CN112904236A - 一种架空线路短路接地故障检测传感器 - Google Patents

一种架空线路短路接地故障检测传感器 Download PDF

Info

Publication number
CN112904236A
CN112904236A CN202110304759.9A CN202110304759A CN112904236A CN 112904236 A CN112904236 A CN 112904236A CN 202110304759 A CN202110304759 A CN 202110304759A CN 112904236 A CN112904236 A CN 112904236A
Authority
CN
China
Prior art keywords
pin
circuit
chip
capacitor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110304759.9A
Other languages
English (en)
Inventor
杨军平
董文博
瞿明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Resources and Environment Voc Tech College
Original Assignee
Lanzhou Resources and Environment Voc Tech College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Resources and Environment Voc Tech College filed Critical Lanzhou Resources and Environment Voc Tech College
Priority to CN202110304759.9A priority Critical patent/CN112904236A/zh
Publication of CN112904236A publication Critical patent/CN112904236A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种架空线路短路接地故障检测传感器由电力输电线路电源取电装置、微型计算机及***电路、北斗/GPS定位电路、电流检测电路、4G/GPRS DTU透明传输及转换电路组成,电力输电线路电源取电装置负责从架空线路上取电给蓄电池BT1充电,北斗/GPS定位电路负责从北斗/GPS卫星获取定位和授时信息,电流检测电路负责测量架空线路的电流,4G/GPRS DTU透明传输及转换电路负责数据信息的无线双向传输,微型计算机及***电路通过程序使上述电路协调工作,完成架空线路三相短路、两相短路、单相接地短路故障诊断检测功能。本发明提高了修复故障的工作效率,降低了停电成本,降低了巡线人员的工作强度,进而提高了输电线路的安全性和可靠性。

Description

一种架空线路短路接地故障检测传感器
技术领域
本发明属电力自动化、智能电网、传感器领域,通过对架空线路的电流检测进行短路接地故障定位、故障类型判断、故障监测。
背景技术
电力线路是电力***稳定运行的命脉,它在担负着电能传输的使命,但由于缺少保护,相当脆弱,任何外力或操作人员的误操作,都有可能造成大面积停电,破坏电力***的稳定运行,给社会经济和群众生活带来严重危害。因此,研究输电线路的检测与诊断方法,判断故障类型,定位故障点,对于及时处理故障,确保电力***稳定运行和减少经济损失有着非常重要的意义。
目前,国内对配电线路研究较少,输电线路的短路和接地故障主要依靠零序电流和零序电压检测的方式判断,这种检测方式当线路发生故障后,进行故障诊断和定位主要以人工巡检的方式进行,自动化水平低下,监测实时性低,故障成本高,故障点定位困难。
发明内容
本发明提供一种架空线路短路接地故障检测传感器,能远程、在线监测输电线路网路各种状态信息,在发生三相短路、两相短路、两相接地短路、单相接地短路等故障时能及时报警,并能迅速定位故障点。
本发明所采用的技术方案为:
一种架空线路短路接地故障检测传感器,该传感器由电力输电线路电源取电装置、微型计算机及***电路、北斗/GPS定位电路、电流检测电路、4G/GPRS DTU透明传输及转换电路组成;所述电力输电线路电源取电装置负责从架空线路上取电,给其蓄电池BT1充电,而蓄电池BT1给整个传感器电路提供电源;微型计算机及***电路负责对所述蓄电池BT1的电压进行检测,控制电力输电线路取电装置是否对蓄电池BT1进行充电;当蓄电池BT1充满电后,切断电力输电线路取电装置的电源,停止向蓄电池BT1充电;微型计算机及***电路通过北斗/GPS定位电路读取北斗/GPS的定位和授时信息;微型计算机及***电路通过电流检测电路读取电力输电线路的导线电流,并与相邻的传感器通过4G/GPRS DTU透明传输及转换电路通信,判断电力输电线路是否发生三相短路、两相短路、单相接地短路故障,一旦发生上述故障,将发送故障的电流信息、时间信息、定位信息、故障类型信息通过4G/GPRS DTU透明传输及转换电路发送至电力控制调度中心;微型计算机通过4G/GPRS DTU透明传输及转换电路接收电力控制调度中心发给本传感器的各种控制命令和控制参数,对传感器的设定值进行修改和管理。
所述电力输电线路电源取电装置由电压互感器TV1、整流桥D1-D4、三段稳压模块U3、光电隔离三极管U2、充电管理芯片U4、光电隔离芯片U5、三段稳压芯片U6、发光二极管LED2、稳压二极管D5、电容C9、C10、C11、C12、C13、C14、C15,电阻R7、场效应管Q1、电池BT1组成;具体连接关系为:电压互感器TV1和整流桥D1-D4的电源端并联,整流桥D1-D4的负载端并联电容C9和C10, 电容C9和C10并联三段稳压模块(LM7812)U3的1脚和2脚;三段稳压模块U3的5脚串联光电隔离三极管U2,电隔离三极管U2的另一端连接充电管理芯片U4的1脚、发光二极管LED2的阳极、电容C12;发光二极管LED2的阴极连接充电管理芯片U4的2脚,电容C12的另一端连接充电管理芯片U4的9脚和场效应管Q1的门极;电阻R7一端接地,另一端连接充电管理芯片U4的4脚;场效应管Q1的漏极接充电管理芯片U4的10脚,场效应管Q1的源极接稳压二极管D5的阳极;电容C11一端接地,另一端接充电管理芯片U4的5脚;光电隔离芯片U5的二极管阳极接充电管理芯片U4的3脚,二极管阴极接地,光电隔离芯片U5的晶体管的集电极接3.3V,光电隔离芯片U5的晶体管的发射极接微型计算机U1的PA8脚;充电管理芯片U4的6脚和8脚接地;稳压二极管D5的阴极、电容C13的一端、电池BT1的正极、三段稳压芯片U6的1脚和3脚连接充电管理芯片U4的7脚,电容C13的另一端、电池BT1的负极、三段稳压芯片U6的2脚接地;电容C14的一端接三段稳压芯片U6的4脚,另一端接地;电容C15的一端接三段稳压芯片U6的5脚,另一端接地;光电隔离三极管U2的二极管阳极接3.3V,二极管阴极接微型计算机U1的PA11脚;电池的正极接微型计算机U1的PA4脚的***电路ADC IN4。
所述电流检测电路由电流互感器TA1、交流电压频率转换芯片U8、电阻R11,电位器BR1、电容C17、C18组成;具体连接关系为:电流互感器TA1的二次输出侧一端接地,另一端连接电阻R11,电阻R11的另一端连接交流电压频率转换芯片U8的4脚;电位器BR1的一端连接交流电压频率转换芯片U8的4脚,另一端和交流电压频率转换芯片的公共端接地;电容C17的一端连接交流电压频率转换芯片U8的4脚,另一端接地;电容C18的一端连接交流电压频率转换芯片U8的1脚和电源+5V,另一端接地;交流电压频率转换芯片U8的2脚、3脚、5脚接地,8脚接电源+5V;交流电压频率转换芯片U8的7脚连接微型计算机U1的PB7脚。
本发明采用无线传感器网络组网技术,智能故障诊断与检测技术,传感器技术以及计算技术,能对故障进行精确定位、实时判定故障类型、对故障状态实时监控。主要优点在于:
1.解决了传感器在高压供电线路上的电源取电问题,从而延长了传感器的工作寿命;
2.解决了电力输电线路发生三相短路、两相短路、两相接地短路、单相接地短路等故障时,故障点的实时定位问题、实时判定故障类型、对故障状态实时监控等问题。从而提高了修复故障的工作效率,降低了停电成本,降低了巡线人员的工作强度,进而提高了输电线路的安全性和可靠性。
附图说明
图1为本发明电力输电线路电源取电装置的电路图;
图2 为本发明电流检测电路电路图;
图3为微型计算机及***电路图;
图4 为北斗/GPS定位电路图;
图5 为4G/GPRS DTU透明传输及转换电路图;
图6为本发明的结构框图。
具体实施方式
下面结合附图对本发明及其原理、实施过程进一步说明。
一、本发明的检测原理:在架空线路的同一根线(没有分支)的首端和末端安装检测传感器,对流入和流出这根导线的电流进行检测。当电力***正常运行时,流入和流出线路的电流是正常的负荷电流,且流入和流出的电流相等。当架空电力线路出现故障时,可以分成以下几种情况:
1、三相短路
在电力***中三相短路的短路电流值最大,对电网的危害也最大,三相短路电流分析如下:由于三相短路前后均为对称电路,故只讨论一相。
单相短路前的电流:
Figure 781748DEST_PATH_IMAGE001
Figure 42965DEST_PATH_IMAGE002
电压有效值,Z电力线路阻抗,
Figure 915106DEST_PATH_IMAGE003
电力***内阻抗,
Figure 236366DEST_PATH_IMAGE004
相位角,
Figure 551548DEST_PATH_IMAGE005
发生短路以前的电力线路阻抗角
Figure 616456DEST_PATH_IMAGE006
单相短路后的电流:
Figure 202158DEST_PATH_IMAGE007
Figure 959898DEST_PATH_IMAGE002
电压有效值,
Figure DEST_PATH_IMAGE008
电力线路短路阻抗,a相位角,
Figure 562043DEST_PATH_IMAGE009
短路电流与电压的相位角,C常数,R电力线路电阻,L电力线路电抗,
Figure 899484DEST_PATH_IMAGE010
三相短路电流的周期分量,
Figure 605272DEST_PATH_IMAGE011
三相短路电流的非周期分量。
由于三相短路的稳态短路电流
Figure 501290DEST_PATH_IMAGE012
值远大于单相短路前的电流
Figure 292528DEST_PATH_IMAGE013
,因此只需要给检测传感器设置一个检测阈值
Figure 433660DEST_PATH_IMAGE014
,只要电力线路上的实际运行电流I大于
Figure 259533DEST_PATH_IMAGE015
,就可以判定为三相短路。检测阈值
Figure 234443DEST_PATH_IMAGE015
随着架空线路长度到供电电源的距离越大,数值略有减小。
三相短路故障定位原理:当发生三相短路故障时,从发生三相短路的故障点到电源侧的电力线路上都有三相短路电流流过,而故障点到远离电源侧方向的电力线路上没有三相短路电流流过,从而找到流过三相短路电流最末端的检测传感器和没有流过三相短路电流的最首端的检测传感器,两只传感器之间的线路就是发生三相短路的故障线路段,检测到的故障线路段的定位长度,取决于电力线路上检测传感器安装的密度(同一根线路上安装的两个检测传感器之间的距离)。
2、两相短路:
两相短路的近似短路电流
Figure DEST_PATH_IMAGE016
, 因此只需要给检测传感器设置一个检测阈值
Figure 76759DEST_PATH_IMAGE017
,只要电力线路上的实际运行电流I大于
Figure 287160DEST_PATH_IMAGE018
,就可以判定为两相短路。检测阈值
Figure 967540DEST_PATH_IMAGE015
随着架空线路长度到供电电源的距离越大,数值略有减小。两相短路故障定位原理与三相短路故障定位原理相似。
3、单相接地短路
对于单相接地短路,分为中性点不接地***和中性点经消弧线圈接地***两种情况,两者判别方法一样。
单相接地电容电流为正常运行时相线对地电容电流的3倍,且单相接地电容电流的大小受架空线路长度到供电电源的距离长度的影响。由于单相接地电容电流值较小,用电流值的方法不易判断单相接地故障,本发明用架空线路的同一根线(没有分支)其流入和流出电流相等的原理进行判定,安装在电力线路单相接地短路故障点前端的检测传感器测量的电流值和安装在电力线路单相接地短路故障点后端的检测传感器测量的电流值不相等,这个原理来进行判定单相接地短路故障。两只传感器之间的线路就是发生单相接地短路的故障线路段,检测到的故障线路段的定位长度,取决于电力线路上检测传感器安装的密度(同一根线路上安装的两个检测传感器之间的距离)。
二、本发明的具体实施方案:
如图6所示,一种架空线路短路接地故障检测传感器由电力输电线路电源取电装置、微型计算机及***电路、北斗/GPS定位电路、电流检测电路、4G/GPRS DTU透明传输及转换电路组成,所述电力输电线路电源取电装置负责从架空线路上取电,给其蓄电池BT1充电,而蓄电池BT1给整个传感器电路提供电源;微型计算机及***电路负责对所述蓄电池BT1的电压进行检测,控制电力输电线路取电装置是否对蓄电池BT1进行充电;当蓄电池BT1充满电后,切断电力输电线路取电装置的电源,停止向蓄电池BT1充电;微型计算机及***电路通过北斗/GPS定位电路读取北斗/GPS的定位和授时信息;微型计算机及***电路通过电流检测电路读取电力输电线路的导线电流,并与相邻的传感器通过4G/GPRS DTU透明传输及转换电路通信,判断电力输电线路是否发生三相短路、两相短路、单相接地短路故障,一旦发生上述故障,将发送故障的电流信息、时间信息、定位信息、故障类型信息通过4G/GPRS DTU透明传输及转换电路发送至电力控制调度中心;微型计算机通过4G/GPRS DTU透明传输及转换电路接收电力控制调度中心发给本传感器的各种控制命令和控制参数,对传感器的设定值进行修改和管理。
下面分别描述各个装置的组成及原理以进一步说明本发明。
1.电力输电线路电源取电装置
参照图1,电力输电线路电源取电装置由电压互感器TV1、整流桥D1-D4、三段稳压模块(LM7812)U3、光电隔离三极管U2、充电管理芯片(MAX1898)U4、光电隔离芯片U5、三段稳压芯片(MIC5205-3.3)U6、发光二极管LED2、稳压二极管D5、电容C9、C10、C11、C12、C13、C14、C15,电阻R7、场效应管Q1、蓄电池BT1组成。其连接关系为:电压互感器TV1和整流桥D1-D4的电源端并联,整流桥D1-D4的负载端并联电容C9和C10, 电容C9和C10并联三段稳压模块(LM7812)U3的1脚和2脚;三段稳压模块(LM7812)U3的5脚串联光电隔离三极管U2,电隔离三极管U2的另一端连接充电管理芯片(MAX1898)U4的1脚、发光二极管LED2的阳极、电容C12;发光二极管LED2的阴极连接充电管理芯片U4的2脚,电容C12的另一端连接充电管理芯片U4的9脚和场效应管Q1的门极;电阻R7一端接地,另一端连接充电管理芯片U4的4脚;场效应管Q1的漏极接充电管理芯片U4的10脚,场效应管Q1的源极接稳压二极管D5的阳极;电容C11一端接地,另一端接充电管理芯片U4的5脚;光电隔离芯片U5的二极管阳极接充电管理芯片U4的3脚,二极管阴极接地,光电隔离芯片U5的晶体管的集电极接3.3V,光电隔离芯片U5的晶体管的发射极接微型计算机U1的PA8脚;充电管理芯片U4的6脚和8脚接地;稳压二极管D5的阴极、电容C13的一端、电池BT1的正极、三段稳压芯片(MIC5205-3.3)U6的1脚和3脚连接充电管理芯片U4的7脚,电容C13的另一端、电池BT1的负极、三段稳压芯片U6的2脚接地;电容C14的一端接三段稳压芯片U6的4脚,另一端接地;电容C15的一端接三段稳压芯片U6的5脚,另一端接地;光电隔离三极管U2的二极管阳极接3.3V,二极管阴极接微型计算机U1的PA11脚;电池的正极接微型计算机U1的ADC IN4。整个连接关系如附图1所示。
电力输电线路电源取电装置工作原理:电压互感器TV1将电力架空线路上的交流电流信号转换成交流电压信号,然后由整流桥D1-D4、三段稳压模块(LM7812)U3将交流电压变换成直流电压。光电隔离三极管U2受微型计算机U1控制,当U1的PA11脚输出低电平时,光电隔离三极管U2导通,通过充电管理芯片(MAX1898)U4向电池BT1充电,充电有快充和慢充两种方式,由充电管理芯片(MAX1898)U4管理,充电管理芯片(MAX1898)U4通过检测充电电流,当充电完成后充电管理芯片(MAX1898)U4的EN/OK使能脚发出停止充电的中断请求信号,使微型计算机U1的PA8脚为高电平,微型计算机U1响应中断请求,进行中断处理,使微型计算机U1的PA11脚输出高电平,光电隔离三极管U2截止,切断直流电源,停止向电池BT1充电。微型计算机U1对电池BT1的电压进行检测,通过ADC IN4送入微型计算机U1的PA4脚,当电池电压低于DC 5V时,微型计算机U1的PA11脚输出低电平,控制光电隔离三极管U2导通,向电池BT1充电。三段稳压芯片(MIC5205-3.3)U6将电池的5V电压转换成3.3V,向微型计算机U1及***电路提供电源。
2.电流检测电路
电流检测电路由电流互感器TA1、交流电压频率转换芯片(HLW8012)U8、电阻R11,电位器BR1、电容C17、C18组成。其连接关系为:参照图2,电流互感器TA1的二次输出侧一端接地,另一端连接电阻R11,电阻R11的另一端连接交流电压频率转换芯片U8的4脚;电位器BR1的一端连接交流电压频率转换芯片U8的4脚,另一端和交流电压频率转换芯片的公共端接地;电容C17的一端连接交流电压频率转换芯片U8的4脚,另一端接地;电容C18的一端连接交流电压频率转换芯片U8的1脚和电源+5V,另一端接地;交流电压频率转换芯片U8的2脚、3脚、5脚接地,8脚接电源+5V;交流电压频率转换芯片U8的7脚连接微型计算机U1的PB7脚。
工作原理:电流互感器TA1对电力架空线路上的导线电流进行测量,检测出的电流信号通过电阻R11和电位器BR1转换成交流电压信号,使交流电压信号的幅值小于700mV,送入交流电压频率转换芯片(HLW8012)U8,U8将交流电压信号转换成脉冲频率信号从7脚输出,送入微型计算机U1的PB7脚,通过计数1S内的脉冲个数,就可测量出电力架空线路上的导线电流值的大小。
3.微型计算机及***电路
参照图3,微型计算机U1及***电路是现有技术中的一种常规电路,由电容器C1、C2、C3、C4、C5、C6、C7、C8,电阻R1、R2、R3、R4、R5、R6,晶振X1、处理器STM32L151C8T6、拨码开关K1、发光二极管LED1、程序下载端口J3组成。
微型计算机负责对电源电池的电压进行检测,控制电力架空线路取电装置是否对电池进行充电,当电池充满电后,切断电力架空线路取电装置的电源,停止向电池充电;微型计算机负责读取北斗/GPS的定位和授时信息,和北斗/GPS卫星通信;微型计算机通过电流互感器读取电力架空线路的导线电流,并与其相邻的传感器通过4G/GPRS DTU通信,判断电力架空线路是否发生三相短路、两相短路、单相接地短路故障,一旦发生上述故障,将发生故障的电流信息、时间信息、定位信息、故障类型信息通过4G/GPRS DTU通信发送至电力控制调度中心;微型计算机负责接收电力控制调度中心发给本传感器的各种控制命令和控制参数,对传感器的设定值进行修改和管理。
4.北斗/GPS定位电路
参照图4,北斗/GPS定位电路是现有技术中的一种常规电路,由天线P1、北斗/GPS的定位和授时芯片(ATGM332D)U7、发光二极管LED3、二极管D6、电阻R8、R9、R10、超级钽电容C16组成。本电路主要负责读取北斗/GPS的定位和授时信息,并将上述信息发送给微型计算机U1。
5.4G/GPRS DTU透明传输及转换电路
参照图5,4G/GPRS DTU透明传输及转换电路是现有技术中的一种常规电路,由天线,4G/GPRS DTU模块,串口转换芯片(SP3232EEN)U10,电阻R12、R13,电容C19、C20、C21、C22、C23,9针串口接头J1和J2组成。本电路主要负责本检测传感器和相邻检测传感器的通信;向电力控制调度中心发送本传感器的电流信息、时间信息、定位信息、故障类型信息;接收电力控制调度中心发给本传感器的各种控制命令和控制参数。

Claims (3)

1.一种架空线路短路接地故障检测传感器,其特征在于,该传感器由电力输电线路电源取电装置、微型计算机及***电路、北斗/GPS定位电路、电流检测电路、4G/GPRS DTU透明传输及转换电路组成;所述电力输电线路电源取电装置负责从架空线路上取电,给其蓄电池BT1充电,而蓄电池BT1给整个传感器电路提供电源;微型计算机及***电路负责对所述蓄电池BT1的电压进行检测,控制电力输电线路取电装置是否对蓄电池BT1进行充电;当蓄电池BT1充满电后,切断电力输电线路取电装置的电源,停止向蓄电池BT1充电;微型计算机及***电路通过北斗/GPS定位电路读取北斗/GPS的定位和授时信息;微型计算机及***电路通过电流检测电路读取电力输电线路的导线电流,并与相邻的传感器通过4G/GPRS DTU透明传输及转换电路通信,判断电力输电线路是否发生三相短路、两相短路、单相接地短路故障,一旦发生上述故障,将发送故障的电流信息、时间信息、定位信息、故障类型信息通过4G/GPRS DTU透明传输及转换电路发送至电力控制调度中心;微型计算机通过4G/GPRS DTU透明传输及转换电路接收电力控制调度中心发给本传感器的各种控制命令和控制参数,对传感器的设定值进行修改和管理。
2.根据权利要求1所述的一种架空线路短路接地故障检测传感器,其特征在于,所述电力输电线路电源取电装置由电压互感器TV1、整流桥D1-D4、三段稳压模块U3、光电隔离三极管U2、充电管理芯片U4、光电隔离芯片U5、三段稳压芯片U6、发光二极管LED2、稳压二极管D5、电容C9、C10、C11、C12、C13、C14、C15,电阻R7、场效应管Q1、电池BT1组成;具体连接关系为:电压互感器TV1和整流桥D1-D4的电源端并联,整流桥D1-D4的负载端并联电容C9和C10,电容C9和C10并联三段稳压模块(LM7812)U3的1脚和2脚;三段稳压模块U3的5脚串联光电隔离三极管U2,电隔离三极管U2的另一端连接充电管理芯片U4的1脚、发光二极管LED2的阳极、电容C12;发光二极管LED2的阴极连接充电管理芯片U4的2脚,电容C12的另一端连接充电管理芯片U4的9脚和场效应管Q1的门极;电阻R7一端接地,另一端连接充电管理芯片U4的4脚;场效应管Q1的漏极接充电管理芯片U4的10脚,场效应管Q1的源极接稳压二极管D5的阳极;电容C11一端接地,另一端接充电管理芯片U4的5脚;光电隔离芯片U5的二极管阳极接充电管理芯片U4的3脚,二极管阴极接地,光电隔离芯片U5的晶体管的集电极接3.3V,光电隔离芯片U5的晶体管的发射极接微型计算机U1的PA8脚;充电管理芯片U4的6脚和8脚接地;稳压二极管D5的阴极、电容C13的一端、电池BT1的正极、三段稳压芯片U6的1脚和3脚连接充电管理芯片U4的7脚,电容C13的另一端、电池BT1的负极、三段稳压芯片U6的2脚接地;电容C14的一端接三段稳压芯片U6的4脚,另一端接地;电容C15的一端接三段稳压芯片U6的5脚,另一端接地;光电隔离三极管U2的二极管阳极接3.3V,二极管阴极接微型计算机U1的PA11脚;电池的正极接微型计算机U1的PA4脚的***电路ADC IN4。
3.根据权利要求1所述的一种架空线路短路接地故障检测传感器,其特征在于,所述电流检测电路由电流互感器TA1、交流电压频率转换芯片U8、电阻R11,电位器BR1、电容C17、C18组成;具体连接关系为:电流互感器TA1的二次输出侧一端接地,另一端连接电阻R11,电阻R11的另一端连接交流电压频率转换芯片U8的4脚;电位器BR1的一端连接交流电压频率转换芯片U8的4脚,另一端和交流电压频率转换芯片的公共端接地;电容C17的一端连接交流电压频率转换芯片U8的4脚,另一端接地;电容C18的一端连接交流电压频率转换芯片U8的1脚和电源+5V,另一端接地;交流电压频率转换芯片U8的2脚、3脚、5脚接地,8脚接电源+5V;交流电压频率转换芯片U8的7脚连接微型计算机U1的PB7脚。
CN202110304759.9A 2021-03-23 2021-03-23 一种架空线路短路接地故障检测传感器 Pending CN112904236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110304759.9A CN112904236A (zh) 2021-03-23 2021-03-23 一种架空线路短路接地故障检测传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110304759.9A CN112904236A (zh) 2021-03-23 2021-03-23 一种架空线路短路接地故障检测传感器

Publications (1)

Publication Number Publication Date
CN112904236A true CN112904236A (zh) 2021-06-04

Family

ID=76105980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110304759.9A Pending CN112904236A (zh) 2021-03-23 2021-03-23 一种架空线路短路接地故障检测传感器

Country Status (1)

Country Link
CN (1) CN112904236A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566939A (zh) * 2022-03-03 2022-05-31 中国科学院合肥物质科学研究院 高压支撑式光纤供能过流保护无线传输装置
US11422203B1 (en) * 2019-02-15 2022-08-23 Maxim Integrated Products, Inc. Current sensing line fault detector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236721A (zh) * 2013-03-28 2013-08-07 杭州电子科技大学 基于半导体温差发电的单节锂离子电池充电电路
CN204597568U (zh) * 2015-05-15 2015-08-26 深圳市乔威电源有限公司 一种手机充电电路结构
CN205333781U (zh) * 2016-01-20 2016-06-22 安徽北斗易通信息技术有限公司 一种采用北斗定位***的多功能架空型故障指示器
CN205544471U (zh) * 2016-04-11 2016-08-31 湖南工业大学 一种基于at89c52单片机的锂电池充电器
CN107294153A (zh) * 2016-04-13 2017-10-24 湖南百里目科技有限责任公司 一种智能手机充电器设计
CN206878491U (zh) * 2017-04-28 2018-01-12 陕西尚品信息科技有限公司 一种基于智能切换充电模式的手机充电器
CN108693907A (zh) * 2018-05-04 2018-10-23 兰州智豆信息科技有限公司 数字降压式交流稳压电源
CN208273317U (zh) * 2018-05-28 2018-12-21 上海朗骏智能科技股份有限公司 用于远程控制路灯发出警示信号的控制***
CN110221175A (zh) * 2019-06-26 2019-09-10 广州供电局有限公司 故障指示器
CN110244190A (zh) * 2019-07-18 2019-09-17 淄博威纳电气有限公司 一种电力线路故障在线监测与定位***
CN110718947A (zh) * 2019-10-10 2020-01-21 杭州艾参崴电力科技有限公司 充电桩群控配电分时***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236721A (zh) * 2013-03-28 2013-08-07 杭州电子科技大学 基于半导体温差发电的单节锂离子电池充电电路
CN204597568U (zh) * 2015-05-15 2015-08-26 深圳市乔威电源有限公司 一种手机充电电路结构
CN205333781U (zh) * 2016-01-20 2016-06-22 安徽北斗易通信息技术有限公司 一种采用北斗定位***的多功能架空型故障指示器
CN205544471U (zh) * 2016-04-11 2016-08-31 湖南工业大学 一种基于at89c52单片机的锂电池充电器
CN107294153A (zh) * 2016-04-13 2017-10-24 湖南百里目科技有限责任公司 一种智能手机充电器设计
CN206878491U (zh) * 2017-04-28 2018-01-12 陕西尚品信息科技有限公司 一种基于智能切换充电模式的手机充电器
CN108693907A (zh) * 2018-05-04 2018-10-23 兰州智豆信息科技有限公司 数字降压式交流稳压电源
CN208273317U (zh) * 2018-05-28 2018-12-21 上海朗骏智能科技股份有限公司 用于远程控制路灯发出警示信号的控制***
CN110221175A (zh) * 2019-06-26 2019-09-10 广州供电局有限公司 故障指示器
CN110244190A (zh) * 2019-07-18 2019-09-17 淄博威纳电气有限公司 一种电力线路故障在线监测与定位***
CN110718947A (zh) * 2019-10-10 2020-01-21 杭州艾参崴电力科技有限公司 充电桩群控配电分时***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422203B1 (en) * 2019-02-15 2022-08-23 Maxim Integrated Products, Inc. Current sensing line fault detector
CN114566939A (zh) * 2022-03-03 2022-05-31 中国科学院合肥物质科学研究院 高压支撑式光纤供能过流保护无线传输装置

Similar Documents

Publication Publication Date Title
CN105116296A (zh) 高压输电网电缆线路专用故障指示器
CN103498757B (zh) 一种海洋能源发电监测装置
CN112904236A (zh) 一种架空线路短路接地故障检测传感器
CN208421129U (zh) 线路故障在线监测***
CN204758748U (zh) 一种开关柜智能综合监测装置
CN102901908A (zh) 电缆运行信息监测***及其实现方法
CN203537078U (zh) 雷击监测装置和高压感应取电***
CN110988575B (zh) 电力终端电量采集告警***
CN109980782B (zh) 一种输配电线路安全运行的无线监控探测器及***
CN203224591U (zh) 基于无线同步技术和零序电流检测的配电网故障定位装置
CN111157838A (zh) 一种铁路配电网运行状态大数据智能化管理***
CN109660018A (zh) 一种基于罗氏线圈的输电线路感应取电装置
CN203349964U (zh) 一种自取能无线温度传感芯片
CN103197169A (zh) 避雷器综合性能检测电路
CN112068068A (zh) 一种台区电能表误差超差自动探测***
CN205027858U (zh) 高压输电网电缆线路专用故障指示器
CN201993434U (zh) 一种基于无线传感器网络的配电网故障快速定位***
CN204945352U (zh) 一种配电网故障指示器智能测试仪
CN202814597U (zh) 高压输电线路测温***
CN207114676U (zh) Ekl电缆型短路及接地故障指示器
CN105938359B (zh) 一种监控发电机组的远程控制方法
CN201314941Y (zh) 架空线故障报警器
CN210039082U (zh) 基于EnOcean通讯技术的智能用电安全检测设备
CN201935980U (zh) 配电网络故障检测装置
CN203798980U (zh) 用于井下高压防爆开关的监测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination