CN112873189A - 自组装模块化机器人单元对接***及对接方法 - Google Patents

自组装模块化机器人单元对接***及对接方法 Download PDF

Info

Publication number
CN112873189A
CN112873189A CN202110084185.9A CN202110084185A CN112873189A CN 112873189 A CN112873189 A CN 112873189A CN 202110084185 A CN202110084185 A CN 202110084185A CN 112873189 A CN112873189 A CN 112873189A
Authority
CN
China
Prior art keywords
docking
module
robot
butt joint
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110084185.9A
Other languages
English (en)
Other versions
CN112873189B (zh
Inventor
李海源
崔林林
魏洪兴
夏继强
陈希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN202110084185.9A priority Critical patent/CN112873189B/zh
Publication of CN112873189A publication Critical patent/CN112873189A/zh
Application granted granted Critical
Publication of CN112873189B publication Critical patent/CN112873189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/005Manipulators mounted on wheels or on carriages mounted on endless tracks or belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种自组装模块化机器人单元对接***及对接方法,设置主动对接模块和被动对接模块,模块化机器人单元安装对接***后具备自动连接、自组装能力,进行自动级联。级联方式多样,对接后形成的组合体不仅具备整体移动能力还具备关节运动与操作能力,实现从轮式/履带到关节式的复合运动特性。从而可以克服群体机器人之间无连接或者连接弱的特点,实现跨模式的运动,也增加了组合体机器人的结构多样性,如构建成蛇形、多足等机器人形态,组装方式灵活多样,让单个机器人通过组合完成越障、搬运等高于自身能力的任务。

Description

自组装模块化机器人单元对接***及对接方法
技术领域
本发明涉及模块化机器人技术领域,尤其涉及一种自组装模块化机器人单元对接***及对接方法。
背景技术
在工业等传统应用领域中,机器人的任务及环境相对固定,多采用构型结构相对固定的移动机器人、关节式机器人,这些机器人在特定工作场景和已知结构信息中可完成特定任务。而在深空探测、灾难救援和家用服务等新兴领域中通常存在多样化、非结构化的任务。例如在星球深空探测、应急救援中,存在表面地形复杂,如高度障碍、楼梯、洞穴等,作业地域广泛,需要完成多种任务,适应不同的工作环境,因此,需要机器人完全自主构建具备强通过能力、多任务适应能力的平台,并在必要时进行结构变换,满足不同需求。以往固定结构机器人受到其单一形态的限制,很难满足多样化和变结构的任务需求。而模块化机器人***能够利用自组装、自重构等特性在离散或者连接的情况下改变自身构型以适应多种任务,对解决特殊环境下的复杂任务具有重要意义。
模块化机器人主要是通过个体与个体之间、个体与环境之间的局部交互,进行结构重组,产生***行为,从而具有自重构、自组装等特性。目前,的自重构机器人,如MetaMorphic、Catoms、Crystalline、Fraca和M-BLOCK 等机器人,模块的自主移动主要依赖组合后模块的运动能力,不具备独立自主移动能力或者连接后不具备关节运动能力;关节式自重构机器人,如 PolyBot、CKBot、YaMoR、M-TRAN、Superbot、UBot、Sporiwutz和Roombot等机器人,每个模块一般具有旋转自由度,具有多关节机器人的优势,可形成如机械臂、抓手或者腿等结构,但模块不具备独立自主移动能力。所采用的对接***和方法均是基于连接后的机器人,不具备较远距离的自动导引对接能力。这其中,对接***和对接方法至关重要。
发明内容
针对群体模块化机器人形成的可变结构少、自动对接能力弱以及连接后不具备关节运动能力的问题,本发明提供一种自组装模块化机器人单元对接***及对接方法,利用夹持的方法提高对接的成功率以及连接后的结构强度,并实现机器人从较远距离开始自主对接,对接过程可动态调整主被动对接模块,提高地形适应性,并通过机器人单元局部简单行为组装成组合体***结构,将自组装与自重构有效结合,使模块化机器人具有目标构形自组装、自重构且具有关节运动和作业的能力,从而通过结构变化提升任务自适应性。
为达到上述目的,本发明提供了一种自组装模块化机器人单元对接***,包括主动对接模块和被动对接模块;
所述主动对接模块具有间距可调节的夹持部;所述被动对接模块具有突出部;
根据机器人单元级联的拓扑结构,将所述主动对接模块和被动对接模块分别安装至车架四周以使得机器人单元能够横向和/或者纵向级联;
所述主动对接模块所在机器人单元移动使得所述主动对接模块的夹持部对准并包络目标机器人单元拟对接被动对接模块的突出部,调整夹持部间距,固定突出部,使机器人单元级联。
进一步地,所述夹持部内部设置若干对接锥,与所述突出部的对接槽匹配,固定所述突出部。
进一步地,所述夹持部和所述突出部分别设置一组触点,实现级联机器人单元之间的电源及信号传输。
进一步地,所述夹持部包括第一对接板、第二对接板、第一螺母、第二螺母、螺杆、夹持电机、传动组件;
所述第一对接板固定至第一螺母,所述第二对接板固定至第二螺母;所述螺杆包括正反旋向两部分螺纹,第一螺母和第二螺母相反运动;
所述夹持电机通过所述传动组件驱动螺杆转动,使得第一螺母、第二螺母反向旋转带动所述第一对接板和第二对接板沿螺杆彼此靠近或远离。
进一步地,所述夹持部还包括连接架、第一滑块、第一滑轨、第二滑块以及第二滑轨,所述第一滑轨和第二滑轨固定至连接架,长度方向与所述螺杆长度方向一致;所述第一滑块与所述第一对接板彼此固定,在所述第一对接板沿所述螺杆移动时,所述第一滑块沿所述第一滑轨移动;
所述第二滑块与所述第二对接板彼此固定,在所述第二对接板沿所述螺杆移动时,所述第二滑块沿所述第二滑轨移动。
进一步地,所述第一滑轨和第二滑轨对称设置在所述连接架凸块的上下表面。
进一步地,还包括定位模块,定位模块包括远距离定位单元、中距离图像定位单元以及近距离红外定位单元;
所述近距离红外定位单元包括设置在主动对接模块或被动对接模块中一者的红外发射部件和设置在另一者的红外接收部件。
进一步地,所述中距离图像定位单元包括设置在主动对接模块或被动对接模块中一者的摄像头模块,设置在另一者的视觉标记,以及里程计;通过摄像头模块和机器人驱动轮毂的编码器或者姿态里程计融合后,测量定位信息,融合方法包括利用摄像头识别视觉标记获得的绝对位姿与机器人编码器 /姿态里程计获得的相对位姿进行滤波;所述视觉标记表征机器人单元的编号,以及能够被图像识别的三个不共线的特征点。
进一步地,所述远距离定位单元包括无线通信***和无线定位***;无线定位***用于定位自身位置,采用超宽带定位UWB方法,在应用场地外安装3个以上的参考基站,来确定各个机器人相对基站的位置;所述无线通信***用于发送表征自身编号、位置的无线信号,接收表征其它机器人单元的编号、位置的无线信号。
进一步地,还包括控制模块,所述远距离定位单元发送无线电信号获取目标模块化机器人单元的位置,控制模块通过无线通信接收目标模块化器人单元的位置;所述控制模块通过中距离图像定位单元获取目标模块化机器人单元的基于图像识别得到的位置和姿态;所述控制模块通过近距离红外定位单元进行主动对接模块和被动对接模块的对准确认。
进一步地,调整偏航、俯仰角度在机器人底座不平时,使得对接前两个机器人单元的主动对接模块和被动对接模块的对接锥与对接槽轴线重合。
进一步地,还包括关节驱动模块,驱动所述主动对接模块执行俯仰和偏航动作。进一步地,所述主动对接模块铰接固定至机器人单元车架;关节驱动模块包括平行对称设置的第一驱动组件和第二驱动组件,分别连接在夹持部的两侧和机器人单元车架之间;通过改变所述第一驱动组件和所述第二驱动组件轴向长度差,调整所述主动对接模块的偏航角度;通过所述第一驱动组件和所述第二驱动组件的长度调整,调整所述主动对接模块的俯仰角度。
进一步地,所述第一驱动组件和所述第二驱动组件结构相同,包括第一球铰、直线电机、第二球铰;所述直线电机通过第一球铰连接至固定支架,通过固定支架固定至机器人单元车架,所述直线电机的输出轴通过第二球铰固定至夹持部的一侧,直线电机包括固定端和推杆输出轴,实现推杆输出轴轴向伸缩。
本发明第二方面提供一种所述的自组装模块化机器人单元对接***的对接方法,包括:
在主动对接机器人单元与目标机器人单元之间规划一条轨迹,轨迹包括两段,第一段轨迹起始点为主动对接机器人单元的当前位姿,终点为与目标机器人单元的被动对接模块偏航方向对齐,此轨迹为多项式曲线或者样条曲线,第一段轨迹为多项式曲线或者样条曲线,第二段轨迹以第一段轨迹终点为起始点,终点为目标机器人单元正后方一定距离,使得主动对接模块与被动对接模块能够执行夹持操作;
驱动夹持部打开,控制主动对接模块所在机器人单元移动使得所述夹持部包络突出部,驱动夹持部固定突出部,级联两个机器人单元。
进一步地,主动对接机器人单元与目标机器人单元之间的定位包括:由远距离定位单元引导机器人单元移动至目标机器人后部可视距离内,识别目标机器人单元的编号与位置姿态,规划第一段、第二段轨迹,由中距离图像定位单元沿第一段轨迹引导至主动对接模块和被动对接模块偏航方向对齐,并沿第二段轨迹引导至对接位置使夹持部到达被动对接模块部位,由红外定位单元确认已经对准,控制进行对接。
本发明的上述技术方案具有如下有益的技术效果:
(1)本发明提供一种对接***,使得模块化机器人单元通过安装对接***后实现自组装,通过感知、控制自主完成与其它机器人与物体的对接,对接后形成的组合体不仅具备整体移动能力还具备关节运动与操作能力,实现从轮式/履带到关节式的复合运动特性。从而可以克服群体机器人之间无连接或者连接弱的特点。
(2)本发明自组装模块化机器人单元对接***通过多种定位方法实现对自身的定位,在远距离时(距离目标0.5-1米以上)利用超宽带定位技术结合固定的基站实现0.1-1米精度的粗定位,在近距离(距离目标0.1-0.5米) 时,利用摄像头结合姿态里程计信息测量目标标记实现0.05-0.2米精度的细定位;在贴近目标(距离目标0-0.1米)时,利用红外传感器实现0.005- 0.02米的精细定位。通过三种定位手段相互结合,实现机器人从较远距离开始自主对接,大大提高了自动对接的成功率和适应的机器人范围。
(3)本发明的夹持部通过电机驱动开合,利用夹持的方法提高对接的成功率,设置上下两个滑块进行应力分解,保证了机器人的稳定性和连接强度。
(4)本发明的主动对接单元能够进行俯仰和偏航的控制,使得组装后的机器人能够执行关节运动;对于多足等机器人通过俯仰和偏航的控制实现足类移动;对接过程可动态调整主被动对接模块,提高地形适应性。
附图说明
图1是自组装模块化机器人单元对接***结构及分布示意图,其中图1 (a)为自组装模块化机器人单元对接***结构示意图;图1(b)自组装模块化机器人单元对接纵向***分布示意图;图1(c)自组装模块化机器人单元对接横向及纵向***分布示意图;
图2是主动对接模块左前和左后视图以及滑块组成图;其中图2(a)为左前视图,图2(b)为左后视图,图2(c)为滑块组成图;
图3为主动对接模块示意图;
图4为被动对接模块及对接锥/槽对应图;其中,图4(a)为被动对接模块示意图;图4(b)为对接锥/槽对应图;
图5为关节驱动模块图;其中图5(a)为偏航、俯仰复合动作侧向视图,图5(b)为偏航动作俯视图,图5(c)为俯仰动作示意图;
图6为移动模块、车架与感知驱动控制***组成图;
图7为移动模块化机器人单元利用传感器自主对接框架图;
图8为移动模块化机器人单元组成蛇形机器人;
图9为移动模块化机器人单元组成四足机器人;
图10为移动模块化机器人单元组成八足机器人。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明的目的在于提供一种自组装模块化机器人单元对接***及对接方法,以解决现有技术中存在的群体模块化机器人不具备较远距离的自动导引对接能力、连接不稳定、对接成功率低,形成的可变结构少、自动对接能力弱以及连接后不具备关节运动能力等问题。
每个模块化机器人单元安装一套自组装模块化机器人单元对接***即具备了自组装能力。一组模块化机器人单元通过对接***对接后形成自组装模块化机器人。
主动对接模块和被动对接模块根据组成的机器人组合体拓扑结构分布在自组装模块化机器人单元四周,如图1(b),包括在首尾各分布一个主动对接模块和被动对接模块,或者如图1(c),在首部分布一个主动对接模块,在左右后各分布若干被动对接模块。在图1(b)的实施例中,前端设置一个主动对接模块,后端设置一个被动对接模块;图1(c)实施例中,前端设置一个主动对接模块,后端设置一个被动对接模块,左右端各设置两个被动对接模块。本领域技术人员应当理解,需要根据拓扑结构来选择安装的位置数量,已获得期望的构型。主动对接模块和被动对接模块的数量不应当理解为对本发明的限制。安装对接***后模块化机器人单元通过前后首尾相连接,可以形成具备移动能力和关节运动能力的蛇形机器人。一组模块化机器人单元连接到另一组模块化机器人单元的左右两侧,可以形成仿生多足关节机器人。
对接***包括主动对接模块1、被动对接模块2、关节驱动模块3、定位模块5以及控制模块。进一步地,自组装模块化机器人单元至少具有移动模块4及车架6,如图1(a)所示。主动对接模块1位于车架6的前方,被动对接模块2位于车架6的后方或者左右两侧,关节驱动模块3的输出端连接到主动对接模块1,固定端连接到车架6。移动模块4位于车架6的左右两侧。
主动对接模块1,包括连接架11、第一滑块组12、第一对接板13、第二滑块组14、第二对接板15、对接锥16、电机固定架17、电机18、第一传动组件19、第二传动组件20、第三传动组件21、螺杆22、第一螺母23和第二螺母24、摄像头模块25、连接轴26和红外接收面板27,如图2和图3所示。连接架11具有左右两侧的连杆,连杆上部的端点有两个连接孔111,下部有两个连接孔112,连接轴26连接到连接孔111上。第一滑块组12的滑块121沿滑轨122滑动,滑轨122固定在连接架11的凸块114上面。第二滑块组14的滑块141沿滑轨142滑动,滑轨142固定在连接架11的凸块 114下面。第一对接板13连接到滑块121上,第二对接板15连接到滑块141 上。对接锥16安装在第一对接板13和第二对接板15上,每个对接板至少包括1个对接锥16,一个主动对接模块至少包括3个对接锥16,典型为左右镜面对称分布各2个对接锥16。电机18输出轴驱动第一传动组件19,第一传动组件19、第二传动组件20、第二传动组件21啮合形成传动组件,结合图3,其旋转支撑轴固定到连接架11的传动固定架113上。第三传动组件 21和螺杆22同步传动,螺杆22通过轴承安装在传动固定架113上。电机18 通过电机固定架12连接到支架11上,电机18输出轴直接与第一传动组件 19同轴相连并且驱动旋转,依次传动第二传动组件20、第二传动组件21,最终驱动螺杆22转动,螺杆的左右螺纹为相反旋向,从而驱动螺母23和24 向相反方向沿螺杆22直线运动,螺杆22的左右螺纹为相反旋向。螺母23和 24分别与第一对接板13和第二对接板15连接,第一对接板13和第二对接板15分别连接到第一滑块组12的滑块121和第二滑块组14的滑块141,限制了螺母23和24的旋转,并由上下两个滑块组共同提供对接后级联机器人之间力的传递与支撑。在仅可平行左右直线移动的约束下,第一对接板13和第二对接板15分别向相反方向沿螺杆22直线运动。安装到螺杆上的螺母23 和24的旋向相反,保证在螺杆22驱动下反方向运动。通过该对接模块,连接板可对称打开和闭环,从而可与被动对接模块配合完成两个机器人之间的刚性连接。螺杆螺母机构实现开合,传动具有自锁能力。第一滑块组12和第二滑块组14可提高对接机构的连接刚度和强度。电机18通过伺服闭环控制,可控制连接板打开和闭环的大小。传动固定架113左右两部分的距离h为开合最小距离,螺杆22、导轨122和142中最小距离为开合最大距离,该距离范围为允许对接的结构误差。对接锥16为圆锥形状,与被动对接机构模块2的对接槽结构配合,如果对接锥16已经***对接槽28,但在主被动对接模块与被动对接模块没有完全对准时,锥角可让两个机器人在电机18驱动力的引导下使两个对接模块完成对接。摄像头模块25连接到连接架11上,镜头向前,可以感知识别视觉标记28和其它物体,内部集成专用图像处理电路。红外接收面板27连接到连接架11上,上面分布有水平一线布局的红外接收管。
被动对接模块2包括对接槽28、视觉标记29和红外发射管30,如图4 所示。对接槽28和对接锥16在数量、布局上相同。视觉标记29具有编码功能,代表该移动模块化机器人的编号,典型的编码方式为二维码或者色块,可以通过摄像头模块25识别后测量出其相对位置和姿态。红外发射管30发射一束红外光,主动对接模块1上的红外接收面板27上分布的某个红外接收管接收该红外光,表示发射接收对齐,主动对接模块1与被动对接模块2 对齐。
主动对接模块1和被动对接模块2各设置有一组触点131和211,当对接机构闭合时,触点接通,可实现对接两模块机器人之间的动力电源及通讯信号的连通,以便模块间有线通讯。
关节驱动模块3包括支撑架31、第一球铰32、第一直线电机33、第二直线电机34、第二球铰35、偏航固定板36、俯仰固定板37、偏航连接轴38、俯仰连接轴39组成,如图5a。支撑架31固定到车架6上。第一直线电机 33、第二直线电机34分别通过第一球铰32连接到支撑架31上,连接点的偏航和俯仰自由度不被约束固定,可被动运动。第一直线电机33、第二直线电机34通过第二球铰35连接到连接架11的连接轴26上,连接点的偏航和俯仰自由度不被约束固定,可被动运动。主动对接模块1的连接架11通过俯仰连接轴39与俯仰固定板37相连,可相对进行被动的俯仰运动,俯仰固定板37相连通过偏航连接轴38与偏航固定板36相连,可相对进行被动的偏航运动,偏航固定板36连接到车架6上。当第一直线电机33与第二直线电机34中一个伸长同时另一个缩短相同距离时,主动对接机构1相对车架6偏航一定角度a,如图5b。第一直线电机33、第二直线电机34可分别控制长度,当同时伸长或者缩短相同距离时,主动对接机构1相对车架6俯仰一定角度b,如图5c。分别控制第一直线电机33、第二直线电机34的长度,实现主动对接机构1相对车架6偏航、俯仰一定角度。平衡状态下,主动对接机构1相对车架6偏航、俯仰角度为0,偏航固定板36与偏航连接轴38相交点距离直线电机中轴的距离为l,两个直线电机的距离为d,第一球铰32 和第一球铰35之间的水平距离为l。第一直线电机33、第二直线电机34的行程以及l、c和d影响偏航角度a、俯仰角度b的范围以及主动电机驱动对接机构的传动比。利用直线电机推杆的方式可以提高关节的驱动力矩,从而提升多个模块化机器人连接在一起时的运动性能。
调整偏航、俯仰角度也可在机器人底座不平时,使得对接前两个机器人单元的主动对接模块和被动对接模块的对接锥与对接槽轴线重合,如图4(b) 所示。
定位模块5***包括无线通信***52、远距离定位单元53(无线定位***)、中距离图像定位单元、近距离红外定位单元等。结合图3、图6,中距离图像定位单元包括摄像头模块25和姿态感知模块54,近距离红外定位单元包括红外接收面板27和红外发生管30。无线通信***52采用Zigee、 Lora或者NBIoT等物联网协议,除机器人自身的无线通信***外,在其他地方可以安装通信的协调器和路由器,各个机器人通过该通信***以及其他的协调器、路由器组成网状拓扑的通信网络;无线定位***53采用超宽带定位 UWB方法,在应用场地外安装3个以上的参考基站,来确定各个机器人相对基站的位置;姿态感知模块54采用陀螺仪、加速度计和磁强计通过滤波器形成的惯性传感***,控制模块,包括控制器,还可以包括图像传输模块,将摄像头数据无线传输到外部接收点,还包括温湿度等传感器来增加模块化机器人的功能。控制模块51,安装在定位模块5,与无线通信***52、无线定位***53、姿态感知模块54进行串行通信,与轮毂电机、对接电机与关节驱动模块的控制***进行通信,与主动对接模块的电机的驱动器进行通信控制,与摄像头模块进行通信,获取识别的编号和目标位姿信息等。机器人单元由锂电池55供电。
通过多种定位方法实现对主动对接模块化机器人相对被动对接的移动模块化机器人的定位,首先接收到无线通信信号,采用ZigBee、Lora、NBIoT 等无线信号,在较远距离获得被动对接的移动模块化机器人(目标)的编号以及粗略位置(0.1-0.5米精度误差),该粗略位置为各个机器人内部无线定位***测量出自身相对基站的位置;主动对接机器人运动到目标对接机器人后部较近距离,通过摄像头模块25寻找到被动对接模块2上的视觉标记29,识别编号和初步的位置姿态作为目标,首先通过摄像头模块和自身姿态里程计融合后获得估计的定位信息,融合方法包括利用摄像头识别视觉标记获得的绝对位姿与机器人编码器/姿态里程计获得的相对位姿进行滤波(卡尔曼滤波器、贝叶斯估计、蒙特卡洛法或者粒子滤波器),主动对接移动模块化机器人通过移动模块3运动到被动对接移动模块化机器人纵轴中心线上(第一阶段),此轨迹可为多项式曲线或者样条曲线,多项式曲线采用
Figure RE-GDA0002998105410000111
其中ai为第i项的系数,n为多项式的阶数。实现两个机器人在水平面朝向的偏航角度对齐,然后主动对接移动模块化机器人在摄像头模块和自身姿态的引导下沿直线运动到被动对接移动模块化机器人的被动对接模块2处,完成主动对接模块1与被动对接模块2的对齐,对接锥16与对接槽28配合,完成两个移动模块化机器人的连接,如图7所示。
所述主动对接模块所在机器人单元移动使得所述主动对接模块的夹持部对准并包络拟对接目标机器人单元被动对接模块的突出部,调整夹持部间距,固定突出部,级联两个机器人单元。控制关节驱动模块驱动所述主动对接模块执行俯仰和偏航动作。
进一步地,自组装模块化机器人单元的移动模块4具备地面移动能力,由一组履带移动模块或者轮子驱动模块组成,如图6所示。履带驱动模块包括左右两个平行的履带;或者轮子驱动模块,包括前后各两个轮子的四驱、两轮差分驱动或者四个轮子为麦克纳姆轮的驱动移动方式。
车架6,如图6所示,包括左右对称的第一车体61、第二车体62和底板 63,三者刚性连接。被动对接模块3连接到第一车体61和第二车体62的尾部固定或者连接到左右两侧。关节驱动模块3连接到第一车体61和第二车体62的上部固定。被动对接模块3的偏航固定板36连接到第一车体61和第二车体62的前部固定。
被动对接模块2位于车架6尾部时,移动模块化机器人通过主动对接模块1与被动对接模块2的连接,前后首尾相连接,形成具备移动能力和关节运动能力的蛇形机器人,如图8所示。
被动对接模块3位于车架6尾部以及车体61和62左右两侧时,移动模块化机器人通过主动对接模块1与被动对接模块2的连接,一组移动模块化机器人连接到另一组移动模块化机器人的左右两侧,可以形成仿生四足关节机器人,如图9所示,或者八足关节机器人,如图10所示,或者其它仿生多足机器人。
本发明提供一种所述的自组装模块化机器人对接的方法,包括规划、定位与控制。规划部分为在主动对接机器人单元与目标机器人单元之间规划一条轨迹,两段组成,第一段轨迹起始点为主动对接机器人单元的当前位姿,终点为使得主动对接模块和被动对接模块偏航方向对齐,第二端轨迹以第一段轨迹终点为起始点,终点为目标机器人单元正后方一定距离,使得主动对接模块与被动对接模块可完成夹持,如图7所示。定位部分由所述远距离定位单元引导机器人单元移动至目标机器人后部可视距离内,由中距离图像定位单元引导至主动对接模块和被动对接模块偏航方向对齐,进一步引导至到达对接位置使加持部到达被动对接模块部位,由红外定位单元确认已经对准,控制进行对接。控制部分,待级联的两个机器人单元彼此定位,移动至主动对接模块和被动对接模块相对位置,驱动夹持部打开,控制被动对接模块所在机器人单元移动使得突出部***所述夹持部,驱动夹持部固定突出部,级联两个机器人单元。
级联形成蛇形机器人时,若干模块化机器人分布于平面运动区,与外部基站进行无线通信(ZigBee)。根据指令自动组装形成蛇形机器人。蛇形机器人通过履带行走。如若遇到障碍,利用俯仰关节以此抬起前方模块化机器人单元高于障碍,然后前行移动,使得位于障碍上方的模块化机器人单元与障碍上面接触,同时执行移动动作,越过障碍后,利用俯仰关节落下前方模块化机器人单元到地面,执行移动动作,依次通过障碍。蛇形机器人通过移动动作和关节动作组合越过楼梯,通过楼梯的方法为,当模块化机器人单元头部接触到楼梯时,第1个俯仰关节抬起,使得前部机身与楼梯斜面平行,再继续移动前行时,第2个和第1个俯仰关节配合,使前部机身与楼梯斜面平行,依次类推,直到整个机器人穿过楼梯,在楼梯对此,反序依次控制。
级联形成多组机器人,使得与地面接触的模块化机器人单元执行移动动作,在地面移动,在遇到障碍时,执行关节动作可以抬起各个纵向级联的模块化机器人单元,翻越爬行。
综上所述,本发明涉及一种自组装模块化机器人单元对接***及对接方法,设置主动对接模块和被动对接模块,模块化机器人单元安装对接***后具备自组装能力,进行自动级联。级联方式多样,对接后形成的组合体不仅具备整体移动能力还具备关节运动与操作能力,实现从轮式/履带到关节式的复合运动特性。从而可以克服群体机器人之间无连接或者连接弱的特点,实现跨模式的运动,也增加了组合体机器人的结构多样性,如构建成蛇形、多足等机器人形态,组装方式灵活多样,让单个机器人通过组合完成越障、搬运等高于自身能力的任务。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

1.一种自组装模块化机器人单元对接***,其特征在于,包括主动对接模块和被动对接模块;
所述主动对接模块具有间距可调节的夹持部;所述被动对接模块具有突出部;
根据机器人单元级联的拓扑结构,将所述主动对接模块和被动对接模块分别安装至车架四周以使得机器人单元能够横向和/或者纵向级联;
所述主动对接模块所在机器人单元移动使得所述主动对接模块的夹持部对准并包络目标机器人单元拟对接被动对接模块的突出部,调整夹持部间距,固定突出部,使机器人单元级联。
2.根据权利要求1所述的自组装模块化机器人单元对接***,其特征在于,所述夹持部内部设置若干对接锥,与所述突出部的对接槽匹配,固定所述突出部。进一步地,所述夹持部和所述突出部分别设置一组触点,实现级联机器人单元之间的电源及信号传输。
3.根据权利要求2所述的自组装模块化机器人单元对接***,其特征在于,所述夹持部包括第一对接板、第二对接板、第一螺母、第二螺母、螺杆、夹持电机、传动组件;
所述第一对接板固定至第一螺母,所述第二对接板固定至第二螺母;所述螺杆包括正反旋向两部分螺纹,第一螺母和第二螺母相反运动;
所述夹持电机通过所述传动组件驱动螺杆转动,使得第一螺母、第二螺母反向旋转带动所述第一对接板和第二对接板沿螺杆彼此靠近或远离。
4.根据权利要求3所述的自组装模块化机器人单元对接***,其特征在于,所述夹持部还包括连接架、第一滑块、第一滑轨、第二滑块以及第二滑轨,所述第一滑轨和第二滑轨固定至连接架,长度方向与所述螺杆长度方向一致;所述第一滑块与所述第一对接板彼此固定,在所述第一对接板沿所述螺杆移动时,所述第一滑块沿所述第一滑轨移动;
所述第二滑块与所述第二对接板彼此固定,在所述第二对接板沿所述螺杆移动时,所述第二滑块沿所述第二滑轨移动。
进一步地,所述第一滑轨和第二滑轨对称设置在所述连接架凸块的上下表面。
5.根据权利要求1-4之一所述的自组装模块化机器人单元对接***,其特征在于,还包括定位模块,定位模块包括远距离定位单元、中距离图像定位单元以及近距离红外定位单元;
所述近距离红外定位单元包括设置在主动对接模块或被动对接模块中一者的红外发射部件和设置在另一者的红外接收部件。
进一步地,所述中距离图像定位单元包括设置在主动对接模块或被动对接模块中一者的摄像头模块,设置在另一者的视觉标记,以及里程计;通过摄像头模块和机器人驱动轮毂的编码器或者姿态里程计融合后,测量定位信息,融合方法包括利用摄像头识别视觉标记获得的绝对位姿与机器人编码器/姿态里程计获得的相对位姿进行滤波;所述视觉标记表征机器人单元的编号,以及能够被图像识别的三个不共线的特征点。
进一步地,所述远距离定位单元包括无线通信***和无线定位***;无线定位***用于定位自身位置,采用超宽带定位UWB方法,在应用场地外安装3个以上的参考基站,来确定各个机器人相对基站的位置;所述无线通信***用于发送表征自身编号、位置的无线信号,接收表征其它机器人单元的编号、位置的无线信号。
6.根据权利要求5所述的自组装模块化机器人单元对接***,其特征在于,还包括控制模块,所述远距离定位单元发送无线电信号获取目标模块化机器人单元的位置,控制模块通过无线通信接收目标模块化器人单元的位置;所述控制模块通过中距离图像定位单元获取目标模块化机器人单元的基于图像识别得到的位置和姿态;所述控制模块通过近距离红外定位单元进行主动对接模块和被动对接模块的对准确认。
进一步,调整偏航、俯仰角度在机器人底座不平时,使得对接前两个机器人单元的主动对接模块和被动对接模块的对接锥与对接槽轴线重合。
7.根据权利要求6所述的自组装模块化机器人单元对接***,其特征在于,还包括关节驱动模块,驱动所述主动对接模块执行俯仰和偏航动作。进一步地,所述主动对接模块铰接固定至机器人单元车架;关节驱动模块包括平行对称设置的第一驱动组件和第二驱动组件,分别连接在夹持部的两侧和机器人单元车架之间;通过改变所述第一驱动组件和所述第二驱动组件轴向长度差,调整所述主动对接模块的偏航角度;通过所述第一驱动组件和所述第二驱动组件的长度调整,调整所述主动对接模块的俯仰角度。
8.根据权利要求7所述的自组装模块化机器人单元对接***,其特征在于,所述第一驱动组件和所述第二驱动组件结构相同,包括第一球铰、直线电机、第二球铰;所述直线电机通过第一球铰连接至固定支架,通过固定支架固定至机器人单元车架,所述直线电机的输出轴通过第二球铰固定至夹持部的一侧,直线电机包括固定端和推杆输出轴,实现推杆输出轴轴向伸缩。
9.一种权利要求1至8之一所述的自组装模块化机器人单元对接***的对接方法,其特征在于,包括:
在主动对接机器人单元与目标机器人单元之间规划一条轨迹,轨迹包括两段,第一段轨迹起始点为主动对接机器人单元的当前位姿,终点为与目标机器人单元的被动对接模块偏航方向对齐,第一段轨迹为多项式曲线或者样条曲线,第二段轨迹以第一段轨迹终点为起始点,终点为目标机器人单元正后方一定距离,使得主动对接模块与被动对接模块能够执行夹持操作;
驱动夹持部打开,控制主动对接模块所在机器人单元移动使得所述夹持部包络突出部,驱动夹持部固定突出部,级联两个机器人单元。
10.根据权利要求9所述的对接方法,其特征在于,主动对接机器人单元与目标机器人单元之间的定位包括:由远距离定位单元引导机器人单元移动至目标机器人后部可视距离内,识别目标机器人单元的编号与位置姿态,规划第一段、第二段轨迹,由中距离图像定位单元沿第一段轨迹引导至主动对接模块和被动对接模块偏航方向对齐,并沿第二段轨迹引导至对接位置使夹持部到达被动对接模块部位,由红外定位单元确认已经对准,控制进行对接。
CN202110084185.9A 2021-01-21 2021-01-21 自组装模块化机器人单元对接***及对接方法 Active CN112873189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110084185.9A CN112873189B (zh) 2021-01-21 2021-01-21 自组装模块化机器人单元对接***及对接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110084185.9A CN112873189B (zh) 2021-01-21 2021-01-21 自组装模块化机器人单元对接***及对接方法

Publications (2)

Publication Number Publication Date
CN112873189A true CN112873189A (zh) 2021-06-01
CN112873189B CN112873189B (zh) 2022-03-25

Family

ID=76051623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110084185.9A Active CN112873189B (zh) 2021-01-21 2021-01-21 自组装模块化机器人单元对接***及对接方法

Country Status (1)

Country Link
CN (1) CN112873189B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113246671A (zh) * 2021-07-05 2021-08-13 北京理工大学 可重构无人车自主对接控制方法及控制***
CN113253742A (zh) * 2021-07-05 2021-08-13 北京理工大学 可重构无人车***
CN113681590A (zh) * 2021-08-27 2021-11-23 中国矿业大学 一种模块化机器人对接装置及对接方法
CN114147468A (zh) * 2021-11-16 2022-03-08 新兴际华集团有限公司 一种高机动模块化履带式救援机器人快速组装匹配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062153A1 (en) * 2011-09-09 2013-03-14 Dr. Pinhas Ben-Tzvi Self-Configurable and Transformable Omni-Directional Robotic Modules
US20140298945A1 (en) * 2013-04-05 2014-10-09 Massachusetts Institute Of Technology Modular angular-momentum driven magnetically connected robots
CN108724242A (zh) * 2018-05-29 2018-11-02 北京电子工程总体研究所 一种可组装机器人
CN109676598A (zh) * 2019-03-18 2019-04-26 南开大学 自主组装的模块化机器人

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062153A1 (en) * 2011-09-09 2013-03-14 Dr. Pinhas Ben-Tzvi Self-Configurable and Transformable Omni-Directional Robotic Modules
US20140298945A1 (en) * 2013-04-05 2014-10-09 Massachusetts Institute Of Technology Modular angular-momentum driven magnetically connected robots
CN108724242A (zh) * 2018-05-29 2018-11-02 北京电子工程总体研究所 一种可组装机器人
CN109676598A (zh) * 2019-03-18 2019-04-26 南开大学 自主组装的模块化机器人

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张宇超: "基于摄像头的群体机器人的控制算法研究", 《机械工程与自动化》 *
魏洪兴: "模块化群体机器人构型分析与自组装控制", 《机械工程学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113246671A (zh) * 2021-07-05 2021-08-13 北京理工大学 可重构无人车自主对接控制方法及控制***
CN113253742A (zh) * 2021-07-05 2021-08-13 北京理工大学 可重构无人车***
CN113246671B (zh) * 2021-07-05 2021-10-08 北京理工大学 可重构无人车自主对接控制***
CN113681590A (zh) * 2021-08-27 2021-11-23 中国矿业大学 一种模块化机器人对接装置及对接方法
CN114147468A (zh) * 2021-11-16 2022-03-08 新兴际华集团有限公司 一种高机动模块化履带式救援机器人快速组装匹配方法

Also Published As

Publication number Publication date
CN112873189B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN112873189B (zh) 自组装模块化机器人单元对接***及对接方法
CN112873188A (zh) 自组装模块化机器人单元、机器人、组装及控制方法
Fuchs et al. Rollin'Justin-Design considerations and realization of a mobile platform for a humanoid upper body
Gaertner et al. Collision-free MPC for legged robots in static and dynamic scenes
CN103676797A (zh) 模块化分动式多足机器人运动控制器及其控制方法
Michaud et al. AZIMUT, a leg-track-wheel robot
Dong et al. Design and control of a tracked robot for search and rescue in nuclear power plant
CN213796500U (zh) 一种腿臂协作机器人
Shamah et al. Steering and control of a passively articulated robot
CN113814967B (zh) 基于视觉引导的全向移动机器人对接机构控制***及方法
CN108646750B (zh) 基于uwb非基站便捷式工厂agv跟随方法
CN102700634A (zh) 基于连杆机构的小型履带机器人
Freitas et al. Terrain model-based anticipative control for articulated vehicles with low bandwidth actuators
Shiroma et al. Development and control of a high maneuverability wheeled robot with variable-structure functionality
Martynov et al. Morphogear: An UAV with multi-limb morphogenetic gear for rough-terrain locomotion
Miller et al. Experiments with a long-range planetary rover
Seegmiller et al. Control of a passively steered rover using 3-D kinematics
Fujikawa et al. Proposal for an IR system to support automatic control for a personal mobility vehicle
Adachi et al. Development of a leg-wheel hybrid mobile robot and its step-passing algorithm
Gim et al. Ringbot: Monocycle Robot With Legs
Duan et al. Kinematic modeling of a small mobile robot with multi-locomotion modes
Wang et al. Design of an autonomous mobile robot for hospital
Duan et al. MOBIT, a small wheel-track-leg mobile robot
CN213768781U (zh) 一种全向移动自然导航agv
CN215883635U (zh) 一种用于铺砖机器人的行走车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220915

Address after: 10 Xitucheng Road, Haidian District, Beijing 100082

Patentee after: Beijing University of Posts and Telecommunications

Patentee after: BEIHANG University

Address before: 10 Xitucheng Road, Haidian District, Beijing 100082

Patentee before: Beijing University of Posts and Telecommunications

TR01 Transfer of patent right