CN112881711A - 一种基于调控信号通路的小鼠模型的构建方法及其应用 - Google Patents

一种基于调控信号通路的小鼠模型的构建方法及其应用 Download PDF

Info

Publication number
CN112881711A
CN112881711A CN202110193885.1A CN202110193885A CN112881711A CN 112881711 A CN112881711 A CN 112881711A CN 202110193885 A CN202110193885 A CN 202110193885A CN 112881711 A CN112881711 A CN 112881711A
Authority
CN
China
Prior art keywords
mouse
cells
beta
constructing
knockout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110193885.1A
Other languages
English (en)
Inventor
柴人杰
羌睿颖
张莎莎
程诚
高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110193885.1A priority Critical patent/CN112881711A/zh
Publication of CN112881711A publication Critical patent/CN112881711A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4712Muscle proteins, e.g. myosin, actin, protein

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)

Abstract

本发明公开了一种基于调控信号通路的小鼠模型的构建方法及其应用,属于生物技术领域。一种小鼠模型的构建方法,包括以下步骤:构建β‑catenin敲除、Notch1敲除、以及两者双敲除的小鼠模型。在鼠龄为0或1天的时候,注射tamoxifen与EdU,鼠龄为7天时,解剖所述小鼠的基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对EdU+Sox2与EdU+Myo7a均阳性的细胞进行计数统计;分别分离野生型对照组、β‑catenin过表达(β‑cat OE)、Notch1‑KO以及β‑cat OE/Notch1‑KO鼠龄7天天小鼠基底膜,分别提取其RNA进行测序。

Description

一种基于调控信号通路的小鼠模型的构建方法及其应用
技术领域
本发明涉及生物技术领域,具体涉及一种基于调控信号通路的小鼠模型的构建方法及其应用。
背景技术
目前,耳聋问题受到人们的关注。2015年,约有5亿人听力丧失,约占世界人口的6.8%。这些数字远远高于2013年之前公布的估计数字,显示听力损失的人数在逐渐增加,说明全球听力保健的重要性日益突出。另外据WHO2018年数据显示有超过4.32亿成年人和3400万儿童患有致残性听力丧失,使其成为一个影响社会健康和经济的主要负担。听力障碍会导致社交孤立、抑郁和专业能力下降。
目前临床上尚无疗效确切的内耳靶向性药物可用于治疗感音神经性聋。由于哺乳动物耳蜗毛细胞不可再生,因此如何使毛细胞在损伤后修复和再生,从而在根本上治疗感音神经性聋是近年来听觉领域研究的重点。而提供一种非人类的动物模型作为研究与试验平台以表征毛细胞的修复与再生,同样具有重要的意义。
发明内容
针对现有技术的不足,本发明提出了一种基于调控信号通路的小鼠模型的构建方法及其应用。
本发明的目的可以通过以下技术方案实现:
一种小鼠模型的构建方法,包括以下步骤:
构建β-catenin敲除、Notch1敲除、以及两者双敲除的小鼠模型。在鼠龄为0或1天的时候,注射tamoxifen与EdU,鼠龄为7天时,解剖所述小鼠的基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对EdU+Sox2与EdU+Myo7a均阳性的细胞进行计数统计;
分别分离野生型对照组、β-catenin过表达(β-cat OE)、Notch1-KO以及β-cat OE/Notch1-KO鼠龄7天天小鼠基底膜,分别提取其RNA进行测序;
构建Atoh1过表达的小鼠,注射tamoxifen,小鼠取出基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对于EdU/Myo7a双阳性的细胞进行计数统计;
通过抑制YAP的表达调控Hippo信号通路,成球实验分析Hippo信号通路对表达Lgr5的祖细胞的增殖能力;
可选地,还包括以下步骤:
从Lgr5-EGFP-IRES-CreERT2、Lgr5-EGFP-CreERT2和Foxg1-loxp/loxp均阳性的小鼠耳蜗基底膜消化制成的单细胞悬液中,分选出表达Lgr5的内耳干细胞进行培养,对所述表达Lgr5的内耳干细胞进行细胞成球实验,进行免疫荧光染色检测所述表达Lgr5的内耳干细胞的增殖情况;
对鼠龄为30天的小鼠进行ABR检测;
鼠龄为2天的Sox2-CreERT2阳性;R26SmoM2转基因小鼠耳蜗在PBS培养液中分离培养,并进行新霉素损伤,在所述耳蜗中分离RNA,进行定量实时PCR检测。
可选地,所述分选出表达Lgr5的内耳干细胞的方法为细胞流式分选法。
可选地,所述抑制YAP的方法为:通过verteporfin、dobutamine作为YAP抑制剂抑制YAP表达。
可选地,所述ABR检测的实验条件为:将三个细针电极***小鼠的颅顶、被测耳朵下方和背部靠近尾巴的位置。产生了4kHz、8kHz、12kHz、16kHz、24kHz和32kHz的ABR音点。
可选地,所述耳蜗的培养条件为:在37℃、5%CO2下,分别添加1%N2、2%B27和50μg/ml氨苄青霉素培养于DMEM/F12中。
另外本发明还提出了所述的小鼠模型研究在毛细胞再生中的应用
本发明的有益效果:
综上所述,通过调控Wnt、Notch、Atoh1信号通路后,探究对于毛细胞的再生是否有促进作用以及了解其调控机制,同时利用Lgr5-EGFP-CreERT2工具小鼠筛选出Lgr5+祖细胞,通过调控Hippo信号来促进内耳祖细胞的增殖或者分化能力,从而使这些调控信号通路的方法应用到促进活细胞毛细胞的再生。为了确定Foxg1参与HC再生的机制,用流式细胞术分离tdTomato+/Sox 2+干细胞,并提取mRNA进行实时定量qPCR,检测相关基因表达水平。调控HC生成的两个转录因子Atoh1和Gfi1 mRNA表达上调,Notch信号通路如Notch 1-3、Hes1、Hes5、Jag2、Hey1均显著下调,其他基因没有明显变化。因此敲除Foxg1主要通过下调细胞周期通路和Notch信号通路而产生新的HCS。本申请的小鼠模型反映的毛细胞的增殖与再生的情况,为Foxg1调控新生小鼠耳蜗支持细胞和祖细胞的HC再生提供了新的证据,具有重要的研究意义。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本申请的敲除基因后对小鼠毛细胞增殖情况对比示意图;
图2为本申请的四种不同转基因小鼠基因表达的整体比较及基因表达模式的层次;
图3为本申请中β-cat OE/Notch1 KO/Atoh1 OE小鼠中促进毛细胞再生形况示意图;
图4为本申请中调控Hippo信号通路探究对流式分选出的内耳祖细胞增殖分化情况示意图;
图5为本申请的小鼠模型特异敲除Foxg1再生内毛细胞免疫荧光图;
图6为本申请中的小鼠模型Foxg1特异敲除后Lgr5细胞成球实验明场图及数量、直径统计图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1~6所示,本发明的一个实施例中,提出了一种基于调控信号通路的小鼠模型的构建方法及其应用,可以包括以下步骤。
一、Wnt和Notch信号通路之间的相互作用
构建β-catenin敲除(β-cat KO),Notch1敲除(Notch1-KO),以及两者双敲除的小鼠。在鼠龄0天或鼠龄1天的时候注射tamoxifen,从鼠龄1天到鼠龄6天中每两天注射一次EdU,鼠龄7天解剖小鼠基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对EdU/Sox2双阳性与EdU/Myo7a双阳性的细胞进行计数统计。
二、对Wnt,Notch信号通路的调控进行了转录组学分析,具体步骤可以是分别分离野生型对照组、β-catenin过表达(β-cat OE)、Notch1-KO以及β-cat OE/Notch1-KO鼠龄7天天小鼠基底膜,每组取6-8个基底膜使用Trizol提取RNA后,进行RNA测序。将得到的RNA测序结果进行生物信息学分析,找出明显差异基因以及涉及的生物学功能。
三、Wnt、Notch、Atoh1共调控促进毛细胞再生
构建Atoh1过表达(Atoh1-OE)的小鼠,以及Atoh1-OE/β-cat OE、Atoh1-OE/β-catOE/Notch1-KO,在鼠龄0或鼠龄1天的时候注射tamoxifen,然后在鼠龄5天时分别解剖这些不同基因型小鼠取出基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对于EdU/Myo7a双阳性的细胞进行计数统计。
四、调控Hippo信号通路探究对流式分选出的内耳祖细胞增殖分化的影响
1)小分子药物通过激活或抑制YAP的表达调控Hippo信号通路
利用小分子药物verteporfin、dobutamine作为YAP抑制剂,XMU-MP-1作为YAP激活剂,用这三种小分子药物不同剂量体外处理鼠龄3天的基底膜后,提取蛋白,通过Westernblotting实验确定一个合适的实验浓度;
2)成球实验分析Hippo信号通路对Lgr5+祖细胞的增殖能力
通过流式分选在Lgr5-EGFP-CreERT2小鼠耳蜗中分离出Lgr5+祖细胞,然后将分选出的祖细胞放入96孔板,每孔平均细胞个数为200个培养5天,设计四个组分别为0.5μMVerteporfin、1μM dobutamine、0.5μM XMU-MP-1三个实验组和一个DMSO作为对照组,从种细胞第一天开始连续5天加入药物培养。第5天进行明场拍摄对细胞球的数量以及直径进行统计;
3)Hippo信号通路对Lgr5+祖细胞的分化能力影响
通过流式分选在Lgr5-EGFP-CreERT2小鼠耳蜗中分离出Lgr5+祖细胞,将分选出的Lgr5+祖细胞每孔5000个加入到laminin-coated的四孔皿中培养10天,在第4到7天中加入10μM EdU,与成球实验一样的小分子药物从第3到9天加入。第10天培养结束后进行免疫荧光实验,用myosin7a抗体标记毛细胞,对毛细胞数目、细胞球数目、EdU+/Myo7a+毛细胞数目进行统计。
五、Foxg1信号通路促进内耳干细胞转分化为毛细胞
1)条件性敲除Foxg1。
采用Sox2CreER/+Foxg1loxp/loxp小鼠和Lgr5-EGFPCreER/+Foxg1loxp/loxp小鼠交配得到三阳性子代,再通过注射Tamoxifen在支持细胞和内耳干细胞中特异性敲除Foxg1。在不同时间点处死小鼠,进行耳蜗检测。利用免疫荧光技术检测毛细胞生长、内耳干细胞增殖等情况,用分别用Myosin7a、Sox2、EDU标记毛细胞、支持细胞和增殖的细胞。新生小鼠(鼠龄0-7天)免疫荧光检测Myosin7a、Sox 2、Foxg 1、Ctbp 2、PSD 95、Tuj1。
2)通过ABR实验对小鼠进行听力阈值检测。
ABR试验在隔音室进行,三个细针电极***小鼠颅尖、耳底和尾部附近。产生4kHz、8kHz、12kHz、16kHz、24kHz和32kHz的ABR音调点。听觉阈值是通过将声强从90dB减为10dB,直至识别出第一波的最低声强来确定的。利用GraphPad Prism 6软件对ABR数据进行分析。
3)使用成球实验检测细胞增殖情况。
Lgr5-EGFPCreER/+Foxg1loxp/loxp小鼠和Lgr5-EGFPCreER/+对照组于鼠龄1天注射Tamoxifen,鼠龄3天时处死。解剖耳蜗,用胰蛋白酶消化成单细胞,对Lgr5+细胞进行FAC分选。筛选的细胞在DMEM/F12的全培养基中,分别以2细胞/μ1的密度培养5d。然后用胰蛋白酶消化成单细胞,并以同样的方式培养下一代。在培养结束时,用蔡司显微镜(HAL 100)对每一代每孔内的所有球体进行图像拍摄,并对球体数目和直径进行量化。
4)使用细胞球分化实验检测分化情况。
与成球实验很相似。在培养的第2、3、4天在培养液中加入EdU来检测Lgr5阳性内耳干细胞的增殖情况。
5)采用Q-PCR等技术探究Foxg1基因参与毛细胞再生的分子机制。
六、Shh基因对于Lgr5内耳干细胞增殖以及分化的影响
1)从Lgr5-EGFP-IRES-CreERT2、Lgr5-EGFP-CreERT2和Foxg1-loxp/loxp均阳性的小鼠耳蜗基底膜消化制成的单细胞悬液中,利用流式细胞仪分选出表达Lgr5的内耳干细胞进行培养。
2)细胞成球实验
加入不同梯度的Shh重组蛋白,然后统计细胞球的数目和大小,从而观察Shh基因的存在对细胞成球能力的影响。同时观察来自于Foxg1 cKD的Lgr5阳性细胞的成球能力,量化其数目与大小。
3)进行免疫荧光染色
Myosin7a、Sox2、Foxg1、Ctbp2、PSD95和Tuj-1,在blocking后加入EdU来检测表达Lgr5的内耳干细胞的增殖情况。同时,通过分化实验,观察,毛细胞数目、细胞球数目、以及EdU、Myo7a、Sox2均显示阳性的毛细胞数目的变化。
4)对鼠龄为30天的小鼠进行ABR检测,ABR测试在隔音室进行,将三个细针电极***小鼠的颅顶、被测耳朵下方和背部靠近尾巴的位置。产生了4kHz、8kHz、12kHz、16kHz、24kHz和32kHz的ABR音点。听阈的确定是通过将声强从90分贝以10分贝的步长降低到可以识别第一波的最低声强来确定的。
5)耳蜗外植体培养,并进行新霉素损伤。
鼠龄为2天的Sox2-CreERT2阳性;R26SmoM2转基因小鼠耳蜗在PBS培养液中分离培养,在37℃、5%CO2条件下,分别添加1%N2、2%B27和50μg/ml氨苄青霉素培养于DMEM/F12中。用4-OH三苯氧胺诱导Cre活性,EDU标记增殖细胞。在新霉素处理组,移植的耳蜗上皮细胞用0.5mM硫酸新霉素处理,培养24h后,再加入0.5mM硫酸新霉素。以不含SmoM2等位基因的窝产仔耳蜗外植体为对照。
6)从耳蜗中分离总RNA。
以1μg总RNA为模板,采用GoScriptTM反向转录***逆转录合成cDNA,并进行定量实时PCR。
综上所述,通过调控Wnt、Notch、Atoh1信号通路后,探究对于毛细胞的再生是否有促进作用以及了解其调控机制,同时利用Lgr5-EGFP-CreERT2工具小鼠筛选出Lgr5+祖细胞,通过调控Hippo信号来促进内耳祖细胞的增殖或者分化能力,从而使这些调控信号通路的方法应用到促进活细胞毛细胞的再生。为了确定Foxg1参与HC再生的机制,用流式细胞术分离tdTomato+/Sox 2+干细胞,并提取mRNA进行实时定量qPCR,检测相关基因表达水平。调控HC生成的两个转录因子Atoh1和Gfi1 mRNA表达上调,Notch信号通路如Notch 1-3、Hes1、Hes5、Jag2、Hey1均显著下调,其他基因没有明显变化。因此敲除Foxg1主要通过下调细胞周期通路和Notch信号通路而产生新的HCS。本申请的小鼠模型反映的毛细胞的增殖与再生的情况,为Foxg1调控新生小鼠耳蜗支持细胞和祖细胞的HC再生提供了新的证据,具有重要的研究意义。因此,本实施例中的一小鼠模型的构建方法能够应用在毛细胞再生的研究中。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

1.一种小鼠模型的构建方法,其特征在于,包括以下步骤:
构建β-catenin敲除、Notch1敲除、以及两者双敲除的小鼠模型。在鼠龄为0或1天的时候,注射tamoxifen与EdU,鼠龄为7天时,解剖所述小鼠的基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对EdU+Sox2与EdU+Myo7a均阳性的细胞进行计数统计;
分别分离野生型对照组、β-catenin过表达(β-cat OE)、Notch1-KO以及β-cat OE/Notch1-KO鼠龄7天天小鼠基底膜,分别提取其RNA进行测序;
构建Atoh1过表达的小鼠,注射tamoxifen,小鼠取出基底膜进行免疫荧光实验,用myosin7a抗体标记毛细胞,用Sox2抗体标记支持细胞,并且对于EdU/Myo7a双阳性的细胞进行计数统计;
通过抑制YAP的表达调控Hippo信号通路,成球实验分析Hippo信号通路对表达Lgr5的祖细胞的增殖能力。
2.根据权利要求1所述的小鼠模型的构建方法,其特征在于,还包括以下步骤:
从Lgr5-EGFP-IRES-CreERT2、Lgr5-EGFP-CreERT2和Foxg1-loxp/loxp均阳性的小鼠耳蜗基底膜消化制成的单细胞悬液中,分选出表达Lgr5的内耳干细胞进行培养,对所述表达Lgr5的内耳干细胞进行细胞成球实验,进行免疫荧光染色检测所述表达Lgr5的内耳干细胞的增殖情况;
对鼠龄为30天的小鼠进行ABR检测;
鼠龄为2天的Sox2-CreERT2阳性;R26SmoM2转基因小鼠耳蜗在PBS培养液中分离培养,并进行新霉素损伤,在所述耳蜗中分离RNA,进行定量实时PCR检测。
3.根据权利要求1所述的小鼠模型的构建方法,其特征在于,所述分选出表达Lgr5的内耳干细胞的方法为细胞流式分选法。
4.根据权利要求1所述的小鼠模型的构建方法,其特征在于,所述抑制YAP的方法为:通过verteporfin、dobutamine作为YAP抑制剂抑制YAP表达。
5.根据权利要求2所述的小鼠模型的构建方法,其特征在于,所述ABR检测的实验条件为:将三个细针电极***小鼠的颅顶、被测耳朵下方和背部靠近尾巴的位置;产生4kHz、8kHz、12kHz、16kHz、24kHz和32kHz的ABR音点。
6.根据权利要求2所述的小鼠模型的构建方法,其特征在于,所述耳蜗的培养条件为:在37℃、5%CO2下,分别添加1%N2、2%B27和50μg/ml氨苄青霉素培养于DMEM/F12中。
7.权利要求1~6任一所述的小鼠模型在研究毛细胞再生中的应用。
CN202110193885.1A 2021-02-20 2021-02-20 一种基于调控信号通路的小鼠模型的构建方法及其应用 Pending CN112881711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110193885.1A CN112881711A (zh) 2021-02-20 2021-02-20 一种基于调控信号通路的小鼠模型的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110193885.1A CN112881711A (zh) 2021-02-20 2021-02-20 一种基于调控信号通路的小鼠模型的构建方法及其应用

Publications (1)

Publication Number Publication Date
CN112881711A true CN112881711A (zh) 2021-06-01

Family

ID=76056627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110193885.1A Pending CN112881711A (zh) 2021-02-20 2021-02-20 一种基于调控信号通路的小鼠模型的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN112881711A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807022A (zh) * 2022-03-29 2022-07-29 上海市第一人民医院 一种海绵体纤维化疾病模型建立方法
WO2023004888A1 (zh) * 2021-07-30 2023-02-02 合肥中科普瑞昇生物医药科技有限公司 一种用于口腔癌类器官培养的培养基、及其培养方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293926A (zh) * 2014-09-24 2015-01-21 浙江大学 一种检测小鼠内耳祖细胞的标记分子及应用
WO2017132530A1 (en) * 2016-01-29 2017-08-03 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293926A (zh) * 2014-09-24 2015-01-21 浙江大学 一种检测小鼠内耳祖细胞的标记分子及应用
WO2017132530A1 (en) * 2016-01-29 2017-08-03 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAN YOU等: "Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle", 《FRONTIERS IN MOLECULAR NEUROSCIENCE》, pages 2 - 3 *
MINGYU XIA等: "Activation of the RhoA-YAP-β-catenin signaling axis promotes the expansion of inner ear progenitor cells in 3D culture", 《TISSUE-SPECIFIC STEM CELLS》, pages 867 - 868 *
SHASHA ZHANG等: "Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea", 《CELLULAR AND MOLECULAR LIFE SCIENCES》, pages 2 - 3 *
WENLI NI等: "Extensive Supporting Cell Proliferation and Mitotic Hair Cell Generation by In Vivo Genetic Reprogramming in the Neonatal Mouse Cochlea", 《THE JOURNAL OF NEUROSCIENCE》, pages 8736 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004888A1 (zh) * 2021-07-30 2023-02-02 合肥中科普瑞昇生物医药科技有限公司 一种用于口腔癌类器官培养的培养基、及其培养方法和应用
CN114807022A (zh) * 2022-03-29 2022-07-29 上海市第一人民医院 一种海绵体纤维化疾病模型建立方法

Similar Documents

Publication Publication Date Title
Shah et al. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function
Liu et al. The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding
Panciera et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ
Nanduri et al. Purification and ex vivo expansion of fully functional salivary gland stem cells
Gao et al. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells
Sirko et al. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells
Niola et al. Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis
Cai et al. Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis
CN112881711A (zh) 一种基于调控信号通路的小鼠模型的构建方法及其应用
Valiente-Alandi et al. Bmi1+ cardiac progenitor cells contribute to myocardial repair following acute injury
Cheng et al. Hair follicle epidermal stem cells define a niche for tactile sensation
Haensel et al. An Ovol2‐Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation
US20230204565A1 (en) Methods for Culturing Cancer Cells and for Inhibiting Invasion of Cancer
Zamboni et al. Disruption of ArhGAP15 results in hyperactive Rac1, affects the architecture and function of hippocampal inhibitory neurons and causes cognitive deficits
Kueh et al. Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis
Del Pino et al. COUP-TFI/Nr2f1 orchestrates intrinsic neuronal activity during development of the somatosensory cortex
Basma et al. Reprogramming of COPD lung fibroblasts through formation of induced pluripotent stem cells
Derk et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain
Ragazzini et al. Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus
Elamin et al. The role of UBE3A in the autism and epilepsy-related Dup15q syndrome using patient-derived, CRISPR-corrected neurons
Maiti et al. Single cell RNA-seq of human cornea organoids identifies cell fates of a developing immature cornea
Chen et al. Identification of an adipose tissue-resident pro-preadipocyte population
Sun et al. Functional interaction between mesenchymal stem cells and spiral ligament fibrocytes
Birtele et al. The autism-associated gene SYNGAP1 regulates human cortical neurogenesis
Chiotto et al. Neuronal cell-intrinsic defects in mouse models of Down syndrome

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination