CN112797936A - Method for quantitatively measuring spherical position of spherical bearing ring - Google Patents

Method for quantitatively measuring spherical position of spherical bearing ring Download PDF

Info

Publication number
CN112797936A
CN112797936A CN202110303129.XA CN202110303129A CN112797936A CN 112797936 A CN112797936 A CN 112797936A CN 202110303129 A CN202110303129 A CN 202110303129A CN 112797936 A CN112797936 A CN 112797936A
Authority
CN
China
Prior art keywords
spherical
bearing ring
diameter
measuring
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110303129.XA
Other languages
Chinese (zh)
Inventor
刘勇
韩冬雨
张宇
王瑜
王福成
高阳
李波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Harbin Bearing Co Ltd
Original Assignee
AVIC Harbin Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Harbin Bearing Co Ltd filed Critical AVIC Harbin Bearing Co Ltd
Priority to CN202110303129.XA priority Critical patent/CN112797936A/en
Publication of CN112797936A publication Critical patent/CN112797936A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A method for quantitatively measuring the spherical position of a spherical bearing ring. The invention relates to a method for quantitatively measuring the spherical surface position of a spherical bearing ring. The invention provides a method for quantitatively measuring the spherical position of a spherical bearing ring, aiming at solving the problems of measurement errors and low consistency of the spherical position in the machining process in the measurement method. It comprises the following steps: the values given as required: calculating a first spherical diameter size X1 of the height of a measuring point by using the pythagorean theorem:
Figure DDA0002987042450000011
and (3) calculating a second spherical diameter size X2 of the height of the measuring point by using the pythagorean theorem:
Figure DDA0002987042450000012
calculating the diameter difference X of spherical symmetry; x ═ X1-X2 formula (3); machining the spherical bearing ring to make itThe work size is within the range of the diameter difference; the height of the measuring point is selected, whether the value measured by the instrument measuring and recording instrument is smaller than the diameter difference or not is judged, and whether the requirement of the spherical position is met or not is judged. The invention belongs to the field of grinding.

Description

Method for quantitatively measuring spherical position of spherical bearing ring
Technical Field
The invention relates to the field of grinding, in particular to a method for quantitatively measuring the spherical surface position of a spherical bearing ring.
Background
In recent years, the numerical control grinding processing equipment is purchased by our company, the requirement on the consistency of the spherical position in the continuous processing process is improved, the spherical bearing ring produced in a ring workshop is originally processed by head swinging equipment, the spherical position is measured and visually measured by using a template light transmission method, the processing result can only be judged whether the spherical bearing ring is qualified, and the proficiency of an operator can generate a measurement error;
in summary, the measurement method of the prior art has the problems of measurement error and low consistency of spherical positions in the continuous processing process.
Disclosure of Invention
The invention provides a method for quantitatively measuring the spherical position of a spherical bearing ring, which aims to solve the problems of measurement errors and low consistency of the spherical position in the continuous processing process in the measurement method in the prior art.
The technical scheme of the invention is as follows:
a method for quantitatively measuring the spherical position of a spherical bearing ring comprises the following steps:
step one, calculating a first spherical diameter size X1 of a measuring point height on one side of a spherical bearing ring:
the values given according to the design requirements are first: calculating values of the amplitude height L1, the first height measurement L2, the first spherical surface size L3 and the first position tolerance L4, and calculating a first spherical surface diameter size X1 with the measuring point height by adopting the Pythagorean theorem:
Figure BDA0002987042430000011
step two, calculating a second spherical diameter size X2 of the height of the measuring point on the other side of the spherical bearing ring:
the values given first are as required: the amplitude height L1, the second height measurement L5, the second spherical surface size L6 and the second position tolerance L7 are calculated, and the second spherical surface diameter size X2 with the measuring point height is calculated by adopting the Pythagorean theorem:
Figure BDA0002987042430000012
step three, calculating the diameter difference X of spherical symmetry;
calculating a diameter difference X according to the first spherical diameter size X1 with the measuring point height and the second spherical diameter size X2 with the measuring point height obtained in the first step and the second step;
x ═ X1-X2; formula (3)
Step four, processing the spherical bearing ring:
processing the spherical bearing ring according to the diameter difference X calculated in the third step and the calculated diameter difference X, so that the processing size of the spherical bearing ring is within the diameter difference range;
step five, measuring the machined spherical bearing ring by using a diameter measuring method:
selecting the height of a measuring point between the maximum diameter and the end surface diameter of the part, measuring by using an instrument, directly displaying a symmetrical value of the spherical bearing position on the instrument to control the spherical position, recording whether the numerical value measured by the instrument is smaller than the diameter difference, judging whether the part meets the requirement of the spherical position,
if the value measured by the instrument is smaller than the diameter difference X calculated in the third step, the part meets the requirement of spherical position,
if the value measured by the instrument is larger than the diameter difference X calculated in the third step, the part does not meet the requirement of spherical position.
Compared with the prior art, the invention has the following effects:
the invention firstly calculates the diameter difference, then processes the spherical bearing ring to make the processing size of the spherical bearing ring fall within the diameter difference, then adopts the diameter measuring method to select the high measuring point on the spherical bearing ring, measures by using the measuring instrument of the special bearing instrument, directly displays the symmetrical value of the spherical position on the instrument to control the spherical position, improves the consistency of the spherical position and reduces the measuring error.
Drawings
FIG. 1 is a schematic representation of the use of the Pythagorean theorem in the present invention;
fig. 2 is a schematic diagram of the meter measurement of the present invention.
Detailed Description
The first embodiment is as follows: referring to fig. 1 to 2, the present embodiment will be described, and the method for quantitatively measuring the spherical surface position of the spherical bearing ring of the present embodiment includes the following steps:
step one, calculating a first spherical diameter size X1 of a measuring point height on one side of a spherical bearing ring:
the values given according to the design requirements are first: calculating values of the amplitude height L1, the first height measurement L2, the first spherical surface size L3 and the first position tolerance L4, and calculating a first spherical surface diameter size X1 with the measuring point height by adopting the Pythagorean theorem:
Figure BDA0002987042430000021
step two, calculating a second spherical diameter size X2 of the height of the measuring point on the other side of the spherical bearing ring:
the values given first are as required: the amplitude height L1, the second height measurement L5, the second spherical surface size L6 and the second position tolerance L7 are calculated, and the second spherical surface diameter size X2 with the measuring point height is calculated by adopting the Pythagorean theorem:
Figure BDA0002987042430000022
step three, calculating the diameter difference X of spherical symmetry;
calculating a diameter difference X according to the first spherical diameter size X1 with the measuring point height and the second spherical diameter size X2 with the measuring point height obtained in the first step and the second step;
x ═ X1-X2; formula (3)
Step four, processing the spherical bearing ring:
processing the spherical bearing ring according to the diameter difference X calculated in the third step and the calculated diameter difference X, so that the processing size of the spherical bearing ring is within the diameter difference range;
step five, measuring the machined spherical bearing ring by using a diameter measuring method:
selecting the height of a measuring point between the maximum diameter and the end surface diameter of the part, measuring by using the instrument 1, directly displaying the symmetrical value of the spherical bearing position on the instrument 1 to control the spherical position, recording whether the numerical value measured by the instrument 1 is smaller than the diameter difference, judging whether the part meets the requirement of the spherical position,
if the value measured by the instrument 1 is smaller than the diameter difference X calculated in the third step, the part meets the requirement of spherical position,
if the value measured by the meter 1 is greater than the diameter difference X calculated in step three, the part does not meet the requirement of spherical position.
The second embodiment is as follows: the first step of the present embodiment is described with reference to fig. 1 to 2, where the width is L1 and L1 is 9 mm. The rest is the same as the first embodiment.
The third concrete implementation mode: the present embodiment is described with reference to fig. 1 to 2, and in the first step of the present embodiment, the first spherical size is L3, and L3 is 19 mm. The others are the same as in the first or second embodiment.
The fourth concrete implementation mode: in the present embodiment, the first position tolerance L4 in the first step and the second position tolerance L7 in the second step of the present embodiment are equal, and L4 is equal to L7, which is described with reference to fig. 1 to 2. The others are the same as in the first or second or third embodiment.
The fifth concrete implementation mode: the present embodiment is described with reference to fig. 1 to 2, and the position dimensional tolerance in the first step of the present embodiment is L4, and L4 is 0.05 mm. The other embodiments are the same as the first or second or third or fourth embodiments.
The sixth specific implementation mode: the present embodiment will be described with reference to fig. 1 to 2, and the meter 1 in step five of the present embodiment is a sector dial gauge.
Example 1
Taking the amplitude height L1 as 8mm, the first height measurement L2 as 7mm, the first spherical size L3 as 16mm and the first position tolerance L4 as 0.05 mm;
calculating a first spherical diameter size X1 of the height of the measuring point by using the pythagorean theorem;
Figure BDA0002987042430000031
substituting the above values into formula (1)
Calculating X1-15.2 mm;
taking the amplitude height L1 as 8mm, the second height L2 as 7mm, the second spherical size L3 as 14mm and the second position tolerance L4 as 0.05 mm;
calculating a second spherical diameter size X2 of the height of the measuring point by using the pythagorean theorem;
Figure BDA0002987042430000032
substituting the above values into formula (2)
Calculating X2-13 mm;
calculating the diameter difference X of spherical symmetry;
x ═ X1-X2; formula (3)
Substituting the X1 and X2 values into equation (3)
Calculating X is 3.2 mm;
if the value measured by the meter 1 is less than the calculated diameter difference X of 3.2mm, the part meets the spherical position requirement,
if the value measured by the meter 1 is greater than the calculated diameter difference X of 3.2mm, the part does not meet the spherical position requirement.
The present invention has been described in terms of the preferred embodiments, but it is not limited thereto, and any simple modification, equivalent change and modification made to the above embodiments according to the technical spirit of the present invention will still fall within the technical scope of the present invention.

Claims (6)

1. A method for quantitatively measuring the spherical position of a spherical bearing ring is characterized by comprising the following steps: it comprises the following steps:
step one, calculating a first spherical diameter size X1 of a measuring point height on one side of a spherical bearing ring:
the values given according to the design requirements are first: calculating values of the amplitude height L1, the first height measurement L2, the first spherical surface size L3 and the first position tolerance L4, and calculating a first spherical surface diameter size X1 with the measuring point height by adopting the Pythagorean theorem:
Figure FDA0002987042420000011
step two, calculating a second spherical diameter size X2 of the height of the measuring point on the other side of the spherical bearing ring:
the values given first are as required: the amplitude height L1, the second height measurement L5, the second spherical surface size L6 and the second position tolerance L7 are calculated, and the second spherical surface diameter size X2 with the measuring point height is calculated by adopting the Pythagorean theorem:
Figure FDA0002987042420000012
step three, calculating the diameter difference X of spherical symmetry;
calculating a diameter difference X according to the first spherical diameter size X1 with the measuring point height and the second spherical diameter size X2 with the measuring point height obtained in the first step and the second step;
x ═ X1-X2; formula (3)
Step four, processing the spherical bearing ring:
processing the spherical bearing ring according to the diameter difference X calculated in the third step and the calculated diameter difference X, so that the processing size of the spherical bearing ring is within the diameter difference range;
step five, measuring the machined spherical bearing ring by using a diameter measuring method:
selecting the height of a measuring point between the maximum diameter and the end surface diameter of the part, measuring by using an instrument (1), directly displaying a symmetrical value of the spherical bearing position on the instrument (1) to control the spherical position, recording whether the numerical value measured by the instrument (1) is smaller than the diameter difference, judging whether the part meets the requirement of the spherical position,
if the value measured by the instrument (1) is less than the diameter difference X calculated in the third step, the part meets the requirement of spherical position,
if the value measured by the instrument (1) is larger than the diameter difference X calculated in the third step, the part does not meet the requirement of spherical position.
2. The method for quantitatively measuring the spherical position of the spherical bearing ring according to claim 1, wherein the method comprises the following steps: in the first step, the amplitude is L1, and L1 is 9 mm.
3. The method for quantitatively measuring the spherical position of the spherical bearing ring according to claim 1, wherein the method comprises the following steps: the first sphere size in step one was L3, L3 ═ 19 mm.
4. The method for quantitatively measuring the spherical position of the spherical bearing ring according to claim 1, wherein the method comprises the following steps: the first position tolerance L4 in step one is equal to the second position tolerance L7 in step two, and L4 is L7.
5. The method for quantitatively measuring the spherical position of the spherical bearing ring according to claim 1, wherein the method comprises the following steps: the position dimensional tolerance in the first step is L4, and L4 is 0.05 mm.
6. The method for quantitatively measuring the spherical position of the spherical bearing ring according to claim 1, wherein the method comprises the following steps: and the instrument (1) in the fifth step is a sector dial indicator.
CN202110303129.XA 2021-03-22 2021-03-22 Method for quantitatively measuring spherical position of spherical bearing ring Withdrawn CN112797936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110303129.XA CN112797936A (en) 2021-03-22 2021-03-22 Method for quantitatively measuring spherical position of spherical bearing ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110303129.XA CN112797936A (en) 2021-03-22 2021-03-22 Method for quantitatively measuring spherical position of spherical bearing ring

Publications (1)

Publication Number Publication Date
CN112797936A true CN112797936A (en) 2021-05-14

Family

ID=75817363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110303129.XA Withdrawn CN112797936A (en) 2021-03-22 2021-03-22 Method for quantitatively measuring spherical position of spherical bearing ring

Country Status (1)

Country Link
CN (1) CN112797936A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1141378A (en) * 1966-11-10 1969-01-29 Fafnir Bearing Co Improvements in or relating to the production of bearing rings
US20090259433A1 (en) * 2006-02-27 2009-10-15 Staubli Faverges Method and System for Measuring a Diameter, and Assembly Line Employing This System
CN104019727A (en) * 2014-06-23 2014-09-03 奥新(厦门)轴承有限公司 Method for measuring spherical outside surface of bearing
CN109029208A (en) * 2018-08-20 2018-12-18 中国航发哈尔滨轴承有限公司 Taper roller end face radius measuring device and method
CN211876900U (en) * 2020-05-18 2020-11-06 苏州普拉米精密机械有限公司 Bearing spherical surface detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1141378A (en) * 1966-11-10 1969-01-29 Fafnir Bearing Co Improvements in or relating to the production of bearing rings
US20090259433A1 (en) * 2006-02-27 2009-10-15 Staubli Faverges Method and System for Measuring a Diameter, and Assembly Line Employing This System
CN104019727A (en) * 2014-06-23 2014-09-03 奥新(厦门)轴承有限公司 Method for measuring spherical outside surface of bearing
CN109029208A (en) * 2018-08-20 2018-12-18 中国航发哈尔滨轴承有限公司 Taper roller end face radius measuring device and method
CN211876900U (en) * 2020-05-18 2020-11-06 苏州普拉米精密机械有限公司 Bearing spherical surface detection device

Similar Documents

Publication Publication Date Title
EP1835256B1 (en) Screw measuring method, screw measuring probe, and screw measuring apparatus using the screw measuring probe
CN109032069B (en) Non-contact R-test measuring instrument sphere center coordinate calculation method adopting eddy current displacement sensor
CN103223628B (en) A kind of method of on-line checkingi gear wheel profile error
CN109253710B (en) Calibration method for zero error of A axis of REVO measuring head
CN112069612A (en) Method for evaluating measurement uncertainty of gear measurement center
CN105423969A (en) Method for measuring geometric parameters of large-diameter thread form
CN205588066U (en) Automatic aligning device of machining center
CN108332642B (en) Right-angle head precision detection method
Zhou et al. An alignment angle error compensation method of spiral bevel gear tooth surface measurement based on tooth surface matching
CN105328273A (en) Adaption grinding method for circular-arc end tooth
CN112797936A (en) Method for quantitatively measuring spherical position of spherical bearing ring
CN110421410A (en) Aligning method is used in part processing
CN103223627B (en) A kind of method of on-line checkingi gear wheel gearing line error
CN103223626A (en) Method for detecting tooth alignment error of big gear wheel on line
CN110595318B (en) Special gauge for rapidly measuring shape, position and size of stainless steel oil rail forging
CN107421483A (en) A kind of survey point sphere center position automatic calibrating method of Digit Control Machine Tool 3D gauge heads
CN112747706B (en) Method for measuring numerical value of cylindrical roller outer diameter intermediate bus
CN214393492U (en) Device for adjusting position of horizontal machining coordinate system
CN109740616B (en) Method for realizing automatic reading of double-pointer instrument by using computer vision
CN111928873A (en) Method for calibrating height measurement center and camera center
CN108278958B (en) Method for calibrating mounting position of bevel gear pair with crossed angle of 163-degree or 17-degree shaft
CN114102258B (en) Machine tool position degree detection method and device
CN112747707B (en) Rapid evaluating method for deep groove ball bearing raceway
CN114571506B (en) Gesture alignment method for industrial robot performance measurement
CN217900753U (en) Measuring device of impact sample notch projector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210514

WW01 Invention patent application withdrawn after publication