CN112909267A - 一种质子交换膜燃料电池用mea及其制备方法 - Google Patents

一种质子交换膜燃料电池用mea及其制备方法 Download PDF

Info

Publication number
CN112909267A
CN112909267A CN202110156903.9A CN202110156903A CN112909267A CN 112909267 A CN112909267 A CN 112909267A CN 202110156903 A CN202110156903 A CN 202110156903A CN 112909267 A CN112909267 A CN 112909267A
Authority
CN
China
Prior art keywords
catalyst
gas diffusion
anode
cathode
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110156903.9A
Other languages
English (en)
Inventor
吴灿连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Yiyuan New Energy Technology Co ltd
Original Assignee
Nanjing Yiyuan New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Yiyuan New Energy Technology Co ltd filed Critical Nanjing Yiyuan New Energy Technology Co ltd
Priority to CN202110156903.9A priority Critical patent/CN112909267A/zh
Publication of CN112909267A publication Critical patent/CN112909267A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明的一种质子交换膜燃料电池用MEA及其制备方法,包括阳极气体扩散层、聚合物交换膜和阴极气体扩散层;所述阳极气体扩散层上涂布有阳极催化剂墨水制备形成阳极气体扩散电极;所述聚合物交换膜其中一面上涂布阴极催化剂墨水制备形成涂有阴极催化层的催化剂涂层膜,另一面和阳极气体扩散电极贴合;所述阴极气体扩散层和阴极催化层贴合。本发明在制备MEA过程中,不再因为膜的溶胀影响MEA的性能及寿命,同时减少了催化剂用量,提升了MEA的性能。

Description

一种质子交换膜燃料电池用MEA及其制备方法
技术领域
本发明属于质子交换膜燃料电池技术领域,尤其涉及一种质子交换膜燃料电池用MEA及其制备方法。
背景技术
膜电极(membrane electrode assembly,MEA)是质子交换膜燃料电池(protonexchange membrane fuel cell,PEMFC)的核心部件,为PEMFC提供了多相物质传递的微通道和电化学反应场所。目前PEMFC的产业化进程仍然面临着成本过高、寿命较短等问题。提高PEMFC性能、降低***成本主要有如下两种途径:一种是从催化剂本征活性角度出发,通过改变载体、制备合金催化剂等方式降低贵金属Pt使用量,提高催化剂活性和稳定性。然而,这种方式很难全面改善PEMFC性能,因为电化学反应过程还受到三相界面以及电子、质子、气体和水的传质通道等诸多因素的影响;另一种是从膜电极和催化层结构的角度出发,通过探索出新的膜电极制备方法和制备工艺来改善PEMFC性能,这种方式涉及因素广,能从整体上协调反应进程,提高燃料电池性能。
传统MEA制备方法根据CL(catalyste layer)支撑体的不同可以分为两类:一类是CCS(catalyst coated substrate)法,是将催化剂活性组分直接涂覆在GDL(gasdiffusion layer)上,分别制备出涂布了催化层的阴极GDE(gas diffusion electrode)和阳极GDE(gas diffusion electrode),然后用热压法将两个GDL压制在PEM(polymerexchange membrane)两侧得到MEA;另一是CCM(catalyst coated membrane)法,是将催化剂活性组分涂覆在PEM两侧,再将阴极和阳极GDL分别贴在两侧的CL(catalyste layer)上经热压得到MEA。
CCS法制备MEA的优点在于制备工艺相对简单成熟,制备过程利于气孔形成,PEM也不会因“膜吸水”而变形。缺点是制备过程中催化剂容易渗透进GDL中,造成催化剂浪费和较低的催化剂利用率。另外,CL和PEM之间的结合力也通常较差,界面阻力大。与CCS法相比,CCM法能够有效提高催化剂利用率、大幅度降低膜与CL之间的质子传递阻力,CCM法PEM需要接触溶剂,而单纯的质子交换膜容易溶胀,造成催化层不均匀,也不适合大规模量产。
转印法制备CCM过程中PEM不需要接触溶剂,因此有效避免了膜“吸水”膨胀起皱等问题,成为改进CCM型MEA性能的可靠方法之一。但也存在催化层转印不完全的问题。
发明内容
本发明所要解决的技术问题是针对背景技术的不足提供一种质子交换膜燃料电池用MEA及其制备方法,在制备MEA过程中,不再因为膜的溶胀影响MEA的性能及寿命,同时减少了催化剂用量,提升了MEA的性能。
本发明为解决上述技术问题采用以下技术方案:
一种质子交换膜燃料电池用MEA,包括阳极气体扩散层、聚合物交换膜和阴极气体扩散层;
所述阳极气体扩散层上涂布有阳极催化剂墨水制备形成阳极气体扩散电极;
所述聚合物交换膜其中一面上涂布阴极催化剂墨水制备形成涂有阴极催化层的催化剂涂层膜,另一面和阳极气体扩散电极贴合;
所述阴极气体扩散层和阴极催化层贴合。
进一步的,所述阳极催化剂墨水由阳极催化剂及树脂溶液混合分散后形成。
进一步的,所述阴极催化剂墨水由阴极催化剂及树脂溶液混合分散后形成。
进一步的,所述聚合物交换膜和阳极气体扩散电极之间采用热压贴合。
一种质子交换膜燃料电池用MEA的制备方法,包括如下步骤:
S1,阳极气体扩散电极的制备:
S1a,将阳极催化剂及树脂溶液混合分散后形成阳极催化剂墨水;
S1b,采用喷涂、丝印、刷涂、刮涂或者狭缝涂布的方式将阳极催化剂墨水涂布到阳极气体扩散层上烘干形成阳极催化层,最终得到阳极气体扩散电极;
S2,催化剂涂层膜的制备:
S2a、将阴极催化剂及树脂溶液混合分散后形成阴极催化剂墨水;
S2b、采用喷涂、丝印、刷涂、刮涂或者狭缝涂布的方式将阴极催化剂墨水涂布到其中一面带有保护膜的聚合物交换膜的没有保护膜的一面上形成阴极催化层,得到涂有阴极催化层的催化剂涂层膜;
S3,膜电极制备:
撕开聚合物交换膜的保护膜,然后用没有涂阴极催化层的一面和阳极气体扩散电极的阳极催化层贴合,然后在热压装置中热压;热压后在将阴极气体扩散层和阴极催化层直接贴合,形成五合一膜电极;阳极Pt的载量在0.01mg/cm2-0.1mg/cm2之间,阴极Pt的载量在0.05mg/cm2-0.5mg/cm2之间。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、在制备MEA过程中,不再因为膜的溶胀影响MEA的性能及寿命;;
2、在制备MEA过程中,因为采用新的CCM及MEA制备工艺,此工艺适合规模化生产;;
3、在制备过程中引入阳极GDE和阴极CCM复合制备MEA的方法,结合了两者的优点,减少了催化剂用量,提升了MEA的性能。
附图说明
图1为阳极GDE制备流程图;
图2为催化剂涂层膜制备流程图;
图3为五合一MEA制备流程图。
图中,1、阳极催化剂;2、树脂溶液;3、阳极催化剂墨水;4、阳极气体扩散层;5、阳极催化层;6、阳极气体扩散电极;7、阴极催化剂;8、树脂溶液;9、阴极催化剂墨水;10、聚合物交换膜;11、阴极催化层;12、催化剂涂层膜;13、四合一膜电极;14、阴极气体扩散层;15、五合一膜电极。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明提供一种质子交换膜燃料电池用MEA,包括阳极气体扩散层4(GDL)、聚合物交换膜10(PEM)和阴极气体扩散层14(GDL);
所述阳极气体扩散层4(GDL)上涂布有阳极催化剂墨水制备形成阳极气体扩散电极6(GDE);
所述聚合物交换膜10(PEM)其中一面上涂布阴极催化剂墨水制备形成涂有阴极催化层11(CL)的催化剂涂层膜12(CCM),另一面和阳极气体扩散电极6(GDE)贴合;
所述阴极气体扩散层14(GDL)和阴极催化层11(CL)贴合。
进一步的,所述阳极催化剂墨水由阳极催化剂1及树脂溶液2混合分散后形成。
进一步的,所述阴极催化剂墨水由阴极催化剂7及树脂溶液8混合分散后形成。
进一步的,所述聚合物交换膜10(PEM)和阳极气体扩散电极6(GDE)之间采用热压贴合。
本发明还提供一种质子交换膜燃料电池用MEA的制备方法,包括如下步骤:
S1,阳极气体扩散电极6(GDE)的制备:
S1a,将阳极催化剂1及树脂溶液2混合分散后形成阳极催化剂墨水;
S1b,采用喷涂、丝印、刷涂、刮涂或者狭缝涂布的方式将阳极催化剂墨水涂布到阳极气体扩散层4(GDL)上烘干形成阳极催化层5(CL),最终得到阳极气体扩散电极6(GDE),阳极Pt的载量在0.01mg/cm2-0.1mg/cm2之间;
S2,催化剂涂层膜12(CCM)的制备:
S2a、将阴极催化剂7及树脂溶液8混合分散后形成阴极催化剂墨水;
S2b、采用喷涂、丝印、刷涂、刮涂或者狭缝涂布的方式将阴极催化剂墨水涂布到其中一面带有保护膜的聚合物交换膜10(PEM)的没有保护膜的一面上形成阴极催化层11(CL),得到涂有阴极催化层11(CL)的催化剂涂层膜12(CCM),阴极Pt的载量在0.05mg/cm2-0.5mg/cm2之间;
S3,膜电极(MEA)制备:
撕开聚合物交换膜10(PEM)的保护膜,然后用没有涂阴极催化层11(CL)的一面和阳极气体扩散电极6(GDE)的阳极催化层5贴合,然后在热压装置中热压形成阳极支撑的四合一膜电极13(MEA);热压后在将阴极气体扩散层14(GDL)和阴极催化层11(CL)直接贴合,形成五合一膜电极15(MEA)。
具体实施例:
实例1:
1、称取1.1克50%Pt/C催化剂(TKK公司)置于50ml烧杯中,加入15ml去离子水,搅拌分散;量取3ml异丙醇,11ml 5%质量分数的Nafion溶液混合均匀,充分超声分散形成墨水,超声时间约为30min,静置5min,静置温度35oC。
2、取出5*5cm2面积的SGL的29BC GDL。
3、在P29BC的微孔层表面涂布催化剂墨水,面积大小5*5cm2,烘干,如图1。
4、取出面积10*10cm2的nafion 211膜,在nafion211膜的一侧喷涂催化剂墨水,面积大小5*5cm2,如图2。
5、将涂有催化层的GDL和贴合喷涂有催化剂211膜无催化剂面,远离质子交换膜的一侧依次放置PTFE,对叠加材料加压后得到CCM(catalyst coated membrane),热压3min,如图3。
6.将CCM点胶后放上GDL粘贴(有微孔层在一侧靠近催化层),即得到膜电极(membrane electrode assembly,MEA)如图3。
实例2:
1.称取1克60%Pt/C催化剂(英国庄信万丰公司)置于50ml烧杯中,加入15ml去离子水,搅拌分散;量取1ml异丙醇,11ml 5%质量分数的Nafion溶液和10mg PEG混合均匀,充分超声分散形成墨水,超声时间约为20min,静置2min,静置温度35oC。
2、取出5*5cm2面积的SGL的29BC GDL。
3、在P29BC的微孔层表面喷涂催化剂墨水,面积大小5*5cm2,烘干,如图1。
4、取出面积10*10cm2的nafion 112膜,在nafion112膜的一侧刮涂催化剂墨水,面积大小5*5cm2,如图2。
5、将涂有催化层的GDL和贴合涂有催化剂112膜无催化剂面,远离质子交换膜的一侧依次放置PTFE,对叠加材料加压后得到CCM(catalyst coated membrane),热压3min,如图3。
6.将CCM点胶后放上GDL粘贴(有微孔层在一侧靠近催化层),即得到膜电极(membrane electrode assembly,MEA)如图3。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。上面对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以再不脱离本发明宗旨的前提下做出各种变化。

Claims (5)

1.一种质子交换膜燃料电池用MEA,其特征在于:包括阳极气体扩散层、聚合物交换膜和阴极气体扩散层;
所述阳极气体扩散层上涂布有阳极催化剂墨水制备形成阳极气体扩散电极;
所述聚合物交换膜其中一面上涂布阴极催化剂墨水制备形成涂有阴极催化层的催化剂涂层膜,另一面和阳极气体扩散电极贴合;
所述阴极气体扩散层和阴极催化层贴合。
2.根据权利要求1所述的一种质子交换膜燃料电池用MEA,其特征在于:所述阳极催化剂墨水由阳极催化剂及树脂溶液混合分散后形成。
3.根据权利要求1所述的一种质子交换膜燃料电池用MEA,其特征在于:所述阴极催化剂墨水由阴极催化剂及树脂溶液混合分散后形成。
4.根据权利要求1所述的一种质子交换膜燃料电池用MEA,其特征在于:所述聚合物交换膜和阳极气体扩散电极之间采用热压贴合。
5.根据权利要求1所述的一种质子交换膜燃料电池用MEA的制备方法,其特征在于:包括如下步骤:
S1,阳极气体扩散电极的制备:
S1a,将阳极催化剂及树脂溶液混合分散后形成阳极催化剂墨水;
S1b,采用喷涂、丝印、刷涂、刮涂或者狭缝涂布的方式将阳极催化剂墨水涂布到阳极气体扩散层上烘干形成阳极催化层,最终得到阳极气体扩散电极;
S2,催化剂涂层膜的制备:
S2a、将阴极催化剂及树脂溶液混合分散后形成阴极催化剂墨水;
S2b、采用喷涂、丝印、刷涂、刮涂或者狭缝涂布的方式将阴极催化剂墨水涂布到其中一面带有保护膜的聚合物交换膜的没有保护膜的一面上形成阴极催化层,得到涂有阴极催化层的催化剂涂层膜;
S3,膜电极制备:
撕开聚合物交换膜的保护膜,然后用没有涂阴极催化层的一面和阳极气体扩散电极的阳极催化层贴合,然后在热压装置中热压;热压后在将阴极气体扩散层和阴极催化层直接贴合,形成五合一膜电极;阳极Pt的载量在0.01mg/cm2-0.1mg/cm2之间,阴极Pt的载量在0.05mg/cm2-0.5mg/cm2之间。
CN202110156903.9A 2021-02-04 2021-02-04 一种质子交换膜燃料电池用mea及其制备方法 Pending CN112909267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110156903.9A CN112909267A (zh) 2021-02-04 2021-02-04 一种质子交换膜燃料电池用mea及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110156903.9A CN112909267A (zh) 2021-02-04 2021-02-04 一种质子交换膜燃料电池用mea及其制备方法

Publications (1)

Publication Number Publication Date
CN112909267A true CN112909267A (zh) 2021-06-04

Family

ID=76122432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110156903.9A Pending CN112909267A (zh) 2021-02-04 2021-02-04 一种质子交换膜燃料电池用mea及其制备方法

Country Status (1)

Country Link
CN (1) CN112909267A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991128A (zh) * 2021-10-27 2022-01-28 中汽创智科技有限公司 一种膜电极组件量产方法和设备
CN114792811A (zh) * 2022-06-27 2022-07-26 浙江高成绿能科技有限公司 一种燃料电池膜电极及其制备方法
CN114865029A (zh) * 2022-05-17 2022-08-05 上海安池科技有限公司 一种质子交换膜燃料电池膜电极及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853296A (zh) * 2003-06-04 2006-10-25 乌米科雷股份两合公司 用于直接甲醇燃料电池的膜电极单元及其制造方法
US20070134545A1 (en) * 2005-12-12 2007-06-14 Feng-Yi Deng Membrane electrode assembly for fuel cells and fabrication method thereof
CN101388463A (zh) * 2008-10-23 2009-03-18 上海交通大学 质子交换膜水电解电池膜电极及其制备方法
CN109256565A (zh) * 2018-08-27 2019-01-22 先进储能材料国家工程研究中心有限责任公司 低内阻质子交换膜燃料电池膜电极及其制备方法
CN110289420A (zh) * 2019-06-25 2019-09-27 一汽解放汽车有限公司 一种pem燃料电池膜电极的制备方法
CN111326775A (zh) * 2018-12-17 2020-06-23 中国科学院大连化学物理研究所 一种基于超薄膜直接甲醇燃料电池膜电极及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853296A (zh) * 2003-06-04 2006-10-25 乌米科雷股份两合公司 用于直接甲醇燃料电池的膜电极单元及其制造方法
US20070134545A1 (en) * 2005-12-12 2007-06-14 Feng-Yi Deng Membrane electrode assembly for fuel cells and fabrication method thereof
CN101388463A (zh) * 2008-10-23 2009-03-18 上海交通大学 质子交换膜水电解电池膜电极及其制备方法
CN109256565A (zh) * 2018-08-27 2019-01-22 先进储能材料国家工程研究中心有限责任公司 低内阻质子交换膜燃料电池膜电极及其制备方法
CN111326775A (zh) * 2018-12-17 2020-06-23 中国科学院大连化学物理研究所 一种基于超薄膜直接甲醇燃料电池膜电极及其制备方法
CN110289420A (zh) * 2019-06-25 2019-09-27 一汽解放汽车有限公司 一种pem燃料电池膜电极的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991128A (zh) * 2021-10-27 2022-01-28 中汽创智科技有限公司 一种膜电极组件量产方法和设备
CN113991128B (zh) * 2021-10-27 2023-06-23 中汽创智科技有限公司 一种膜电极组件量产方法和设备
CN114865029A (zh) * 2022-05-17 2022-08-05 上海安池科技有限公司 一种质子交换膜燃料电池膜电极及其制备方法
CN114792811A (zh) * 2022-06-27 2022-07-26 浙江高成绿能科技有限公司 一种燃料电池膜电极及其制备方法

Similar Documents

Publication Publication Date Title
CN100421292C (zh) 制备金属催化剂和电极的方法
CN112909267A (zh) 一种质子交换膜燃料电池用mea及其制备方法
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
CN113517449B (zh) 一种膜电极组件及制备方法
CN111092230A (zh) 一种质子交换膜燃料电池的催化剂浆料及其应用
CN111063925B (zh) 催化剂涂覆膜、燃料电池及制备方法
CN102496726B (zh) 质子交换膜燃料电池膜电极的制备方法和质子交换膜燃料电池膜电极成型夹具
CN101557001A (zh) 一种燃料电池膜电极及其制备方法
KR20110043908A (ko) 고분자 전해질 연료전지용 막전극접합체 제조 방법
CN111584880B (zh) 一种低铂质子交换膜燃料电池膜电极及其制备方法
CN110808391A (zh) 一种膜电极的制备方法、膜电极及质子交换膜燃料电池
CN113921831A (zh) 电极催化剂浆液及其制备方法和催化剂涂层膜、燃料电池
KR100765088B1 (ko) 계면 저항을 감소시킨 하이브리드 전극-막 접합체 및 그제조방법
CN103367768B (zh) 一种制备质子交换膜燃料电池双层催化层结构的方法
CN114420955A (zh) 一种改善质子交换膜燃料电池阴极催化层水管理的膜电极制备方法及用途
CN112447987B (zh) 一种可满足不同增强需求的一体式膜电极制备方法
CN103474683B (zh) 提高一体式再生燃料电池性能的膜电极组件及其制备方法
CN113555568A (zh) 一种膜电极及其制备方法
KR20080105255A (ko) 전기전도도가 향상된 5-레이어 mea 제조 방법
CN114566653B (zh) 一种非均匀催化剂层、膜电极及其制备方法
CN115441023A (zh) 一种燃料电池用膜电极及制备方法
CN210516886U (zh) 低Pt载量膜电极
KR100792138B1 (ko) 막-전극-어셈블리의 제조방법
CN100486006C (zh) 一种质子交换膜燃料电池的膜电极制备方法
CN114628694A (zh) 一种膜电极的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210604

RJ01 Rejection of invention patent application after publication