CN112801231A - 用于业务对象分类的决策模型训练方法和装置 - Google Patents

用于业务对象分类的决策模型训练方法和装置 Download PDF

Info

Publication number
CN112801231A
CN112801231A CN202110373889.8A CN202110373889A CN112801231A CN 112801231 A CN112801231 A CN 112801231A CN 202110373889 A CN202110373889 A CN 202110373889A CN 112801231 A CN112801231 A CN 112801231A
Authority
CN
China
Prior art keywords
splitting
decision
sample
constraint
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110373889.8A
Other languages
English (en)
Other versions
CN112801231B (zh
Inventor
李盟
李龙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alipay Hangzhou Information Technology Co Ltd
Original Assignee
Alipay Hangzhou Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alipay Hangzhou Information Technology Co Ltd filed Critical Alipay Hangzhou Information Technology Co Ltd
Priority to CN202110373889.8A priority Critical patent/CN112801231B/zh
Publication of CN112801231A publication Critical patent/CN112801231A/zh
Application granted granted Critical
Publication of CN112801231B publication Critical patent/CN112801231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4016Transaction verification involving fraud or risk level assessment in transaction processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Security & Cryptography (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本说明书实施例提供一种用于业务对象分类的决策模型训练方法和装置。训练方法包括,首先获取样本总集和训练的约束条件;然后根据样本总集,通过节点***的方式构建决策树,其中针对任意的当前节点进行***的过程包括:对于当前节点的多个备选***条件中任一***条件,根据依照该***条件对当前节点进行***得到的两个子节点对于约束条件的符合程度,确定该***条件的约束适应度;根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分;根据多个备选***条件中综合得分最优的***条件,对当前节点进行***。然后基于上述决策树,确定用于对业务对象分类的决策模型。

Description

用于业务对象分类的决策模型训练方法和装置
技术领域
本说明书一个或多个实施例涉及人工智能和机器学习领域,尤其涉及用于业务对象分类的决策模型训练方法和装置。
背景技术
在多种场景下,需要对业务对象进行决策和分类,例如,判断一笔交易是否为涉嫌欺诈或盗用的高风险交易,确定一个用户的信用评级,判断是否需要将该用户加入黑名单,判断一项业务申请是否应该审核通过,等等。传统模式下,以上决策过程往往需要具有专家经验的策略开发者通过制定决策规则来完成。策略开发者需要根据对业务的经验,尝试融合不同的业务变量以及不同的变量阈值来构造决策规则。同时还需要对产出的决策规则进行性能和稳定性的测算。人工生成上述决策规则的方式在成本、效率、效果上都存在着明显的缺陷。首先,在满足复杂的业务约束的条件下生成决策规则需要花费较高的人力成本和时间成本。同时,由于人工尝试和测算的效率较低,只能通过以往的人工经验尝试相对有限的业务特征和条件组合,无法达到较高的业务目标。
近来也提出了一些利用机器学习的方法,训练决策模型,进行决策学习的方案。这些方法可以通过非人工的方法进行决策规则的学习。然而,在现实业务场景对决策模型有特定要求时,通用的机器学习模型训练方法,往往难以达到预期要求和性能,仍然存在不足。
因此,期望能有改进的方案,更加有效地训练出满足业务场景约束和要求的决策模型,从而更高效地进行业务对象的分类决策。
发明内容
本说明书一个或多个实施例描述了约束自适应的决策模型训练方法和装置,能够有效地训练出满足业务场景约束条件的决策模型,从而高效地进行业务对象的分类决策。
根据第一方面,提供了一种用于业务对象分类的决策模型训练方法,包括:
获取样本总集和训练的约束条件,其中样本总集中的单个样本包括,单个业务对象的属性特征,以及该业务对象是否属于目标业务分类的分类标签;
根据所述样本总集,通过节点***的方式构建第一决策树,其中针对任意的当前节点进行***的过程包括:对于当前节点的多个备选***条件中任一***条件,根据依照该***条件对当前节点进行***得到的两个子节点对于所述约束条件的符合程度,确定该***条件的约束适应度;根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分;根据所述多个备选***条件中综合得分最优的***条件,对当前节点进行***;
基于所述第一决策树,确定用于对业务对象分类的决策模型。
在一个实施例中,针对任意的当前节点进行***的过程还包括:根据落入当前节点的当前样本集中,各业务对象的属性特征取值,确定所述多个备选***条件。
进一步的,在一个例子中,上述属性特征包括数值型的多项属性特征;确定所述多个备选***条件,具体包括:枚举所述当前样本集中,所述多项属性特征具有的可能取值,将一项属性特征与该项属性特征的一个取值的组合作为一个备选***条件。
根据一种可能的实施方式,约束条件可以包括,对样本预测的评价指标和该评价指标应符合的指标阈值;所述确定该***条件的约束适应度,具体包括:对于所述两个子节点中的任一子节点,确定按照该子节点对应的决策规则进行的样本预测对于所述评价指标的指标值,并根据所述指标值与所述指标阈值的对比,确定该子节点的约束符合度;将所述两个子节点各自的约束符合度中的较大者,确定为该***条件的约束适应度。
进一步的,在不同实施例中,前述评价指标可以包括以下之一:置信度,召回率,召回数、稳定性。
在一个实施例中,前述根据指标值与指标阈值的对比,确定该子节点的约束符合度,具体包括:如果所述指标值符合所述指标阈值,则将该子节点的约束符合度确定为0;如果所述指标值不符合所述指标阈值,则取所述指标值和指标阈值的差值绝对值的相反数,作为该子节点的约束符合度。
根据一种实施方式,针对任意的当前节点进行***的过程还包括:根据当前节点对应的当前样本集的样本纯度,所述两个子节点分别对应的两个样本子集的样本纯度,确定该***条件的***纯度。
进一步的,前述样本纯度可以基于以下指标之一而确定:信息熵,基尼系数。
在一个实施例中,前述确定该***条件的***纯度,具体包括:以所述两个样本子集各自的样本数目与所述当前样本集的样本数目的比例为各自的权重,对所述两个样本子集的样本纯度进行加权求和,得到和值;基于所述当前样本集的样本纯度与所述和值之差,确定该***条件的***纯度。
根据一种可能的实施方式,根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分,具体包括:分别以第一权重和第二权重为权重因子,对所述***纯度和所述约束适应度进行加权求和,得到所述综合得分。
进一步的,在一个例子中,上述第一权重可以根据所述多个备选***条件分别对应的多个***纯度的第一方差而确定,且与第一方差负相关;所述第二权重根据所述多个备选***条件分别对应的多个约束适应度的第二方差而确定,且与第二方差负相关。
根据一种可能的实施方式,第一决策树包括第一数目N个叶节点;所述基于所述第一决策树,确定用于对业务对象分类的决策模型,具体包括:在所述第一决策树中,确定从根节点到N个叶节点的N条路径对应的N个决策规则;从所述N个决策规则中筛选出满足所述约束条件的第二数目M个决策规则;基于所述M个决策规则,形成所述决策模型。
进一步的,在一个实施例中,基于所述M个决策规则,形成所述决策模型,进一步包括:对于所述M个决策规则中各个决策规则,执行以下裁剪迭代:若当前决策规则的父规则满足所述约束条件,则用所述父规则替代所述当前决策规则,直到父规则不再满足所述约束条件;其中,所述当前决策规则对应于所述第一决策树中从根节点开始的第一节点序列,所述父规则是将所述第一节点序列中最后一个节点裁剪后的节点序列对应的决策规则;基于执行所述裁剪迭代后得到的不重复的决策规则,形成所述决策模型。
根据一种可能的实施方式,所述方法还包括:利用所述第一决策树,对所述样本总集的各个样本进行预测,得到被预测为属于所述目标业务分类的样本构成的第一样本集;从所述样本总集中剔除所述第一样本集,得到第二样本集;根据所述第二样本集,利用与构建第一决策树相同的节点***的方式构建第二决策树;相应的,基于所述第一决策树,确定用于对业务对象分类的决策模型,具体包括:基于所述第一决策树和所述第二决策树,确定所述决策模型。
在不同实施例中,前述业务对象可以包括以下之一:用户、操作事件、交易、业务申请请求;所述目标业务分类指示有风险的业务对象。
根据第二方面,提供了一种用于业务对象分类的决策模型训练装置,包括:
获取单元,配置为获取样本总集和训练的约束条件,其中样本总集中的单个样本包括,单个业务对象的属性特征,以及该业务对象是否属于目标业务分类的分类标签;
决策树构建单元,配置为根据所述样本总集,通过节点***的方式构建第一决策树,其中针对任意的当前节点进行***的过程包括:对于当前节点的多个备选***条件中任一***条件,根据依照该***条件对当前节点进行***得到的两个子节点对于所述约束条件的符合程度,确定该***条件的约束适应度;根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分;根据所述多个备选***条件中综合得分最优的***条件,对当前节点进行***;
模型确定单元,配置为基于所述第一决策树,确定用于对业务对象分类的决策模型。
根据第三方面,提供一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行第一方面的方法。
根据第四方面,提供一种计算设备,包括存储器和处理器,其特征在于,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现第一方面所述的方法。
根据本说明书实施例提供的方法和装置,为了针对业务对象分类的任务训练出具有较好可解释性的决策模型,采用决策树作为基础模型。为了更好地适应于针对训练任务提出的约束条件,提出了约束自适应的决策树生成方式。其中,在选择节点的***条件时,除了考虑***前后的信息增益或者说***纯度,还要考虑该***条件的***结果对约束条件的满足程度,即约束适应性。如此得到的决策树可以更好地适应于预设的约束条件。进而,可以根据该约束自适应的决策树,进一步参照约束条件,提取出有效的决策规则,从而确定出最终的决策模型。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示意性示出约束自适应的决策模型的确定过程;
图2示出根据一个实施例训练用于业务对象分类的决策模型的方法流程图;
图3示出在一个实施例中针对当前节点进行***的步骤流程;
图4示出决策树的一个示意图;
图5示出根据一个实施例的训练装置示意图。
具体实施方式
下面结合附图,对本说明书提供的方案进行描述。
如前所述,在现实业务场景对决策模型有特定要求或施加特定约束条件时,传统的机器学习方法难以训练出满足约束条件的决策模型。为此,在本说明书的实施例中,提出一种约束自适应的决策树生成方式。根据该方式,在生成决策树的节点***过程中,可以自动地更好适应于业务场景所要求的约束条件。于是,可以基于该约束自适应的决策树,确定最终的决策模型,从而更好地符合业务要求。
图1示意性示出约束自适应的决策模型的确定过程。如图1所示,在一定业务场景下,会对决策模型提出一些约束条件,例如,置信度超过一定阈值,召回率满足一定条件,召回数满足一定要求,稳定性达到一定目标,等等。为此,在模型训练过程中,根据训练样本集的特征和标签信息,同时考虑约束条件的满足状况,来生成决策树,也就是构建约束自适应的决策树。可以理解,决策树是通过不断地根据***条件对节点进行***而生成的。因此,在构建该约束自适应的决策树的过程中,在选择节点的***方式或***条件时,除了考虑***前后的信息增益,还要考虑该***条件的***结果对前述约束条件的满足程度。如此得到的决策树可以更好地适应于预设的约束条件。进而,可以根据该约束自适应的决策树,进一步参照约束条件,提取出有效的决策规则,从而确定出最终的决策模型。如图1所示,可选的,在从决策树中提取出决策规则后,可以再次参照约束条件,对决策规则进行筛选,和/或裁剪,从而优化决策规则,使得决策模型在满足约束条件的同时,具有更好的性能。
下面描述以上技术构思的具体实现过程。
图2示出根据一个实施例训练用于业务对象分类的决策模型的方法流程图。可以理解,该方法可以通过任何具有计算、处理能力的装置、设备、平台、设备集群来执行。如图2所示,该方法包括以下步骤。
在步骤21,获取样本总集和训练的约束条件。
样本总集中包含大量的样本,其中单个样本包括,单个业务对象的属性特征,以及该业务对象是否属于目标业务分类的分类标签。具体的,可以将样本总集中任意的第i个样本记为(xi,yi),其中xi表示该第i个样本对应的业务对象的属性特征,yi表示该业务对象是否属于目标业务分类的标签。需要理解,由于后续需要利用该样本总集训练决策树,这里,属性特征中的各项都是数值型特征。yi通常取值为0或1,分别示出该业务对象是否属于目标业务分类。通常,可以将属于目标业务分类的样本(例如标签值yi为1的样本)称为正样本,其余样本称为负样本。
在不同实施例中,上述样本对应的业务对象可以是各种业务对象,例如用户、操作事件、交易、业务申请请求等等。
在一个具体例子中,业务对象为用户,用户可以通过其对应账号表示。相应的,目标业务分类可以是有风险的用户/账号,例如,垃圾账号、被盗用账号,有信用风险的用户等等。用户的属性特征可以包括例如年龄,账号的注册时长等基本属性,还可以包括与具体的目标业务分类相关的属性,例如当用于评估信用风险时,还可以包括最近一段时间的借款次数,累计借款金额等等。
在另一例子中,业务对象为交易。相应的,目标业务分类可以是高风险交易,例如涉嫌欺诈、套现、盗卡等的交易。对于交易样本来说,属性特征可以包括,例如交易金额、交易时间、最近一段时间的交易频次等等。
在又一例子中,业务对象为业务申请请求,例如,贷款请求,保险理赔请求,相应的,目标业务分类可以是高风险的申请请求,例如涉嫌骗保的理赔请求,逾期的贷款请求。
在其他例子中,样本还可以是其他业务对象,例如用户操作,交互事件,等等,不同类型的业务对象针对不同的目标业务分类具有不同的属性特征,在此不一一具体描述。
另一方面,还需获取针对决策模型训练提出的约束条件。该约束条件可以包括对样本预测的评价指标和该评价指标应符合的指标阈值。
例如,在一个例子中,上述约束条件可以包括,样本预测的置信度应达到一置信度阈值。其中,一条决策规则或一个决策模型的置信度可以定义为,在按照该规则或模型预测为正样本(属于目标业务分类的样本)的集合中,真实正样本的比例。即假定一条决策规则或决策模型针对一批样本预测出N个正样本,在这N个样本中有M个是标签确实为1的真实正样本,则置信度为M/N。在一些应用场景中,又将置信度称为准确度,或预测准确率。
在一个例子中,上述约束条件可以包括,样本预测的召回率应超过一比例阈值。具体的,决策模型的召回率可以定义为,当将一定数量n个正样本输入决策模型,决策模型正确预测出的正样本数目m与输入的正样本数目n的比值m/n。召回率又可称为覆盖率,是衡量模型预测性能的另一指标。
在其他例子中,约束条件还可以包括,样本预测的召回数应达到一定阈值,在样本预测中对样本特征的利用率应超过一定阈值,等等。在此不一一枚举。
在获取了上述样本总集和上述约束条件的情况下,就可以基于该样本总集,结合约束条件进行决策树的训练。即,在步骤22,根据样本总集,通过节点***的方式构建第一决策树。
如本领域技术人员所知,决策树是一种具有较强可解释性的树形模型,训练好的决策树包含根节点,中间节点和叶节点,除叶节点之外的每个节点对应一个***条件。样本集从根节点输入,经过各个节点的***条件,被划分到下一层级的子节点,直到叶节点。训练或构建决策树的过程,就是从根节点开始,通过确定节点对应的***条件,进行节点***的过程。通常,一个节点的***条件,对应于样本的一项属性特征和特征值的组合。例如,对于用户业务对象,假定某个节点i的***条件为,属性特征是年龄,特征值为25,则年龄小于25的用户样本将会被划分到该节点i的左侧子节点,年龄大于等于25的用户样本将会被划分为该节点i的右侧子节点。
在本说明书的实施例中,为了构建出约束自适应的决策树,在节点***过程中,综合考虑各备选***条件的***纯度以及对于前述约束条件的适应度来选择***条件,进行节点***。
图3示出在一个实施例中针对当前节点进行***的步骤流程,也即,步骤22的子步骤。需要理解,该当前节点可以是决策树中有待进行节点***的任一节点。换而言之,对于决策树中的每个节点,均可以按照图3的步骤流程实施***过程。
如图3所示,在步骤31,确定当前节点的多个备选***条件。在一个实施例中,可以根据落入当前节点D的当前样本集S中,各业务对象的属性特征取值,确定上述多个备选***条件。
如前所述,用于训练决策树的样本属性特征一般是数值型的多项属性特征。如此,在一个例子中,可以枚举当前样本集S中,多项属性特征具有的所有可能取值,将一项属性特征与该项属性特征的一个取值的组合作为一个备选***条件,从而枚举得到上述多个备选***条件。在另一例子中,也可以对于任一项属性特征,去除其最大值和最小值,保留中间取值,然后进行属性特征与各个中间取值的组合,得到多个备选***条件。在又一例子中,如果当前节点位于较高层级,可以以一定步长获取某些属性特征的特征值,然后进行属性特征与各个特征值的组合,得到上述多个备选***条件。
对于如此获得的多个备选***条件中的任一***条件,在步骤32,确定该***条件的***纯度,在步骤33,确定该***条件的约束适应度,然后,在步骤34,根据该***条件的***纯度和约束适应度,确定该***条件的综合得分。下面分别描述以上各个步骤。
在步骤32,确定某个***条件(s,t)的***纯度
Figure 574291DEST_PATH_IMAGE001
,其中s为该***条件选取的属性特征,t为该属性特征的用于***的特征值。***纯度
Figure 491432DEST_PATH_IMAGE002
通过衡量***之前和之后,节点样本集的样本纯度
Figure 271169DEST_PATH_IMAGE003
的变化,确定该***条件对于样本分类的信息增益。
一个样本集的样本纯度
Figure 745007DEST_PATH_IMAGE003
,用来表征该样本集中样本分类标签的差异程度或统一程度。可以用
Figure 559379DEST_PATH_IMAGE004
表示样本集中各个类别的样本的分布,其中,pj表示类别标签为第j个类别的样本占样本集中样本总量的比例。当以上分布中任意一个pj等于1,其他类别的样本占比均为0时,样本纯度
Figure 178579DEST_PATH_IMAGE003
达到最大。在是否属于目标业务分类的二分类情况下,当一个样本集中所有样本均为正样本,或均为负样本时,样本纯度
Figure 445612DEST_PATH_IMAGE003
达到最大。在不同实施例中,样本纯度
Figure 644513DEST_PATH_IMAGE003
可以基于样本集对应的信息熵,基尼系数(Gini index)等指标来确定。
假定当前节点D对应于当前样本集S,如果按照***条件(s,t)对当前节点D进行***,会得到左侧、右侧两个子节点DL和DR,相应的,当前样本集S被划分为分别落入左侧、右侧子节点的两个样本子集。如此,可以根据当前节点D对应的当前样本集的样本纯度
Figure 126441DEST_PATH_IMAGE005
,两个子节点DL和DR分别对应的两个样本子集的样本纯度
Figure 119805DEST_PATH_IMAGE006
,确定该***条件(s,t)的***纯度
Figure 874134DEST_PATH_IMAGE001
***纯度有多种确定方式。
在一个具体例子中,可以以两个样本子集各自的样本数目与当前样本集的样本数目的比例为各自的权重,对两个样本子集的样本纯度
Figure 939042DEST_PATH_IMAGE006
进行加权求和,得到和值;基于当前样本集的样本纯度
Figure 462427DEST_PATH_IMAGE005
与该和值之差,确定该***条件的***纯度
Figure 439741DEST_PATH_IMAGE001
。更具体的,在一个例子中,可以利用以下公式(1)确定***纯度
Figure 681367DEST_PATH_IMAGE001
Figure 956491DEST_PATH_IMAGE007
(1)
其中,
Figure 927858DEST_PATH_IMAGE008
表示节点D对应的样本集中的样本数目。
在另一具体例子中,还可以求得***之后的两个样本子集的样本纯度
Figure 969018DEST_PATH_IMAGE006
之和与***前的原样本纯度
Figure 494677DEST_PATH_IMAGE005
的差值,将该差值与原样本纯度
Figure 652120DEST_PATH_IMAGE005
的比值确定为***纯度
Figure 212414DEST_PATH_IMAGE001
。在该例子中,***纯度可以衡量,***前后的信息增益比例。
如此,通过多种方式,确定出***条件(s,t)的***纯度
Figure 485526DEST_PATH_IMAGE001
另一方面,还在步骤33,确定该***条件(s,t)的约束适应度
Figure 249214DEST_PATH_IMAGE009
。该约束适应度用于衡量,基于该***条件形成的决策规则对样本进行预测时对于前述约束条件的适应程度。
在一个实施例中,为了计算***条件(s,t)的约束适应度
Figure 735647DEST_PATH_IMAGE009
,首先定义并计算节点的约束符合度
Figure 88131DEST_PATH_IMAGE010
,然后根据***条件(s,t)产生的两个子节点的约束符合度,来确定该***条件的约束适应度
Figure 358575DEST_PATH_IMAGE009
如前所述,约束条件一般包括,对样本预测的评价指标和该评价指标应符合的指标阈值
Figure 796510DEST_PATH_IMAGE011
。而决策树中的一个节点D可以对应于一个决策规则R,该决策规则R即为,从根节点到该节点D的路径上各个节点的***条件的组合。因此,对于节点D,可以确定按照对应的决策规则R进行样本预测时对于前述评价指标的指标值
Figure 30176DEST_PATH_IMAGE012
。例如,当评价指标为置信度时,则确定节点D对应的决策规则R在样本预测时的置信度conf(D)作为指标值
Figure 502746DEST_PATH_IMAGE012
。当评价指标为召回率时,则确定节点D对应的决策规则R在样本预测时的召回率作为指标值
Figure 616195DEST_PATH_IMAGE012
。然后,根据该指标值
Figure 603743DEST_PATH_IMAGE012
与指标阈值
Figure 828051DEST_PATH_IMAGE011
的对比,确定该节点D的约束符合度
Figure 702597DEST_PATH_IMAGE013
在一个实施例中,如果指标值
Figure 986948DEST_PATH_IMAGE012
符合上述指标阈值
Figure 399474DEST_PATH_IMAGE011
,则将该节点D的约束符合度
Figure 489790DEST_PATH_IMAGE013
确定为0,其中上述“符合”是指,与约束条件中的规定具有相同的大小关系。如果约束条件中规定,评价指标的指标值应大于指标阈值,则上述符合即为大于。而如果指标值
Figure 671373DEST_PATH_IMAGE012
不符合指标阈值
Figure 861046DEST_PATH_IMAGE011
,则取指标值
Figure 573918DEST_PATH_IMAGE012
和指标阈值
Figure 202345DEST_PATH_IMAGE011
的差值绝对值的相反数,作为节点D的约束符合度
Figure 504014DEST_PATH_IMAGE013
具体的,在一个例子中,约束条件中指定,评价指标的指标值应大于指标阈值,例如置信度应大于预设的置信度阈值。则节点D的约束符合度可以表示为以下公式(2):
Figure 677637DEST_PATH_IMAGE014
(2)
如此,通过多种方式定义了节点的约束符合度
Figure 64756DEST_PATH_IMAGE010
。对于***条件(s,t)来说,该***条件(s,t)会产生两个子节点DL和DR,可以分别确定这两个子节点的约束符合度
Figure 434558DEST_PATH_IMAGE015
,取这两个约束符合度中的较大者,作为***条件(s,t)的约束适应度
Figure 200520DEST_PATH_IMAGE009
,即:
Figure 997574DEST_PATH_IMAGE016
(3)
如此,在步骤33,可以通过多种方式确定出***条件(s,t)的约束适应度
Figure 668727DEST_PATH_IMAGE009
需要说明的是,步骤32中确定***纯度和步骤33中确定约束适应度,这两个步骤可以以任何相对顺序执行,或并行执行,在此不做限定。
接着,基于步骤32确定的***纯度和步骤33确定的约束适应度,在步骤34,根据***条件(s,t)的***纯度和约束适应度,确定该***条件的综合得分
Figure 842219DEST_PATH_IMAGE017
在一个实施例中,可以将***条件(s,t)的***纯度和约束适应度,简单相加或相乘,结果作为该***条件的综合得分。
在另一实施例中,对于***条件(s,t),可以分别以第一权重w1和第二权重w2为权重因子,对***纯度
Figure 852901DEST_PATH_IMAGE001
和约束适应度
Figure 633906DEST_PATH_IMAGE009
进行加权求和,得到综合得分
Figure 730038DEST_PATH_IMAGE018
,即:
Figure 441642DEST_PATH_IMAGE019
(4)
在一个例子中,上述第一权重w1和第二权重w2可以是预设的超参数。
在另一例子中,第一权重w1根据多个备选***条件分别对应的多个***纯度的方差d1而确定,且与该方差d1负相关。第二权重根据多个备选***条件分别对应的多个约束适应度的方差d2而确定,且与该方差d2负相关。
更具体的,根据一个例子,综合得分
Figure 369147DEST_PATH_IMAGE018
可以表示为:
Figure 508004DEST_PATH_IMAGE020
(5)
如此,通过多种方式,得到***条件(s,t)的综合得分。需要理解,该***条件(s,t)是当前节点的多个备选***条件中的任意一个***条件。因此,针对多个备选***条件中的每个***条件,都可以按照步骤32到34的方式,确定出对应的综合得分。
于是,接着在步骤35,确定多个备选***条件中综合得分最优的***条件,按照该***条件对当前节点进行***。在多数情况下,***纯度和约束适应性都被设置为分值越高,相应***条件越有可能满足训练目标。在这样的情况下,可以选择综合得分最高的***条件作为最优的***条件。但是也不排除相反的情况。在此不做限定。
如此,通过图3的步骤流程,对于决策树中的任意一个当前节点进行了节点***。通过对各个节点执行图3的步骤,直到满足预设的决策树终止条件,就可以得到一棵决策树,在此称为第一决策树。其中上述决策树终止条件可以包括,例如,深度达到一定阈值,节点中的样本数目小于一定阈值,等等。
回到图2。在根据样本总集,通过节点***得到第一决策树后,在步骤23,基于该第一决策树,确定用于对业务对象分类的决策模型。
在一个实施例中,直接将该第一决策树作为最终的决策模型。在这样的情况下,该决策模型可以理解为,包含第一决策树中从根节点到各个叶节点形成的各个路径对应的各个决策规则。
在另一实施例中,可以基于前述的约束条件,对第一决策树中包含的决策规则进行筛选,使得得到的决策模型具有更强的约束适应性。
具体的,假定第一决策树包括第一数目N个叶节点,则从根节点到N个叶节点形成N条路径。每一条路径对应一个决策规则,即为该路径所途径节点的***条件的组合。于是,第一决策树包含N个决策规则。可以从这N个决策规则中筛选出满足前述约束条件的第二数目M个决策规则,基于该筛选出的M个决策规则,形成决策模型。
图4示出决策树的一个示意图。在图4的例子中,决策树包含5个叶节点D,E,H,I,G,对应5个决策规则。假定约束条件是置信度应大于等于0.5,即置信度阈值为0.5。那么可以分别确定各个决策规则的置信度。图4中节点中的数字,即代表该节点对应的决策规则的置信度。可以看到,在5条决策规则中,节点I和G对应的决策规则的置信度不满足约束条件,可以将其剔除。从而筛选出节点D,E,H对应的决策规则,来形成决策模型。
在一个实施例中,在基于约束条件对决策规则进行筛选的基础上,还对各个决策规则进行裁剪,从而避免路径太长、规则太复杂造成的过拟合问题。
具体的,在一个实施例中,对于筛选出的各个决策规则,执行以下裁剪迭代:若当前决策规则的父规则满足前述约束条件,则用所述父规则替代当前决策规则,持续判断和替代,直到父规则不再满足所述约束条件;其中,当前决策规则对应于第一决策树中从根节点开始的第一节点序列,父规则则是将该第一节点序列中最后一个节点裁剪后的节点序列对应的决策规则。
然后,基于执行裁剪迭代后得到的不重复的决策规则,形成决策模型。
再次参看图4。仍然假定约束条件是置信度大于等于0.5,并且各条决策规则用其对应节点标号表示。当将决策规则H作为当前决策规则,那么其父规则为决策规则F,该决策规则的置信度为0.5,满足约束条件。于是,可以将当前决策规则更新为决策规则F。此时,父规则为决策规则C,该条决策规则的置信度为0.4,不满足约束条件,因此不再进行替换和裁剪。
如此,通过依次对各条筛选出的决策规则D,E,H执行上述裁剪迭代,并去除重复的决策规则,得到裁剪后的决策规则B和F。
基于筛选并裁剪后的决策规则形成的决策模型,由于简化了规则,同时避免了过拟合,具有更好的泛化能力和运算效率。
在一个实施例中,为了进一步提升决策模型的性能,还提出迭代训练决策树的方案。这是考虑到,一棵决策树,特别是经过规则筛选和裁剪之后,得到的决策规则常常比较有限,有时候会使得整个决策模型的召回率降低。为此,提出以下增强迭代的方式。
根据该实施例,在根据图2的步骤22得到第一决策树后,利用该第一决策树,对样本总集的各个样本进行预测,得到被预测为属于目标业务分类的样本构成的第一样本集。换而言之,第一样本集是第一决策树预测为正样本的样本集。然后,从样本总集中剔除该第一样本集,得到第二样本集。这里,不管第一样本集中的样本是否为真实的正样本,而将其全部从样本总集中剔除。如此,得到的第二样本集,就是第一决策树没有覆盖到的样本。然后,根据该第二样本集,利用与构建第一决策树相同的节点***的方式构建第二决策树。
相应的,在步骤23,可以基于先后训练得到的第一决策树和第二决策树,共同确定决策模型。该步骤中,也可以可选地对第一决策树和/或第二决策树进行规则筛选,和/或规则裁剪,得到最终的决策模型。
可以理解,如果第一决策树加上第二决策树的召回率仍然不够理想,可以按照前述方式,继续训练第三棵决策树,以及可能的第四棵决策树等等,直到召回率达到理想情况。
回顾以上过程,在本说明书实施例中,为了针对业务对象分类的任务训练出具有较好可解释性的决策模型,采用决策树作为基础模型。为了更好地适应于针对训练任务提出的约束条件,提出了约束自适应的决策树生成方式。其中,在选择节点的***条件时,除了考虑***前后的信息增益或者说***纯度,还要考虑该***条件的***结果对约束条件的满足程度,即约束适应性。如此得到的决策树可以更好地适应于预设的约束条件。进而,可以根据该约束自适应的决策树,进一步参照约束条件,提取出有效的决策规则,从而确定出最终的决策模型。
根据另一方面的实施例,还提供了一种用于业务对象分类的决策模型训练装置,上述装置可以部署在任何具有计算、处理能力的设备或平台上。图5示出根据一个实施例的训练装置示意图。如图5所示,该训练装置500包括:
获取单元51,配置为获取样本总集和训练的约束条件,其中样本总集中的单个样本包括,单个业务对象的属性特征,以及该业务对象是否属于目标业务分类的分类标签;
决策树构建单元52,配置为根据所述样本总集,通过节点***的方式构建第一决策树,其中针对任意的当前节点进行***的过程包括:对于当前节点的多个备选***条件中任一***条件,根据依照该***条件对当前节点进行***得到的两个子节点对于所述约束条件的符合程度,确定该***条件的约束适应度;根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分;根据所述多个备选***条件中综合得分最优的***条件,对当前节点进行***;
模型确定单元53,配置为基于所述第一决策树,确定用于对业务对象分类的决策模型。
在一个实施例中,决策树构建单元52还配置为,根据落入当前节点的当前样本集中,各业务对象的属性特征取值,确定所述多个备选***条件。
进一步的,在一个例子中,上述属性特征包括数值型的多项属性特征;确定所述多个备选***条件,具体包括:枚举所述当前样本集中,所述多项属性特征具有的可能取值,将一项属性特征与该项属性特征的一个取值的组合作为一个备选***条件。
根据一种可能的实施方式,约束条件可以包括,对样本预测的评价指标和该评价指标应符合的指标阈值;决策树构建单元52可具体配置为:对于所述两个子节点中的任一子节点,确定按照该子节点对应的决策规则进行的样本预测对于所述评价指标的指标值,并根据所述指标值与所述指标阈值的对比,确定该子节点的约束符合度;将所述两个子节点各自的约束符合度中的较大者,确定为该***条件的约束适应度。
进一步的,在不同实施例中,前述评价指标可以包括以下之一:置信度,召回率,召回数,稳定性。
在一个实施例中,前述根据指标值与指标阈值的对比,确定该子节点的约束符合度,具体包括:如果所述指标值符合所述指标阈值,则将该子节点的约束符合度确定为0;如果所述指标值不符合所述指标阈值,则取所述指标值和指标阈值的差值绝对值的相反数,作为该子节点的约束符合度。
根据一种实施方式,决策树构建单元52还配置为:根据当前节点对应的当前样本集的样本纯度,所述两个子节点分别对应的两个样本子集的样本纯度,确定该***条件的***纯度。
进一步的,前述样本纯度可以基于以下指标之一而确定:信息熵,基尼系数。
在一个实施例中,前述确定该***条件的***纯度,具体包括:以所述两个样本子集各自的样本数目与所述当前样本集的样本数目的比例为各自的权重,对所述两个样本子集的样本纯度进行加权求和,得到和值;基于所述当前样本集的样本纯度与所述和值之差,确定该***条件的***纯度。
根据一种可能的实施方式,决策树构建单元52具体配置为,通过以下方式确定该***条件的综合得分:分别以第一权重和第二权重为权重因子,对所述***纯度和所述约束适应度进行加权求和,得到所述综合得分。
进一步的,在一个例子中,上述第一权重可以根据所述多个备选***条件分别对应的多个***纯度的第一方差而确定,且与第一方差负相关;所述第二权重根据所述多个备选***条件分别对应的多个约束适应度的第二方差而确定,且与第二方差负相关。
根据一种可能的实施方式,第一决策树包括第一数目N个叶节点;所述模型确定单元53具体配置为:在所述第一决策树中,确定从根节点到N个叶节点的N条路径对应的N个决策规则;从所述N个决策规则中筛选出满足所述约束条件的第二数目M个决策规则;基于所述M个决策规则,形成所述决策模型。
进一步的,在一个实施例中,模型确定单元53进一步配置为:对于所述M个决策规则中各个决策规则,执行以下裁剪迭代:若当前决策规则的父规则满足所述约束条件,则用所述父规则替代所述当前决策规则,直到父规则不再满足所述约束条件;其中,所述当前决策规则对应于所述第一决策树中从根节点开始的第一节点序列,所述父规则是将所述第一节点序列中最后一个节点裁剪后的节点序列对应的决策规则;基于执行所述裁剪迭代后得到的不重复的决策规则,形成所述决策模型。
根据一种可能的实施方式,所述装置还包括第二构建单元(未示出),配置为:利用所述第一决策树,对所述样本总集的各个样本进行预测,得到被预测为属于所述目标业务分类的样本构成的第一样本集;从所述样本总集中剔除所述第一样本集,得到第二样本集;根据所述第二样本集,利用与构建第一决策树相同的节点***的方式构建第二决策树。相应的,模型确定单元53配置为:基于所述第一决策树和所述第二决策树,确定所述决策模型。
在不同实施例中,前述业务对象可以包括以下之一:用户、操作事件、交易、业务申请请求;所述目标业务分类指示有风险的业务对象。
通过以上装置,可以训练得到约束自适应的决策树,进而确定出更加有效的决策模型。
根据另一方面的实施例,还提供一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行结合图2和图3所描述的方法。
根据再一方面的实施例,还提供一种计算设备,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现结合图2和图3所述的方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (18)

1.一种用于业务对象分类的决策模型训练方法,包括:
获取样本总集和训练的约束条件,其中样本总集中的单个样本包括,单个业务对象的属性特征,以及该业务对象是否属于目标业务分类的分类标签;
根据所述样本总集,通过节点***的方式构建第一决策树,其中针对任意的当前节点进行***的过程包括:对于当前节点的多个备选***条件中任一***条件,根据依照该***条件对当前节点进行***得到的两个子节点对于所述约束条件的符合程度,确定该***条件的约束适应度;根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分;根据所述多个备选***条件中综合得分最优的***条件,对当前节点进行***;
基于所述第一决策树,确定用于对业务对象分类的决策模型。
2.根据权利要求1所述的方法,其中,针对任意的当前节点进行***的过程还包括:
根据落入当前节点的当前样本集中,各业务对象的属性特征取值,确定所述多个备选***条件。
3.根据权利要求2所述的方法,其中,所述属性特征包括数值型的多项属性特征;确定所述多个备选***条件,包括:枚举所述当前样本集中,所述多项属性特征具有的可能取值,将一项属性特征与该项属性特征的一个取值的组合作为一个备选***条件。
4.根据权利要求1所述的方法,其中,所述约束条件包括,对样本预测的评价指标和该评价指标应符合的指标阈值;所述确定该***条件的约束适应度,具体包括:
对于所述两个子节点中的任一子节点,确定按照该子节点对应的决策规则进行的样本预测对于所述评价指标的指标值,并根据所述指标值与所述指标阈值的对比,确定该子节点的约束符合度;
将所述两个子节点各自的约束符合度中的较大者,确定为该***条件的约束适应度。
5.根据权利要求4所述的方法,其中,所述评价指标包括以下之一:
置信度,召回率,召回数,稳定性。
6.根据权利要求4所述的方法,其中,根据所述指标值与所述指标阈值的对比,确定该子节点的约束符合度,具体包括:
如果所述指标值符合所述指标阈值,则将该子节点的约束符合度确定为0;
如果所述指标值不符合所述指标阈值,则取所述指标值和指标阈值的差值绝对值的相反数,作为该子节点的约束符合度。
7.根据权利要求1所述的方法,其中,针对任意的当前节点进行***的过程还包括:
根据当前节点对应的当前样本集的样本纯度,所述两个子节点分别对应的两个样本子集的样本纯度,确定该***条件的***纯度。
8.根据权利要求7所述的方法,其中,所述样本纯度基于以下指标之一而确定:信息熵,基尼系数。
9.根据权利要求7所述的方法,其中,所述确定该***条件的***纯度,具体包括:
以所述两个样本子集各自的样本数目与所述当前样本集的样本数目的比例为各自的权重,对所述两个样本子集的样本纯度进行加权求和,得到和值;
基于所述当前样本集的样本纯度与所述和值之差,确定该***条件的***纯度。
10.根据权利要求1所述的方法,其中,根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分,包括:
分别以第一权重和第二权重为权重因子,对所述***纯度和所述约束适应度进行加权求和,得到所述综合得分。
11.根据权利要求10所述的方法,其中,
所述第一权重根据所述多个备选***条件分别对应的多个***纯度的第一方差而确定,且与第一方差负相关;
所述第二权重根据所述多个备选***条件分别对应的多个约束适应度的第二方差而确定,且与第二方差负相关。
12.根据权利要求1所述的方法,其中,所述第一决策树包括第一数目N个叶节点;所述基于所述第一决策树,确定用于对业务对象分类的决策模型,包括:
在所述第一决策树中,确定从根节点到N个叶节点的N条路径对应的N个决策规则;
从所述N个决策规则中筛选出满足所述约束条件的第二数目M个决策规则;
基于所述M个决策规则,形成所述决策模型。
13.根据权利要求12所述的方法,其中,基于所述M个决策规则,形成所述决策模型,包括:
对于所述M个决策规则中各个决策规则,执行以下裁剪迭代:若当前决策规则的父规则满足所述约束条件,则用所述父规则替代所述当前决策规则,直到父规则不再满足所述约束条件;其中,所述当前决策规则对应于所述第一决策树中从根节点开始的第一节点序列,所述父规则是将所述第一节点序列中最后一个节点裁剪后的节点序列对应的决策规则;
基于执行所述裁剪迭代后得到的不重复的决策规则,形成所述决策模型。
14.根据权利要求1所述的方法,还包括:
利用所述第一决策树,对所述样本总集的各个样本进行预测,得到被预测为属于所述目标业务分类的样本构成的第一样本集;
从所述样本总集中剔除所述第一样本集,得到第二样本集;
根据所述第二样本集,利用与构建第一决策树相同的节点***的方式构建第二决策树;
所述基于所述第一决策树,确定用于对业务对象分类的决策模型,包括:
基于所述第一决策树和所述第二决策树,确定所述决策模型。
15.根据权利要求1-14中任一项所述的方法,其中,所述业务对象包括以下之一:用户、操作事件、交易、业务申请请求;所述目标业务分类指示有风险的业务对象。
16.一种用于业务对象分类的决策模型训练装置,包括:
获取单元,配置为获取样本总集和训练的约束条件,其中样本总集中的单个样本包括,单个业务对象的属性特征,以及该业务对象是否属于目标业务分类的分类标签;
决策树构建单元,配置为根据所述样本总集,通过节点***的方式构建第一决策树,其中针对任意的当前节点进行***的过程包括:对于当前节点的多个备选***条件中任一***条件,根据依照该***条件对当前节点进行***得到的两个子节点对于所述约束条件的符合程度,确定该***条件的约束适应度;根据该***条件的***纯度和所述约束适应度,确定该***条件的综合得分;根据所述多个备选***条件中综合得分最优的***条件,对当前节点进行***;
模型确定单元,配置为基于所述第一决策树,确定用于对业务对象分类的决策模型。
17.一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行权利要求1-15中任一项的所述的方法。
18.一种计算设备,包括存储器和处理器,其特征在于,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现权利要求1-15中任一项所述的方法。
CN202110373889.8A 2021-04-07 2021-04-07 用于业务对象分类的决策模型训练方法和装置 Active CN112801231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110373889.8A CN112801231B (zh) 2021-04-07 2021-04-07 用于业务对象分类的决策模型训练方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110373889.8A CN112801231B (zh) 2021-04-07 2021-04-07 用于业务对象分类的决策模型训练方法和装置

Publications (2)

Publication Number Publication Date
CN112801231A true CN112801231A (zh) 2021-05-14
CN112801231B CN112801231B (zh) 2021-07-06

Family

ID=75816474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110373889.8A Active CN112801231B (zh) 2021-04-07 2021-04-07 用于业务对象分类的决策模型训练方法和装置

Country Status (1)

Country Link
CN (1) CN112801231B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113379301A (zh) * 2021-06-29 2021-09-10 未鲲(上海)科技服务有限公司 通过决策树模型对用户进行分类的方法、装置和设备
CN114492214A (zh) * 2022-04-18 2022-05-13 支付宝(杭州)信息技术有限公司 利用机器学习的选择算子确定、策略组合优化方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087499A1 (en) * 2001-01-03 2002-07-04 Stockfisch Thomas P. Methods and systems of classifying multiple properties simultaneously using a decision tree
EP2416283A1 (en) * 2009-03-30 2012-02-08 Fujitsu Limited Decision tree generation program, decision tree generation method, and decision tree generation apparatus
CN105095238A (zh) * 2014-05-04 2015-11-25 ***股份有限公司 用于检测欺诈交易的决策树生成方法
US20170061331A1 (en) * 2007-01-04 2017-03-02 Health Care Productivity, Inc Methods and systems for automatic selection of classification and regression trees having preferred consistency and accuracy
CN110084377A (zh) * 2019-04-30 2019-08-02 京东城市(南京)科技有限公司 用于构建决策树的方法和装置
CN110309587A (zh) * 2019-06-28 2019-10-08 京东城市(北京)数字科技有限公司 决策模型构建方法、决策方法与决策模型
CN111046930A (zh) * 2019-12-01 2020-04-21 国家电网有限公司客户服务中心 一种基于决策树算法的供电服务满意度影响因素识别方法
US10713622B1 (en) * 2019-12-06 2020-07-14 Coupang Corp. Computer-implemented systems and methods for intelligent prediction of out of stock items and proactive reordering
CN111598186A (zh) * 2020-06-05 2020-08-28 腾讯科技(深圳)有限公司 基于纵向联邦学习的决策模型训练方法、预测方法及装置
CN111695697A (zh) * 2020-06-12 2020-09-22 深圳前海微众银行股份有限公司 多方联合决策树构建方法、设备及可读存储介质
CN111738534A (zh) * 2020-08-21 2020-10-02 支付宝(杭州)信息技术有限公司 多任务预测模型的训练、事件类型的预测方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087499A1 (en) * 2001-01-03 2002-07-04 Stockfisch Thomas P. Methods and systems of classifying multiple properties simultaneously using a decision tree
US20170061331A1 (en) * 2007-01-04 2017-03-02 Health Care Productivity, Inc Methods and systems for automatic selection of classification and regression trees having preferred consistency and accuracy
EP2416283A1 (en) * 2009-03-30 2012-02-08 Fujitsu Limited Decision tree generation program, decision tree generation method, and decision tree generation apparatus
CN105095238A (zh) * 2014-05-04 2015-11-25 ***股份有限公司 用于检测欺诈交易的决策树生成方法
CN110084377A (zh) * 2019-04-30 2019-08-02 京东城市(南京)科技有限公司 用于构建决策树的方法和装置
CN110309587A (zh) * 2019-06-28 2019-10-08 京东城市(北京)数字科技有限公司 决策模型构建方法、决策方法与决策模型
CN111046930A (zh) * 2019-12-01 2020-04-21 国家电网有限公司客户服务中心 一种基于决策树算法的供电服务满意度影响因素识别方法
US10713622B1 (en) * 2019-12-06 2020-07-14 Coupang Corp. Computer-implemented systems and methods for intelligent prediction of out of stock items and proactive reordering
CN111598186A (zh) * 2020-06-05 2020-08-28 腾讯科技(深圳)有限公司 基于纵向联邦学习的决策模型训练方法、预测方法及装置
CN111695697A (zh) * 2020-06-12 2020-09-22 深圳前海微众银行股份有限公司 多方联合决策树构建方法、设备及可读存储介质
CN111738534A (zh) * 2020-08-21 2020-10-02 支付宝(杭州)信息技术有限公司 多任务预测模型的训练、事件类型的预测方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RIADH E.等: "Decision-making based on decision tree for ball bearing monitoring", 《2020 2ND INTERNATIONAL WORKSHOP ON HUMAN-CENTRIC SMART ENVIRONMENTS FOR HEALTH AND WELL-BEING (IHSH)》 *
姚岳松: "基于属性纯度的决策树归纳算法", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *
张翕茜 等: "基于代价敏感混合***策略的多决策树算法", 《电子技术应用》 *
贾涛 等: "数据流决策树分类方法综述", 《南京师大学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113379301A (zh) * 2021-06-29 2021-09-10 未鲲(上海)科技服务有限公司 通过决策树模型对用户进行分类的方法、装置和设备
WO2023272852A1 (zh) * 2021-06-29 2023-01-05 未鲲(上海)科技服务有限公司 通过决策树模型对用户进行分类的方法、装置、设备和存储介质
CN114492214A (zh) * 2022-04-18 2022-05-13 支付宝(杭州)信息技术有限公司 利用机器学习的选择算子确定、策略组合优化方法及装置

Also Published As

Publication number Publication date
CN112801231B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
US6397200B1 (en) Data reduction system for improving classifier performance
CN110659744B (zh) 训练事件预测模型、评估操作事件的方法及装置
CN112801231B (zh) 用于业务对象分类的决策模型训练方法和装置
CN110991474A (zh) 一种机器学***台
CN112508580A (zh) 基于拒绝推断方法的模型构建方法、装置和电子设备
CN114444608B (zh) 数据集质量评估方法及装置、电子设备及存储介质
US11250368B1 (en) Business prediction method and apparatus
CN111210072A (zh) 预测模型训练和用户资源额度确定方法及装置
CN111797320A (zh) 数据处理方法、装置、设备及存储介质
CN113205403A (zh) 一种企业信用等级的计算方法、装置、存储介质及终端
CN113537630A (zh) 业务预测模型的训练方法及装置
US6789070B1 (en) Automatic feature selection system for data containing missing values
Khoshgoftaar et al. Detecting outliers using rule-based modeling for improving CBR-based software quality classification models
CN111815209A (zh) 应用于风控模型的数据降维方法及装置
CN110880117A (zh) 虚假业务识别方法、装置、设备和存储介质
CN117011751A (zh) 使用变换器网络分割视频图像序列
CN109145207B (zh) 一种基于分类指标预测的信息个性化推荐方法及装置
CN115600818A (zh) 多维评分方法、装置、电子设备和存储介质
CN113570114B (zh) 一种资源服务智能匹配方法、***和计算机设备
CN112906785B (zh) 基于融合的零样本物体种类识别方法、装置及设备
CN115219910A (zh) 一种电池余量预测误差的分析方法及装置
JP5652250B2 (ja) 画像処理プログラム及び画像処理装置
CN114978616A (zh) 风险评估***的构建方法及装置、风险评估方法及装置
KR101092644B1 (ko) 애플리케이션 구성요소 선택 방법 및 장치
CN117893309A (zh) 用户等级的确定方法、装置、存储介质以及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant