路模块3将测得的电压信号通过天线11输出到信号接收及储存模块12。
第二金属感应片10与第一金属感应片1的设计和制作方式完全相同,但是,两个金属感应片在水平方向上需要错开一定距离,不能有正对的部分,如图1所示,目的是实现两个金属感应片的独立工作,减少不工作的金属感应片对正在工作的金属感应片的影响,此外,两个金属感应片不能够同时工作,目的是减少两个金属感应片之间的相互影响,提高电压测量和高度校准的准确性;第二测量电路模块8与第一测量电路模块3的电路结构和功能完全相同。为了减小电压测量和高度校准的误差,第一金属感应片1和第二金属感应片10均制作为拱形,金属感应片的形状如图7所示。每一个测量电路模块均包括电压测量模块16、电子开关17、测量电阻18,如图2所示。
电压测量模块16的作用是获得测量电阻18两端的电压,并将这个电压信号通过图1中的天线11输出到信号接收及储存模块12;电子开关17的作用是控制图1中金属感应片的工作状态,对于图1中任意一个测量电路模块而言,当其中的电子开关断开,测量电路模块所对应的金属感应片处于工作状态,当其中的电子开关闭合,测量电路模块所对应的金属感应片处于非工作状态。
在进行架空线高度自校准时,通过第一测量电路模块3和第二测量电路模块8分别控制第一金属感应片1处于工作状态,第二金属感应片10处于非工作状态,将第一测量电路模块3的电压信号输出到信号接收及储存模块12,然后通过第一测量电路模块3和第二测量电路模块8控制第一金属感应片10处于工作状态,第一金属感应片1处于非工作状态,将第一测量电路模块8的电压信号输出到信号接收及储存模块12,通过第一数据处理模块13对这两个电压信号进行处理,实现架空线高度的校准。
在进行架空线电压测量时,控制任意一个金属感应片处于工作状态,另一个金属感应片处于非工作状态,通过第二数据处理模块14对处于工作状态的金属感应片对应的测量电路模块的输出电压信号以及第一数据处理模块13计算得到的架空线高度进行处理,通过比例关系计算得到架空线的电压,比例系数与第一数据处理模块13计算得到的架空线高度相关。
显示模块15的作用是显示数据处理后得到的架空线电压与架空线高度。
本发明提供的具有高度自校准功能的架空线工频电压测量的基本原理如下:
测量电路模块的输出电压与架空线电压的比例系数均可由图3中的等效电路计算。图3中,C1为金属感应片与高压导体段的互有部分电容,C2为金属感应片的自有部分电容,R为测量电阻(就是图2中的测量电阻),
Figure BDA0002922795880000121
为高压架空线的电压相量,
Figure BDA0002922795880000122
为流过测量电阻与互有部分电容的总电流。因此,测量电路模块的电压与架空线电压的比例系数如公式(1)所示:
Figure BDA0002922795880000123
其中,
Figure BDA0002922795880000131
为测量电路模块输出电压的相量,即为测量电阻两端的电压相量;k为测量电路模块的输出电压
Figure BDA0002922795880000132
与架空线电压
Figure BDA0002922795880000133
的比例系数。每个金属感应片对应的等效电路结构均如图3所示,并且,除金属感应片的自有部分电容C2外其余参数也相同。金属感应片的自有部分电容C2与架空线高度有关,因此,比例系数k也与架空线架设高度有关。
架空线高度校准的主要任务是建立第一测量电路模块3和第二测量电路模块8的输出电压与架空线架设高度的解析关系,进而通过测量电路模块的实时电压信号对架空线高度进行实时校准。主要的解析计算方法是镜像法,由于图1中高压导体段7长度远大于金属感应片,并且,均压环4的存在,可以很大程度的减小两端的高压架空线对的高压导体段7附近电场强度的影响,因此,高压导体段7可看作是均匀无限长导体,可以使用图4所示的二维原理图进行计算。图4中,d为电轴距离地面的高度,H为架空线的架设高度,τ为电轴的线电荷密度,r为高压导体段外半径,2ψ为金属感应片相同位置对应的圆心角;上方的圆为高压导体段,下方的圆为高压导体段的镜像,其中加粗的部分为金属感应片相同位置所对应的弧长。由于镜像法只能计算没有金属感应片时,高压导体段周围的电场分布,因此,只能计算没有金属感应片时,金属感应片相同位置的位移电流,以此近似代替金属感应片的位移电流,作为图3的流过测量电阻与互有部分电容的总电流
Figure BDA0002922795880000134
根据镜像法计算的金属感应片1和第二金属感应片10的位移电流分别如公式(2)和公式(3)所示。
Figure BDA0002922795880000135
Figure BDA0002922795880000136
其中,
Figure BDA0002922795880000137
Figure BDA0002922795880000138
分别为金属感应片1和第二金属感应片10的位移电流;L为金属感应片的长度;
Figure BDA0002922795880000139
为高压架空线的电压相量;ε0为真空介电常数,其余参数如图4所示。将金属感应片1和第二金属感应片10的位移电流做比值运算,如公式(4)所示。
Figure BDA0002922795880000141
公式(4)中,金属感应片1和第二金属感应片10的位移电流
Figure BDA0002922795880000142
Figure BDA0002922795880000143
可以分别根据测量电路模块3和测量电路模块8输出电压的相量
Figure BDA0002922795880000144
Figure BDA0002922795880000145
通过图3所示的等效电路得到,如公式(5)和公式(6)所示。
Figure BDA0002922795880000146
Figure BDA0002922795880000147
因此,通过测量电路模块3和测量电路模块8的输出电压相量
Figure BDA0002922795880000148
Figure BDA0002922795880000149
在理论上可以实现架空线架设高度的第一次校准。
但是,由于上述的公式(4)是一个超越函数,无法直接求解,需要通过迭代的方法对架空线的架设高度进行求解。此外,由于公式(4)是通过镜像法推出的,镜像法只能计算金属感应片不存在的情况下,金属感应片相同位置的位移电流,并以此近似代替测量电阻和互有电容总电流。由于近似过程的存在,第一次的架空线高度校准结果会存在一定的误差,因此,需要对金属感应片的位移电流进行校准,以校准后的金属感应片位移电流对架空线的架设高度进行校准。第一数据处理模块13的主要任务就是对公式(4)进行迭代求解并对金属感应片的位移电流进行校准,它的工作流程如图5所示。根据测量电路模块3和测量电路模块8的输出电压相量
Figure BDA00029227958800001410
Figure BDA00029227958800001411
通过公式(5)和公式(6)计算金属感应片1和第二金属感应片10的位移电流
Figure BDA00029227958800001412
Figure BDA00029227958800001413
H1为粗略搜索得到的架空线高度,通过粗略搜索和精细搜索对公式(4)进行的迭代求解;粗略搜索是指以1m为搜索步长,搜索得到使公式(4)左侧最接近0的架空线高度H1;精细搜索是指以[H1-1,H1+1]为搜索范围,以0.1m为搜索步长,按照相同的原则搜索得到架空线高度H2(图中并未显示),之后以[H2-0.1,H2+0.1]为搜索范围,以0.01m为搜索步长,搜索得到H3(图中并未显示),以此类推,经过N次精细搜索,可以得到架空线的第一次校准高度h1;通过数值仿真的方法计算当架空线高度为第一次校准高度h1时,
Figure BDA0002922795880000151
为第一次校准高度下,由数值仿真计算得到的第一金属感应片1的位移电流;
Figure BDA0002922795880000152
第一次校准高度下,由数值仿真计算得到的第二金属感应片10的位移电流,通过
Figure BDA0002922795880000153
Figure BDA0002922795880000154
Figure BDA0002922795880000155
Figure BDA0002922795880000156
的差值,对金属感应片1和第二金属感应片10的位移电流进行校准,最终通过校准后的
Figure BDA0002922795880000157
Figure BDA0002922795880000158
对架空线高度进行二次校准,得到的架空线的第二次校准高度h2,也是最终的架空线校准高度。
经过两次校准,可以对架空线高度进行准确的校准,通过最终的架空线校准高度进一步对测量电路模块的输出电压
Figure BDA0002922795880000159
与架空线电压
Figure BDA00029227958800001510
的比例系数进行校准,使得本文的测量***可以适应各种高度的架空线电压测量。
本发明的高压架空线电压测量及高度自校准装置,相比于现在常用的电压互感器电压测量方法具有体积小、便于安装、成本低的优点。图1中,由于高压导体段可以直接采集到高压架空线的电压,同时,金属感应片制作在与高压架空线等电位的高压导体段上,因此,金属感应片具有较高的灵敏性,通过测量电路模块输出的并联在金属感应片和高压导体段表面测量电阻两端的电压,可以准确的计算出高压架空线的电压。
高压架空线电压测量及高度自校准装置,能够非常准确并且快速的对高压架空线的高度进行校准,基于金属感应片的设计,通过两个金属感应片所对应的测量电路模块的输出电压信号可以直接对架空线高度进行校准,不需要对过去数据进行处理,校准速度很快,高压架空线高度校准结果非常准确,进一步提高电压的测量精度。
高压架空线电压测量及高度自校准装置,能够准确测量不同架设高度,不同电压等级高压架空线的电压,根据高度自校准,可以非常准确的得到高压架空线的架设高度,以此对高压架空线电压和测量电路模块输出电压的比例系数进行校准,进而可以实现对不同架设高度的高压架空线电压进行测量。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种架空线工频电压测量装置,其特征在于,包括:
高压导体段、第一测量电路模块、第二测量电路模块和处理装置;
所述高压导体段设置在高压架空线上;在所述高压导体段上的第一切割位置切割得到第一金属感应片,在所述高压导体段上的第二切割位置切割得到第二金属感应片;所述第一金属感应片通过第一绝缘膜粘贴在所述第一切割位置处,所述第二金属感应片通过第二绝缘膜粘贴在所述第二切割位置处;
所述第一测量电路模块的第一固定端与所述第一金属感应片连接,所述第一测量电路模块的第二固定端与所述高压导体段连接,所述第一测量电路模块的输出端与所述处理装置连接;
所述第二测量电路模块的第一固定端与所述第二金属感应片连接,所述第二测量电路模块的第二固定端与所述高压导体段连接,所述第二测量电路模块的输出端与所述处理装置连接;
所述处理装置用于在所述第一金属感应片工作且所述第二金属感应片非工作时接收所述第一测量电路模块输出的第一电压信号,在所述第二金属感应片工作且所述第一金属感应片非工作时接收所述第二测量电路模块输出的第二电压信号,根据所述第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度;
所述处理装置还用于在所述第一金属感应片工作或所述第二金属感应片工作时,接收工作的金属感应片对应的测量电路模块输出的电压信号,并根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
2.根据权利要求1所述的架空线工频电压测量装置,其特征在于,还包括:
均压环和连接件;
所述均压环通过所述连接件与所述高压架空线连接;
所述高压导体段通过所述连接件与所述高压架空线连接。
3.根据权利要求1所述的架空线工频电压测量装置,其特征在于,还包括:
天线;
所述天线设置在所述高压导体段上,所述天线分别与所述第一测量电路模块和所述第二测量电路模块连接,所述天线用于将所述第一电压信号和所述第二电压信号传输至所述处理装置。
4.根据权利要求1所述的架空线工频电压测量装置,其特征在于,
所述第一测量电路模块,具体包括:
第一测量电阻、第一开关和第一电压测量单元;
所述第一测量电阻、所述第一开关和所述第一电压测量单元并联设置;
所述第二测量电路模块,具体包括:
第二测量电阻、第二开关和第二电压测量单元;
所述第二测量电阻、所述第二开关和所述第二电压测量单元并联设置;
所述第一开关和所述第二开关均为电子开关;
所述处理装置用于在所述第一开关断开且所述第二开关闭合时接收所述第一电压测量单元输出的第一电压信号,在所述第一开关闭合且所述第二开关断开时接收所述第二电压测量单元输出的第二电压信号,根据所述第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度。
5.根据权利要求1所述的架空线工频电压测量装置,其特征在于,所述处理装置,具体包括:
信号接收及储存模块、第一数据处理模块、第二数据处理模块;
所述信号接收及储存模块分别与所述第一测量电路模块和第二测量电路模块连接;所述信号接收及储存模块用于接收并存储所述第一电压信号和所述第二电压信号;
所述第一数据处理模块与所述信号接收及储存模块连接;所述第一数据处理模块用于根据所述第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度;
所述第二数据处理模块分别与所述信号接收及储存模块和所述第一数据处理模块连接;所述第二数据处理模块用于根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
6.根据权利要求5所述的架空线工频电压测量装置,其特征在于,所述处理装置,还包括:
显示模块;
所述显示模块分别与所述第一数据处理模块和所述第二数据处理模块连接;所述显示模块用于显示高压架空线高度和高压架空线电压。
7.一种架空线工频电压测量方法,其特征在于,应用于如权利要求1-6任一项所述的架空线工频电压测量装置,所述方法包括:
处理装置获取第一电压信号和第二电压信号;所述第一电压信号为在第一金属感应片工作且第二金属感应片非工作时,第一测量电路模块输出的电压信号;所述第二电压信号为在所述第二金属感应片工作且所述第一金属感应片非工作时,第二测量电路模块输出的电压信号;
所述处理装置根据第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度;
所述处理装置获取工作的金属感应片对应的测量电路模块输出的电压信号;所述工作的金属感应片为所述第一金属感应片工作或所述第二金属感应片工作;
所述处理装置根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压。
8.根据权利要求7所述的架空线工频电压测量方法,其特征在于,所述处理装置根据第一电压信号和所述第二电压信号进行高压架空线高度校准,得到高压架空线的高度,具体包括:
根据所述第一电压信号计算所述第一金属感应片的初始位移电流,根据所述第二电压信号计算所述第二金属感应片的初始位移电流;
根据所述第一金属感应片的初始位移电流和所述第二金属感应片的初始位移电流,采用迭代法对高压架空线的高度进行计算,得到高压架空线的第一计算高度;
根据所述第一计算高度,采用有限元的数值仿真方法,分别对所述第一金属感应片的初始位移电流和所述第二金属感应片的初始位移电流进行校准,得到第一金属感应片的校准位移电流和第二金属感应片的校准位移电流;
根据所述第一金属感应片的校准位移电流和所述第二金属感应片的校准位移电流,采用迭代法对高压架空线的高度进行校准,得到高压架空线的第二计算高度;将所述高压架空线的第二计算高度确定为高压架空线的高度。
9.根据权利要求8所述的架空线工频电压测量方法,其特征在于,
根据如下公式计算所述第一金属感应片的初始位移电流:
Figure FDA0003901297500000041
式中,
Figure FDA0003901297500000042
为第一金属感应片的初始位移电流的相量,
Figure FDA0003901297500000043
为第一测量电路模块输出电压的相量,R1为第一测量电阻,C1为第一金属感应片与高压导体段的互有部分电容;
所述第一测量电路模块具体包括:
第一测量电阻、第一开关和第一电压测量单元;
所述第一测量电阻、所述第一开关和所述第一电压测量单元并联设置;
根据如下公式计算所述第二金属感应片的初始位移电流:
Figure FDA0003901297500000044
式中,
Figure FDA0003901297500000045
为第二金属感应片的初始位移电流的相量,
Figure FDA0003901297500000046
为第二测量电路模块输出电压的相量,R2为第二测量电阻,C2为第二金属感应片与高压导体段的互有部分电容;
所述第二测量电路模块具体包括:
第二测量电阻、第二开关和第二电压测量单元;
所述第二测量电阻、所述第二开关和所述第二电压测量单元并联设置;
根据如下公式计算高压架空线的第一计算高度:
Figure FDA0003901297500000047
式中,r为高压导体段外半径,H为高压架空线的第一计算高度,d为电轴距离地面的高度,2Ψ为金属感应片相同位置对应的圆心角;
根据如下公式计算第一金属感应片的校准位移电流:
Figure FDA0003901297500000051
式中,
Figure FDA0003901297500000052
为第一金属感应片的校准位移电流的相量,
Figure FDA0003901297500000053
为通过有限元的数值仿真方法计算得到的第一金属感应片的位移电流的相量;
根据如下公式计算第二金属感应片的校准位移电流:
Figure FDA0003901297500000054
式中,
Figure FDA0003901297500000055
为第二金属感应片的校准位移电流的相量,
Figure FDA0003901297500000056
为通过有限元的数值仿真方法计算得到的第二金属感应片的位移电流的相量;
根据如下公式计算高压架空线的第二计算高度:
Figure FDA0003901297500000057
式中,H'为高压架空线的第二计算高度。
10.根据权利要求7所述的架空线工频电压测量方法,其特征在于,所述处理装置根据所述高压架空线的高度和所述工作的金属感应片对应的测量电路模块输出的电压信号确定高压架空线的电压,具体包括:
根据所述高压架空线的高度对测量电路模块的输出电压与高压架空线的电压的比例系数进行校准,得到高压架空线的电压;
其中,
测量电路模块的输出电压与高压架空线的电压的比例系数如下:
Figure FDA0003901297500000058
式中,k为比例系数,
Figure FDA0003901297500000059
为高压架空线的电压的相量,
Figure FDA00039012975000000510
为工作的金属感应片对应的测量电路模块输出电压的相量,R为工作的金属感应片对应的测量电路模块中的测量电阻,C为工作的金属感应片与高压导体段的互有部分电容,C'为工作的金属感应片的自有部分电容。
CN202110123117.9A 2021-01-29 2021-01-29 一种架空线工频电压测量装置及测量方法 Active CN112946343B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110123117.9A CN112946343B (zh) 2021-01-29 2021-01-29 一种架空线工频电压测量装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110123117.9A CN112946343B (zh) 2021-01-29 2021-01-29 一种架空线工频电压测量装置及测量方法

Publications (2)

Publication Number Publication Date
CN112946343A CN112946343A (zh) 2021-06-11
CN112946343B true CN112946343B (zh) 2022-12-02

Family

ID=76239618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110123117.9A Active CN112946343B (zh) 2021-01-29 2021-01-29 一种架空线工频电压测量装置及测量方法

Country Status (1)

Country Link
CN (1) CN112946343B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167178A (zh) * 2021-12-02 2022-03-11 华北电力大学 一种用于高压架空线的电信号测量装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065671B2 (ja) * 2013-03-15 2017-01-25 オムロン株式会社 計測装置および取付けユニット
CN108593997B (zh) * 2018-06-04 2019-12-06 华北电力大学 一种适用于输电线路的电压测量装置及方法
CN110596553A (zh) * 2019-10-10 2019-12-20 华北电力大学 一种变压器在线监测测量装置
CN111273070B (zh) * 2020-02-10 2021-03-23 华北电力大学 一种串联式交流高压母线测量装置及方法
CN111089999B (zh) * 2020-02-10 2021-04-13 华北电力大学 一种并联式交流高压线电压测量装置及方法
CN112034235B (zh) * 2020-09-07 2023-06-27 广东电网有限责任公司广州供电局 一种适用于电缆t型接头工频电压测量的装置及方法

Also Published As

Publication number Publication date
CN112946343A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Loizou et al. A low-cost capacitive sensor for water level monitoring in large-scale storage tanks
CA2890581C (en) Hot stick power analyzer
CN102116807B (zh) 一种能够对电场畸变校正的三维工频电场测量的方法及装置
EP3321698A1 (en) Non-contact voltage measurement system using multiple capacitors
US7336063B1 (en) Voltage detector
CA2351573A1 (en) Voltage sensor
CN102980630B (zh) 一种智能数字电容液位传感器
CN112946343B (zh) 一种架空线工频电压测量装置及测量方法
KR20230066595A (ko) 반경 방향으로 이중 장착된 센서들을 갖는 비접촉식 전기 파라미터 측정 장치
CN107870187A (zh) 一种低成本高精度的饮用水电导率测量方法及测量电路
SE507933C2 (sv) Förfarande, anordning och sensor för att kapacitivt detektera fält och spänning samt användning därav
CN113721071A (zh) 一种测量非介入式对地电压的***和方法
CN104678339B (zh) 一种用于探针式微波电压测量***的校准装置、***及方法
CN209014657U (zh) 一种精密电容测量装置
CN105974344A (zh) 一种相对介损及电容量检测仪的校准***及方法
CN109884134A (zh) 一种电极式原油含水率实时检测仪
CN102645574A (zh) 基于网络传递函数计算的现场暂态过电压测量方法
CN206038784U (zh) 带电测量氧化锌避雷器的无线测试仪
CN212965382U (zh) 一种计量互感器测量误差在线检测***
CN211740089U (zh) 一种检测规
CN211043192U (zh) 一种高精度智能微波含水率传感器
CN201965112U (zh) 高精度海水盐度测量装置
CN220154624U (zh) 一种电压互感器误差检定装置
CN219574243U (zh) 一种铁路信号电缆高阻故障环阻精密测量电路
CN210323229U (zh) 滑线可变电阻触点位置预判装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant