CN112871183B - 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法 - Google Patents

一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法 Download PDF

Info

Publication number
CN112871183B
CN112871183B CN202110194144.5A CN202110194144A CN112871183B CN 112871183 B CN112871183 B CN 112871183B CN 202110194144 A CN202110194144 A CN 202110194144A CN 112871183 B CN112871183 B CN 112871183B
Authority
CN
China
Prior art keywords
bismuth
composite photocatalyst
grinding
oxide composite
ferroferric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110194144.5A
Other languages
English (en)
Other versions
CN112871183A (zh
Inventor
李靖
杨华美
李响
窦艳
李昭
王鹏
董黎明
堵锡华
吉顺育
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jiali Fine Chemical Co ltd
Xuzhou Kedah Fine Chemicals Ltd
Xuzhou University of Technology
Original Assignee
Jiangsu Jiali Fine Chemical Co ltd
Xuzhou Kedah Fine Chemicals Ltd
Xuzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jiali Fine Chemical Co ltd, Xuzhou Kedah Fine Chemicals Ltd, Xuzhou University of Technology filed Critical Jiangsu Jiali Fine Chemical Co ltd
Priority to CN202110194144.5A priority Critical patent/CN112871183B/zh
Publication of CN112871183A publication Critical patent/CN112871183A/zh
Application granted granted Critical
Publication of CN112871183B publication Critical patent/CN112871183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了自制Fe3O4/C磁微球、聚乙二醇(PEG)作为分散剂,通过溶剂热合成法,控制调节Bi2WO6和Fe3O4/C磁微球的质量比例,合成高活性、高稳定性、易回收的铋/钨酸铋/四氧化三铁复合光催化剂,Bi2WO6呈纳米片状包裹在Fe3O4/C磁微球表面,形成多层壳核包裹结构。本申请公开的Bi/Bi2WO6/Fe3O4复合光催化剂在可见光照射下能够催化还原Cr(VI),其中,Fe3O4/C磁微球含量30%的Bi/Bi2WO6/Fe3O4‑30的光催化效率最高,约是Bi2WO6的2.8倍、Fe3O4/C磁微球的4.2倍,本发明公开的制备方法便于推广,效果优异,制备的Bi/Bi2WO6/Fe3O4复合光催化剂具备较好的应用前景。

Description

一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法
技术领域
本发明涉及复合光催化剂制备领域,尤其涉及一种可见光驱动的铋/钨酸铋/四氧化三铁复合光催化剂的制备方法。
背景技术
Cr(VI)在水体中具有较强的迁移性和毒性,是全球范围内优先控制污染物之一。在含铬化合物的生产和使用所产生的工业废水中含有大量Cr(VI),未经处理或处理未达标的含铬工业废水均会严重影响生态环境。值得关注的是低氧化数的Cr(III)的毒性较低、容易从水中沉淀析出(Kθ sp(Cr(OH)3)=6.3×10–31))。因此,将Cr(VI)转化为Cr(III)已经成为处理含铬废水的常用方法。利用化学还原法处理含铬废水的过程中,会消耗大量化学试剂、还可能产生二次污染,仍需要开发绿色经济的Cr(VI)还原方法。半导体光催化技术是利用半导体催化剂吸收太阳光的光能产生的光生电子和空穴驱动氧化还原反应,在光催化制氢、二氧化碳还原、降解有机污染物和还原六价铬方面都有广泛的应用,具有低耗、经济可循环等优点。因此,光催化还原技处理含铬废水具有潜在的应用前景。但是,根据光催化技术的应用现状,目前使用的催化剂存在可见光活性低、稳定性差、难以从溶液中分离等,阻碍了光催化还原法的实际应用。因此研制高活性、高稳定性、可见光驱动的半导体催化剂对光催化技术的推广和应用具有重要意义。
Bi2WO6是一种新型的窄带隙半导体(2.6~2.8eV),具有类似层状钙钛矿结构,与氧化物、硫化物光催化剂相比,该层状结构的层与层之间可作为光催化反应的活性区域,同时,层状结构有利于分离光生电子和空穴,大大提高其光催化效率。通过贵金属沉积、非金属掺杂、构建异质结等方法可以进一步促进光生载流子的分离,从而提高Bi2WO6的光催化活性。由于Bi2WO6的亲水特性,在不使用离心分离等方法时,很难使Bi2WO6从水溶液中分离出来。
Fe3O4是一种廉价、环保的磁性n型半导体材料,其较窄的带隙(1.4eV)而具有较强的可见光吸收性能,同时Fe3O4具有很强的磁性,可以利用磁铁使催化剂从光催化反应溶液中回收。但是也由于Fe3O4的带隙较窄,光生电子和空穴的高复合率导致其光催化活性较差,很少单独用作光催化剂,常被用于其他半导体光催化剂的磁性载体。已有研究报道,Xu通过水热法获得了一种三维Bi2WO6/Fe3O4复合材料,对RhB具有较高的降解效率。Liu等采用无模板水热法制备了Bi2WO6/Fe3O4,研究其可见光催化降解17b-Estradiol的性能。在合成的复合材料中,由于Fe3O4中的Fe2+在空气中很容易被氧化为Fe3+,导致合成的复合材料的磁性下降,因此需要用一种稳定的、高比表面积的载体包裹Fe3O4
发明内容
有鉴于此,本发明的目的在于提供一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,通过制备Fe3O4/C磁微球、聚乙二醇(PEG)作为分散剂,控制调节Bi2WO6和Fe3O4/C磁微球的质量比例,合成高活性、高稳定性、易回收的Bi/Bi2WO6/Fe3O4复合光催化剂,并具备较好的可见光催化处理Cr(VI)的催化活性。
采用的技术方案如下:
一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述铋/钨酸铋/四氧化三铁复合光催化剂的制备步骤包括:
S1:将一定量Fe3O4和一定量葡萄糖充分研磨后得混合物,将一定量聚乙二醇加入混合物中继续研磨;
S2:将步骤S1中得到的混合物溶于去离子水,超声处理,取出机械搅拌,重复上述操作多次;
S3:将步骤S2中得到的混合液转移至不锈钢反应釜,在烘箱中恒温加热,加热结束后待反应降至室温,通过离心分离、水洗后得产品,将洗净后的产品置于烘箱中烘干,研磨、磁性分离得Fe3O4/C微球;
S4:称取一定量Bi(NO3)3·5H2O和一定量Na2WO4·2H2O,研磨至均匀得前驱体,称取步骤S3中得到的Fe3O4/C磁微球加入前驱体中,研磨至均匀,将混合物混合乙二醇后移入不锈钢反应釜,恒温后待反应降至室温,清洗,所得产物干燥,研磨、磁力分离后即得。
优选的,所述步骤S1中Fe3O4、葡萄糖和聚乙二醇的摩尔比为2.5:25:1。
优选的,所述步骤S1中Fe3O4和葡萄糖研磨时间为30min,所述步骤S1中加入聚乙二醇后的研磨时间为30min。
优选的,所述步骤S1中聚乙二醇的为聚乙二醇6000。
优选的,所述步骤S2中超声处理5min,取出机械搅拌5min,重复操作三次。
优选的,所述步骤S3中不锈钢反应釜内含聚四氟乙烯内衬;
优选的,所述步骤S3中反应温度180℃,加热12h;洗净后的产品烘干温度80℃,烘干6h,研磨、磁性分离得Fe3O4/C磁微球。
优选的,所述步骤S4中Bi(NO3)3·5H2O和Na2WO4·2H2O的摩尔比为2:1。
优选的,所述步骤S4中Bi(NO3)3·5H2O和Na2WO4·2H2O的研磨时间为30min,加入Fe3O4/C磁微球后研磨时间为20min。
优选的,所述步骤S4中反应温度180℃,加热12h;所得产物烘干温度80℃,烘干6h。
有益效果:
本发明的有益效果体现在:
本发明公开了自制Fe3O4/C磁微球、聚乙二醇(PEG)作为分散剂,通过溶剂热合成法,控制调节Bi2WO6和Fe3O4/C磁微球的质量比例,合成高活性、高稳定性、易回收的铋/钨酸铋/四氧化三铁复合光催化剂,Bi2WO6纳米片状包裹在Fe3O4/C磁微球表面形成多层壳核包裹结构。本申请公开的Bi/Bi2WO6/Fe3O4复合光催化剂在可见光照射下能够催化还原Cr(VI),其中,Fe3O4/C磁微球含量30%的Bi/Bi2WO6/Fe3O4-30的催化效率最高,约是Bi2WO6的2.8倍、Fe3O4/C磁微球的4.2倍,本发明公开的制备方法便于推广,效果优异,制备的Bi/Bi2WO6/Fe3O4复合光催化剂具备较好的应用前景。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中Fe3O4/C、Bi/Bi2WO6、BiFe-20的XRD图;
图2为本申请实施例中BiFe-10~40样品XRD图;
图3为本申请实施例中Fe3O4、Fe3O4/C磁微球、BiFe-30样品红外图谱;
图4为本申请实施例中Fe3O4的FESEM图;
图5为本申请实施例中Fe3O4/C的FESEM图;
图6为本申请实施例中Bi/Bi2WO6的FESEM图;
图7为本申请实施例中BiFe-40的FESEM图;
图8为本申请实施例中BiFe-30的FESEM图;
图9为本申请实施例中BiFe-20的FESEM图;
图10为本申请实施例中BiFe-10的FESEM图;
图11为本申请实施例中BiFe-30的TEM图;
图12为本申请实施例中Fe3O4/C磁微球、Bi/Bi2WO6、BiFe-30样品N2吸附曲线;
图13为本申请实施例中Bi/Bi2WO6/Fe3O4紫外-可见漫反射光谱图;
图14为本申请实施例中Bi/Bi2WO6/Fe3O4可见光催化还原Cr(VI)图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:Bi/Bi2WO6/Fe3O4复合光催化剂的制备
1、Fe3O4/C磁微球的制备
将0.4630g(2mmol)Fe3O4和3.6030g(20mmol)葡萄糖(Glc)在玛瑙研钵中充分研磨30min后,将0.5g(0.8mmol)聚乙二醇6000(PEG6000)加入到上述混合物中继续研磨30min。
将上述混合物溶于20mL去离子水,超声处理5min,取出机械搅拌5min,重复上述操作三次。将上述混合液转移至聚四氟乙烯内衬中,封入不锈钢反应釜,在180℃的烘箱中,恒温加热12h。待反应降至室温,通过离心分离、水洗等操作获得产品,将洗净后的产品置于80℃的烘箱中,烘干6h,研磨、磁性分离得Fe3O4/C微球。
2、Bi/Bi2WO6/Fe3O4复合光催化剂的制备
称取5mmol(0.2425g)Bi(NO3)3·5H2O和2.5mmol(0.8243g)Na2WO4·2H2O,于玛瑙研钵中研磨30min至均匀。分别称取质量含量为10%、20%、30%、40%)Fe3O4/C磁微球加入在上述前驱体中,研磨20min至均匀,将混合物移至盛有30mL乙二醇(EG)的聚四氟乙烯内衬,封入不锈钢反应釜。在180℃下,恒温12h。待反应降至室温,分别用乙醇和去离子水超速离心清洗,所得产物在80℃下干燥6h,研磨、磁力分离后备用。为了表述方便,根据Fe3O4/C磁微球添加质量分别记为BiFe-10、BiFe-20、BiFe-30、BiFe-40。
按照上述制备Bi/Bi2WO6/Fe3O4复合材料的实验步骤,不加入Fe3O4/C磁微球制备的产品标记为Bi/Bi2WO6
实施例2:Bi/Bi2WO6/Fe3O4复合光催化剂的性能评价
1、Bi/Bi2WO6/Fe3O4光催化性活性分析
以50mg·L-1的重铬酸钾(K2Cr2O7),考察所制Bi/Bi2WO6/Fe3O4的光催化活性。将300mL污染物溶液和300mg催化剂避光搅拌至吸附-脱附平衡;然后打开200W Xe灯进行可见光催化活性分析,在光照过程中每隔固定光照时间取5mL待测液,通过离心分离获得上层清液,清液中污染物的浓度采用分光光度发测定。其中Cr(VI)的浓度检测使用国标二苯基碳酰二肼分光光度法(λmax=540nm)。利用公式(1)将所测得的吸光度转化成Cr(VI)的含量C%。其中A0为光照0min时刻(即暗吸附-脱附平衡时)溶液的吸光度,At为光照t min时刻溶液的吸光度
2、Bi/Bi2WO6/Fe3O4的XRD谱图分析
图1和图2为Fe3O4/C磁微球、Bi/Bi2WO6、BiFe-10~40样品的XRD图。从图1中可以看到Fe3O4/C磁微球在18.29°、30.08°、35.44°、43.07°、53.47°、56.96°、62.54°处均有明显衍射峰,与Fe3O4标准衍射卡(JCPDS No.74-0748)吻合,分别对应正交晶系Fe3O4的(111)、(220)、(311)、(400)、(422)、(333)、(440)晶面,同时在15.00°~25.00°之间有较弱的圆包峰,说明单质碳的存在,说明获得Fe3O4/C磁微球。
根据图1显示不存在Fe3O4/C磁微球合成的样品的XRD图谱,在28.29°、32.67°、47.13°、55.99°、58.6°、68.8°处均有较强衍射峰,与Bi2WO6标准衍射卡(JCPDS No.39-0256)吻合,分别对应正交晶系Bi2WO6的(131)、(002)、(202)、(133)、(262)和(400)晶面。同时在27.16°、37.95°、39.62°、48.70°有衍射峰,与单质Bi标准衍射卡(JCPDS No.85-1329)吻合,对应三方晶系Bi的(012)、(104)、(110)、(202)晶面,说明有单质Bi沉积在合成的Bi2WO6的样品上。在BiFe-10~40的样品中同时观察到Fe3O4/C磁微球、Bi2WO6、Bi的特征衍射峰,说明得到Bi/Bi2WO6/Fe3O4复合材料,且随着复合样品中Fe3O4/C磁微球含量的增加,复合样品的结晶性减弱,Bi的沉积量增大。
3、Bi/Bi2WO6/Fe3O4的FTIR谱图分析
图3呈现Fe3O4、Fe3O4/C磁微球和Bi/Bi2WO6/Fe3O4-30的红外特征峰,所有样品均在1632cm-1附近有吸收峰,这可能是材料表面吸附水的羟基伸缩振动吸收峰。2371cm-1的吸收峰是由样品表层空气中二氧化碳分子的吸附引起的。在Fe3O4和Fe3O4/C磁微球的红外特征峰中,584cm-1是Fe-O-Fe的伸缩振动峰,1632cm-1和1590cm-1的二重峰为C=O,C=C双键的伸缩振动峰。730cm-1和584cm-1处的红外特征峰归属为Bi-O和W-O的伸缩振动峰。
4、Fe3O4、Fe3O4/C、Bi/Bi2WO6/Fe3O4的SEM、TEM分析
图4显示的Fe3O4的SEM图中呈现八面体结构的Fe3O4,粒径在100nm~380nm,均匀分散,无明显团聚现象。图5是Fe3O4/C磁微球的SEM图,从单个微球的断面可以看到,内部为实心层状结构,Fe3O4/C磁微球主要粒径约5μm。图6为Bi/Bi2WO6的SEM图,形状呈大纳米片状堆叠,堆叠程度疏松,可观察到多层Bi2WO6片层。图7~10为BiFe-40~10样品的SEM图,图中微球均呈不规则多层壳核包裹结构,图7中BiFe-40的外壳上覆盖着较大的Bi2WO6纳米片,图8图中BiFe-30的壳核结构的外层Bi2WO6为纳米薄片状,均匀分布在微球表面,图9图为BiFe-20样品的SEM图,Fe3O4/C磁微球壳层上的Bi2WO6多呈鸟巢状,图10图为BiFe-10样品的SEM图,可以观察到Bi2WO6颗粒呈细小颗粒状和片状,作为外壳覆盖在Fe3O4/C磁微球表面、呈多孔疏松状。
图11为BiFe-30样品TEM图,图中可以观察到明显的壳核界面结构,且片状Bi2WO6均匀包覆在Fe3O4/C磁微球表面。
5、Bi/Bi2WO6/Fe3O4的N2吸附曲线分析
通过N2吸附-脱附等温曲线测试获得Fe3O4/C磁微球、Bi/Bi2WO6、BiFe-30的吸附-脱附等温曲线类型。图12显示Fe3O4/C磁微球的吸附-脱附等温曲线呈现较弱的回滞环;Bi2WO6、BiFe-30的吸附-脱附等温曲线均为III型回滞环、具有介孔结构。图13所示的紫外-可见漫反射吸收光谱显示Bi/Bi2WO6/Fe3O4比Bi2WO6具有增强的可见光吸收性能,可以利用可见光驱动光催化反应。
6、Bi/Bi2WO6/Fe3O4光催化处理Cr(VI)的催化活性
图14为Bi/Bi2WO6/Fe3O4光催化处理Cr(VI)的催化活性,从吸附-脱附的实验数据,各催化剂对Cr(VI)的吸附性能有强到弱的次序为BiFe-30>Bi/Bi2WO6>BiFe-40>Fe3O4/C磁微球。在可见光照射过程中,所有Bi/Bi2WO6/Fe3O4复合催化剂都具有比单体催化剂更佳的催化活性,其中具有最大吸附量的BiFe-30具有最高的Cr(VI)还原率(85%),Bi2WO6和Fe3O4/C磁微球的可见光还原Cr(VI)的效率分别为30%和20%。
综上所述,本发明公开了自制Fe3O4/C磁微球、聚乙二醇(PEG)作为分散剂,通过溶剂热合成法,控制调节Bi2WO6和Fe3O4/C磁微球的质量比例,合成高活性、高稳定性、易回收的Bi/Bi2WO6/Fe3O4复合光催化剂,Bi2WO6呈纳米片状包裹在Fe3O4/C磁微球表面,形成多层壳核包裹结构。本申请公开的Bi/Bi2WO6/Fe3O4复合光催化剂在可见光照射下能够催化还原Cr(VI),其中,Fe3O4/C磁微球含量30%的Bi/Bi2WO6/Fe3O4-30的催化效率最高,约是Bi2WO6的2.8倍、Fe3O4/C磁微球的4.2倍,本发明公开的制备方法便于推广,效果优异,制备的Bi/Bi2WO6/Fe3O4复合光催化剂具备较好的应用前景。
以上所述,并非对本发明作任何形式上的限制,虽然本发明已通过上述实施例揭示,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

1.一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述铋/钨酸铋/四氧化三铁复合光催化剂的制备步骤包括:
S1:将一定量Fe3O4和一定量葡萄糖充分研磨后得混合物,将一定量聚乙二醇加入混合物中继续研磨;
S2:将步骤S1中得到的混合物溶于去离子水,超声处理,取出机械搅拌,重复上述操作多次;
S3:将步骤S2中得到的混合液转移至不锈钢反应釜,在烘箱中恒温加热,加热结束后待反应降至室温,通过离心分离、水洗后得产品,将洗净后的产品置于烘箱中烘干,研磨、磁性分离得Fe3O4/C微球;
S4:称取一定量Bi(NO3)3·5H2O和一定量Na2WO4·2H2O,研磨至均匀得前驱体,称取步骤S3中得到的Fe3O4/C磁微球加入前驱体中,研磨至均匀,将混合物混合乙二醇后移入不锈钢反应釜,恒温后待反应降至室温,清洗,所得产物干燥,研磨、磁力分离后即得;
所述步骤S1中Fe3O4、葡萄糖和聚乙二醇的摩尔比为2.5:25:1;
所述步骤S3中恒温温度为180℃,加热12 h;洗净后的产品烘干温度80℃,烘干6 h,研磨、磁性分离得Fe3O4/C磁微球;
所述步骤S4中Bi(NO3)3·5H2O和Na2WO4·2H2O的摩尔比为2:1。
2.如权利要求1所述一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述步骤S1中Fe3O4和葡萄糖研磨时间为30 min,所述步骤S1中加入聚乙二醇后的研磨时间为30 min。
3.如权利要求1所述一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述步骤S1中聚乙二醇为聚乙二醇6000。
4.如权利要求1所述一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述步骤S2中超声处理5 min,取出机械搅拌5 min,重复操作三次。
5.如权利要求1所述一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述步骤S3中不锈钢反应釜内含聚四氟乙烯内衬。
6.如权利要求1所述一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述步骤S4中Bi(NO3)3·5H2O和Na2WO4·2H2O的研磨时间为30 min,加入Fe3O4/C磁微球后研磨时间为20 min。
7.如权利要求1所述一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法,其特征在于,所述步骤S4中恒温温度为180℃,恒温12 h;所得产物干燥温度为80℃,干燥6 h。
CN202110194144.5A 2021-02-20 2021-02-20 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法 Active CN112871183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110194144.5A CN112871183B (zh) 2021-02-20 2021-02-20 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110194144.5A CN112871183B (zh) 2021-02-20 2021-02-20 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN112871183A CN112871183A (zh) 2021-06-01
CN112871183B true CN112871183B (zh) 2023-07-25

Family

ID=76056606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110194144.5A Active CN112871183B (zh) 2021-02-20 2021-02-20 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112871183B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602515A (zh) * 2022-03-28 2022-06-10 王美珍 一种去除污水重金属的光催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989445A (zh) * 2012-11-29 2013-03-27 天津师范大学 一种通过铋源过量提高钨酸铋光催化活性的方法
CN103521237A (zh) * 2013-11-01 2014-01-22 南昌航空大学 Fe3O4/SiO2/Bi2WO6磁性微球光催化剂的制备方法
CN106807361A (zh) * 2017-02-28 2017-06-09 重庆工商大学 一种铋‑无定型钨酸铋‑三氧化二铋三元有机复合光催化剂及制备方法
CN108187687A (zh) * 2018-01-09 2018-06-22 长江师范学院 一种光芬顿催化剂的制备方法
CN108654632A (zh) * 2018-06-11 2018-10-16 河海大学 一种用于降解微囊藻毒素的Bi2WO6/Fe3O4光催化剂的制备方法
CN109865517A (zh) * 2019-03-04 2019-06-11 河海大学 一种磁性钨酸铋光催化剂及其制备方法与应用
CN111330565A (zh) * 2020-03-03 2020-06-26 徐州工程学院 一种碳负载纳米铋复合材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989445A (zh) * 2012-11-29 2013-03-27 天津师范大学 一种通过铋源过量提高钨酸铋光催化活性的方法
CN103521237A (zh) * 2013-11-01 2014-01-22 南昌航空大学 Fe3O4/SiO2/Bi2WO6磁性微球光催化剂的制备方法
CN106807361A (zh) * 2017-02-28 2017-06-09 重庆工商大学 一种铋‑无定型钨酸铋‑三氧化二铋三元有机复合光催化剂及制备方法
CN108187687A (zh) * 2018-01-09 2018-06-22 长江师范学院 一种光芬顿催化剂的制备方法
CN108654632A (zh) * 2018-06-11 2018-10-16 河海大学 一种用于降解微囊藻毒素的Bi2WO6/Fe3O4光催化剂的制备方法
CN109865517A (zh) * 2019-03-04 2019-06-11 河海大学 一种磁性钨酸铋光催化剂及其制备方法与应用
CN111330565A (zh) * 2020-03-03 2020-06-26 徐州工程学院 一种碳负载纳米铋复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ling Zhang et al..Bi2WO6@carbon/Fe3O4 microspheres: Preparation, growth mechanism and application in water treatment.《Journal of Hazardous Materials》.2009,第172卷第1193-1197页. *
黄腾.改性钨酸铋纳米材料的合成及其光催化性能的研究.《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》.2019,(第8期),第B014-474页. *

Also Published As

Publication number Publication date
CN112871183A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Dong et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation
Yang et al. Petal-biotemplated synthesis of two-dimensional Co3O4 nanosheets as photocatalyst with enhanced photocatalytic activity
Fu et al. Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction
CN105854863B (zh) 一种C/ZnO/TiO2复合纳米光催化材料的制备方法
Cui et al. In-situ hydrothermal fabrication of Sr2FeTaO6/NaTaO3 heterojunction photocatalyst aimed at the effective promotion of electron-hole separation and visible-light absorption
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
Ostad et al. The influence of different synthetic solvents on photocatalytic activity of ZIF-8 for methanol production from CO2
CN110721698B (zh) 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
Liu et al. A novel amorphous CoS x/NH 2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light
Mu et al. Bimetallic metal–organic frameworks-derived mesoporous CdxZn1− xS polyhedrons for enhanced photocatalytic hydrogen evolution
Guo et al. Photocatalytic performance of Co3O4/C based on ZIF-67/C composite materials
Liu et al. The effect of different morphology of fluoride-mediated TiO2 based on Ostwald ripening on photocatalytic activity
CN105833887A (zh) 一种BiOCl/β-FeOOH复合纳米材料及其制备方法
Cui et al. Nanoscale SrFe0. 5Ta0. 5O3 double perovskite photocatalyst: Low-temperature solvothermal synthesis and photocatalytic NO oxidation performances
Wang et al. A novel 2D nanosheets self-assembly camellia-like ordered mesoporous Bi12ZnO20 catalyst with excellent photocatalytic property
CN115703077B (zh) 一种PB@MoS2催化剂在非均相类芬顿反应中的应用
CN112871183B (zh) 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法
Liu et al. In situ formation of BiVO4/MoS2 heterojunction: Enhanced photogenerated carrier transfer rate through electron transport channels constructed by graphene oxide
CN106925306B (zh) 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
Liu et al. Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance
Liu et al. Cr doped Mn3O4 thermal catalytic isopropanol degradation at low-temperature and catalytic mechanism research
CN115845832B (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用
Xue et al. Construction of Cu 2+-doped CeO 2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance
Akbarzadeh et al. Structural and magnetic properties of zeolitic imidazolate framework supported on nickel titanate
CN113493221A (zh) 一种二氧化钼/二氧化钛纳米复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant