CN112788482B - 一种麦克风阵列定位与云台联动的方法、装置 - Google Patents

一种麦克风阵列定位与云台联动的方法、装置 Download PDF

Info

Publication number
CN112788482B
CN112788482B CN202110225539.7A CN202110225539A CN112788482B CN 112788482 B CN112788482 B CN 112788482B CN 202110225539 A CN202110225539 A CN 202110225539A CN 112788482 B CN112788482 B CN 112788482B
Authority
CN
China
Prior art keywords
cancellation
sound
interference
signals
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110225539.7A
Other languages
English (en)
Other versions
CN112788482A (zh
Inventor
刘晨
朱敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Telecom Easiness Information Technology Co Ltd
Original Assignee
Beijing Telecom Easiness Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Telecom Easiness Information Technology Co Ltd filed Critical Beijing Telecom Easiness Information Technology Co Ltd
Priority to CN202110225539.7A priority Critical patent/CN112788482B/zh
Publication of CN112788482A publication Critical patent/CN112788482A/zh
Application granted granted Critical
Publication of CN112788482B publication Critical patent/CN112788482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本发明提供了一种麦克风阵列定位与云台联动的方法、装置,所述方法包括:采集麦克风传感器阵列附近初级声道,进行主动降噪处理;从初级声道的干扰信号提取详细的噪声特征,建立次级声道模型,产生对消电信号驱动对消扬声器,实时采集残差信号进行反馈调整,多次迭代后将干扰信号降低到预设阈值以下,提取有效声音;对有效声音的来源方位精确估计计算,进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域和正在发生报警信号的设备所在区域。本发明通过结合主动降噪和基于麦克风阵列的波达方向估计算法,使得监控摄像头云台联动装置有效避免周期性干扰源的影响,并屏蔽干扰噪声源,有效提取清晰的设备报警、人声语音信号等信息。

Description

一种麦克风阵列定位与云台联动的方法、装置
技术领域
本发明涉及监控技术领域,特指一种麦克风阵列定位与云台联动的方法、装置。
背景技术
近年来,随着信息化网络化技术水平的发展,监控技术逐渐普及到人们的日常工作生活场景中。对于带走摄像头云台装置的监控***,可以通过控制云台电机对所监控区域进行实时扫描,尤其是可以对运动中的、正在发出声音信息的特定目标进行联动跟踪,有效地提高了监控设备的灵活性。近年来,随着信息化网络化技术水平的发展,监控技术逐渐普及到人们的日常工作生活场景中。对于带走摄像头云台装置的监控***,可以通过控制云台电机对所监控区域进行实时扫描,尤其是可以对运动中的、正在发出声音信息的特定目标进行联动跟踪,有效地提高了现有监控设备的灵活性和精确性。
然而,在有些存在明显噪声干扰的场景中,如大型巴士车辆内部、船舶舱室、工业生产工厂车间等空间区域中,往往由于监控的拾音范围紧邻周期性振动的机械设备(包括发动机、排气风扇、大型制冷设备等),使得空间中存在高分贝的周期性噪声干扰。这些周期性干扰噪声在频域往往呈现出特定频率的基波+多次谐波的特点。考虑到监控摄像头云台的转动往往需要对产生声音信息的活动目标进行跟踪,需要联合图像信息和麦克风阵列来对活动目标进行跟踪,而周期性干扰噪声会影响到麦克风阵列的声源定位效果,同时其巨大的噪声幅度也会淹没监控区域中的人声、设备报警声等重要的声音信息,使得这些有效信息无法被监控设备有效提取。
在声场环境较为恶劣的车载/船载视频会议、录像、直播、监控等场景中,业界往往技术上使用麦克风阵列采集信号并运行空间域滤波算法来滤除周边干扰源,获取更清晰语音信号,同时使用波达方向(Direction of Arrival,DOA)估计算法来定位语音的声源位置,进而为摄像头云台的角度调整和控制提供参考信息。然而在这些场景中,除周边的非周期非平稳随机噪声外,往往还存在一些周期性的基波+多次谐波等干扰,这些干扰主要因机械振动或旋转产生,例如车辆和船舶的发动机噪声,散热风扇噪声,甚至包括距离拾音设备较近的空调噪声等等,由于其周期性特点往往对现有的DOA算法造成无法忽略的干扰,使得麦克风阵列的声源定位出现错误的评估结果,最终对空间域滤波效果和摄像头云台联动的有效控制产生影响。
业界目前通过设计特殊的数字信号处理算法,在数学层面对抽样量化后的数字信号曾经尝试进行降噪处理,(如专利: CN201811170560.6 )。虽然这种降噪在某些特定场景中确实可以获得不错的效果,但在某些周期性噪声信号幅度过大,前端模拟域的A/D器件直接进入饱和失真状态,导致无法正常采集被淹没的有效声音信息时,仅凭借算法降噪却无法很好地应对。
发明内容
鉴于此,本发明提出了一种具备主动降噪功能的麦克风阵列定位与云台联动装置***,以解决现有监控设备在噪声与干扰明显的恶劣声场环境下,无法正确地根据麦克风阵列拾音信息,进一步影响了声源定位精度,导致云台控制模块无法精准地调整云台角度以跟踪特定的发声目标,同时也通过结合主动降噪技术和基于麦克风阵列的波达方向估计算法技术,通过改进的空间域滤波技术滤除环境干扰噪声,更加精确地提取监控区域内的有效声音信息。所述的基于主动降噪的方法,直接在声学域对麦克风阵列附近的空间区域进行噪声声波对消,使得模拟器件采集到的信号不会出现饱和,进而使得A/D器件能够正确抽样并量化有效声音信号,相比算法降噪方案,主动降噪方法在一定程度上具有更高的实用价值。
本发明提供一种麦克风阵列定位与云台联动的方法,包括以下步骤:
S1、采集麦克风传感器阵列附近的初始的环境声音信号即建立初级声道,对在一段时间内环境噪声呈现出周期性干扰分量的干扰信号即周期性干扰源进行主动降噪处理;
具体地,频谱表现为稳定频率的基波+多次谐波,则对这些周期性干扰信号进行主动降噪处理;
S2、从初级声道的所述干扰信号提取详细的噪声特征,并通过离线或在线的方式建立次级声道模型,同时产生对消电信号驱动对消扬声器,并实时采集残差信号进行反馈调整,多次迭代后将所述周期性干扰分量的干扰信号降低到预设阈值以下,提取有效声音;
经过S1步骤所述主动降噪处理后,麦克风阵列的空间区域已经基本消除了环境中周期性干扰源的影响,运行波达方向估计算法,直接提取出监控环境中的有效声音信息,例如人员语音信号,设备报警信号等非周期性声音信息;
所述预设阈值对于不同的监控目标所设数值不同,实际操作时可根据不同的场景进行不同阈值的设置;
S3、对所述有效声音的来源方位进行精确估计计算,根据所述来源方位的信息进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域,以提高监控的精准性和时效性。
进一步地,所述S2步骤中所述对消电信号驱动对消扬声器为经过D/A转换、模拟功放后接入到所述对消扬声器,对消扬声器产生的对消声波将在麦克风传感器阵列附近的局部空间中与周期性干扰源噪声叠加,从而减弱周期性干扰源对麦克风传感器阵列的影响。
进一步地,所述S2步骤中,所述提取有效声音采用波达方向估计算法,包括传统互相关技术的时延估计算法,最大似然相位转换时延估计算法,MLP分数时延估计算法,以及基于MUSIC及其改进型的算法;根据场景特征以及计算平台资源灵活选择不同特点的处理算法。
进一步地,所述S3步骤中,所述云台联动调整的过程为接收来自于波达方向估计算法的处理结果,将其中人声与设备报警声信号方向的处理数据转换为对相应云台电机控制的参考数据,最终辅助驱动云台电机调整摄像头的拍摄角度。
本发明还提供一种麦克风阵列定位与云台联动的装置,使用所述麦克风阵列定位与云台联动的方法,包括:
采集子***:用于采集麦克风传感器阵列附近的初始的环境声音信号即建立初级声道;
对消子***:对在一段时间内环境噪声呈现出周期性干扰分量的干扰信号进行主动降噪处理,从初级声道的所述干扰信号提取详细的噪声特征,并通过离线或在线的方式建立次级声道模型,同时产生对消电信号驱动对消扬声器,并实时采集残差信号进行反馈调整,多次迭代后将所述周期性干扰分量的干扰信号降低到预设阈值以下,提取有效声音;
联动控制子***:用于对所述有效声音的来源方位进行精确估计计算,根据所述来源方位的信息进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域,以提高监控的精准性和时效性。
进一步地,所述对消子***包括模拟模块,所述模拟模块包括前端放大子模块和滤波子模块。
进一步地,所述对消子***还包括数字模块,所述数字模块包括主动降噪处理子模块、波达方向估计子模块以及云台联动控制子模块;
所述主动降噪处理子模块包括自适应的X-滤波最小均方算法(Filtered-X LeastMean Square,FxLMS)单元和周期性干扰源信息提取单元;还包括声学部件以及声电信号转换的模拟电子元件,包括模拟信号放大器(前置信号放大器,功率放大器等),各种模拟滤波器(包括抗混叠滤波器,信号重建滤波器等);
优选地,本发明考虑到大部分干扰噪声均为机械结构周期性往复运动和旋转运动产生,根据其声源特点选择含次级声道在线建模的窄带前馈主动降噪(Active NoiseCancellation,ANC)***;
所述云台联动控制子模块,包括步进电机控制单元或舵机控制单元。
所述周期性干扰源信息提取单元对周期性干扰源进行频域分析以及幅值分析,用于为波达方向估计子模块提供参考信息。
进一步地,所述采集子***包括声学模块,所述声学模块包括麦克风传感器阵列、拾音器阵列;所述麦克风传感器阵列的每个传感器后均配备了A/D转换通道、抗混叠前置模拟滤波器电子元件,对原始声音信号进行并行化采集,完成声信号到模拟电信号,再到数字信号的转换,为波达方向估计子模块提供所有传感器的原始信息及各个传感器直接的时间差信息。
进一步地,所述麦克风传感器阵列中或麦克风传感器阵列附近,至少***一个对消扬声器,作为主动降噪处理子模块的声学输出。
与现有技术相比,本发明的有益效果是:
本发明通过结合主动降噪技术和基于麦克风阵列的波达方向估计算法技术,针对车载、船载、工业生产车间等噪音干扰严重的恶劣声场环境场景中,能够使得监控摄像头云台联动装置有效避免因发动机、风扇噪声等周期性干扰源的影响,同时能够屏蔽干扰噪声源,有效提取清晰的设备报警、人声语音信号等信息,提高了监控的精准性和时效性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
在附图中:
图1为本发明实施例一种麦克风阵列定位与云台联动的装置整体框架示意图;
图2 本发明实施例的装置的声学、模拟/数字域范围及信号流动示意图;
图3 本发明实施例的装置的工作流程图;
图4为本发明一种麦克风阵列定位与云台联动的方法的流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本发明实施例一种麦克风阵列定位与云台联动的方法,参见图4所示,包括以下步骤:
S1、采集麦克风传感器阵列附近的初始的环境声音信号即建立初级声道,对在一段时间内环境噪声呈现出周期性干扰分量的干扰信号即周期性干扰源进行主动降噪处理;
具体地,频谱表现为稳定频率的基波+多次谐波,则对这些周期性干扰信号进行主动降噪处理;
S2、从初级声道的所述干扰信号提取详细的噪声特征,并通过离线或在线的方式建立次级声道模型,同时产生对消电信号驱动对消扬声器,并实时采集残差信号进行反馈调整,多次迭代后将所述周期性干扰分量的干扰信号降低到预设阈值以下,提取有效声音;
经过S1步骤所述主动降噪处理后,麦克风阵列的空间区域已经基本消除了环境中周期性干扰源的影响,运行波达方向估计算法,直接提取出监控环境中的有效声音信息,例如人员语音信号,设备报警信号等非周期性声音信息;
所述预设阈值对于不同的监控目标所设数值不同,实际操作时可根据不同的场景进行不同阈值的设置;
S3、对所述有效声音的来源方位进行精确估计计算,根据所述来源方位的信息进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域,以提高监控的精准性和时效性。
所述S2步骤中所述对消电信号驱动对消扬声器为经过D/A转换、模拟功放后接入到所述对消扬声器,对消扬声器产生的对消声波将在麦克风传感器阵列附近的局部空间中与周期性干扰源噪声叠加,从而减弱周期性干扰源对麦克风传感器阵列的影响。
所述S2步骤中,所述提取有效声音采用波达方向估计算法,包括传统互相关技术的时延估计算法,最大似然相位转换时延估计算法,最大似然相位补偿(Maximumlikelihood phase compensation,MLP)分数时延估计算法,以及基于矩阵特征空间分解(Multiple SIgnal Classification Algorithm,MUSIC算法)及其改进型的算法;根据场景特征以及计算平台资源灵活选择不同特点的处理算法。
所述S3步骤中,所述云台联动调整的过程为接收来自于波达方向估计算法的处理结果,将其中人声与设备报警声信号方向的处理数据转换为对相应云台电机控制的参考数据,最终辅助驱动云台电机调整摄像头的拍摄角度。
本发明还提供一种麦克风阵列定位与云台联动的装置,使用所述麦克风阵列定位与云台联动的方法,包括:
采集子***:用于采集麦克风传感器阵列附近的初始的环境声音信号即建立初级声道;
对消子***:对在一段时间内环境噪声呈现出周期性干扰分量的干扰信号进行主动降噪处理,从初级声道的所述干扰信号提取详细的噪声特征,并通过离线或在线的方式建立次级声道模型,同时产生对消电信号驱动对消扬声器,并实时采集残差信号进行反馈调整,多次迭代后将所述周期性干扰分量的干扰信号降低到预设阈值以下,提取有效声音;
联动控制子***:用于对所述有效声音的来源方位进行精确估计计算,根据所述来源方位的信息进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域,以提高监控的精准性和时效性。
所述对消子***包括模拟模块,所述模拟模块包括前端放大子模块和滤波子模块,如图1所示。
所述对消子***还包括数字模块,所述数字模块包括主动降噪处理子模块、波达方向估计子模块以及云台联动控制子模块;
如图2所示,所述主动降噪处理子模块包括自适应的X-滤波最小均方算法(Filtered-X Least Mean Square,FxLMS)单元和周期性干扰源信息提取单元;还包括声学部件以及声电信号转换的模拟电子元件,包括模拟信号放大器(前置信号放大器,功率放大器等),各种模拟滤波器(包括抗混叠滤波器,信号重建滤波器等);
优选地,本发明考虑到大部分干扰噪声均为机械结构周期性往复运动和旋转运动产生,根据其声源特点选择含次级声道在线建模的窄带前馈主动降噪(Active NoiseCancellation,ANC)***;
所述云台联动控制子模块,包括步进电机控制单元或舵机控制单元。
所述周期性干扰源信息提取单元对周期性干扰源进行频域分析以及幅值分析,用于为波达方向估计子模块提供参考信息。
所述采集子***包括声学模块,所述声学模块包括麦克风传感器阵列、拾音器阵列;所述麦克风传感器阵列的每个传感器后均配备了A/D转换通道、抗混叠前置模拟滤波器电子元件,对原始声音信号进行并行化采集,完成声信号到模拟电信号,再到数字信号的转换,为波达方向估计子模块提供所有传感器的原始信息及各个传感器直接的时间差信息。
所述麦克风传感器阵列中或麦克风传感器阵列附近,至少***一个对消扬声器,作为主动降噪处理子模块的声学输出。
本发明实施例中,参看图3所示,整个***的工作流程为:***各个模块与子***初始化后,通过麦克风传感器阵列和拾音器阵列采集最初始的环境声音信号,评估目前环境的噪声特点。如果在一段时间内,环境噪声呈现出较为明显的周期性干扰分量,频谱表现为稳定频率的基波+多次谐波,则认为需要对这些周期性干扰信号进行主动降噪处理。主动降噪处理子模块开始进一步提取详细的噪声特征,并通过离线或在线的方式对次级声道进行建模,同时产生对消电信号来驱动扬声器,并实时采集残差信号进行反馈调整,多次迭代后将麦克风阵列附近的空间区域中的周期性噪声降低到预设阈值以下。此时麦克风阵列的空间区域已经基本消除了环境中周期性干扰源的影响,运行波达方向估计算法后,直接提取出监控环境中的有效声音信息,例如人员语音信号,设备报警信号等非周期性声音信息,进而对这些声音信号的来源方位进行精确估计计算。确定声源方位后,监控摄像头的云台联动控制子模块将根据方位信息对云台电机进行动态调整,使得摄像头的角度可以随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域。
与现有技术相比,本发明的有益效果是:
本发明通过结合主动降噪技术和基于麦克风阵列的波达方向估计算法技术,针对车载、船载、工业生产车间等噪音干扰严重的恶劣声场环境场景中,能够使得监控摄像头云台联动装置有效避免因发动机、风扇噪声等周期性干扰源的影响,同时能够屏蔽干扰噪声源,有效提取清晰的设备报警、人声语音信号等信息,提高了监控的精准性和时效性。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、同替换、改进,均应包含在本发明的保护范围之内。

Claims (7)

1.一种麦克风阵列定位与云台联动的方法,其特征在于,包括以下步骤:
S1、采集麦克风传感器阵列附近的初始的环境声音信号即建立初级声道,对在一段时间内环境噪声呈现出周期性干扰分量的干扰信号即周期性干扰源进行主动降噪处理;
S2、从初级声道的所述干扰信号提取详细的噪声特征,并通过离线或在线的方式建立次级声道模型,同时产生对消电信号驱动对消扬声器,并实时采集残差信号进行反馈调整,多次迭代后将所述周期性干扰分量的干扰信号降低到预设阈值以下,提取有效声音;
S3、对所述有效声音的来源方位进行精确估计计算,根据所述来源方位的信息进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域,以提高监控的精准性和时效性;
所述S2步骤中,所述提取有效声音采用波达方向估计算法,包括传统互相关技术的时延估计算法,最大似然相位转换时延估计算法,MLP分数时延估计算法,以及基于MUSIC及其改进型的算法。
2.根据权利要求1所述的方法,其特征在于,所述S2步骤中所述对消电信号驱动对消扬声器为经过D/A转换、模拟功放后接入到所述对消扬声器,对消扬声器产生的对消声波将在麦克风传感器阵列附近的局部空间中与周期性干扰源噪声叠加,从而减弱周期性干扰源对麦克风传感器阵列的影响。
3.根据权利要求1所述的方法,其特征在于,所述S3步骤中,所述云台联动调整的过程为接收来自于波达方向估计算法的处理结果,将其中人声与设备报警声信号方向的处理数据转换为用于相应云台联动控制的参考数据,最终辅助驱动云台电机调整摄像头的拍摄角度。
4.一种麦克风阵列定位与云台联动的装置,使用如权利要求1-3任一项所述的方法,其特征在于,包括:
采集子***:用于采集麦克风传感器阵列附近的初始的环境声音信号即建立初级声道;
对消子***:对在一段时间内环境噪声呈现出周期性干扰分量的干扰信号进行主动降噪处理,从初级声道的所述干扰信号提取详细的噪声特征,并通过离线或在线的方式建立次级声道模型,同时产生对消电信号驱动对消扬声器,并实时采集残差信号进行反馈调整,多次迭代后将所述周期性干扰分量的干扰信号降低到预设阈值以下,提取有效声音;
联动控制子***:用于对所述有效声音的来源方位进行精确估计计算,根据所述来源方位的信息进行云台联动调整,使得云台摄像头的角度随时观测到相应的人员活动区域,以及正在发生报警信号的设备所在区域,以提高监控的精准性和时效性。
5.根据权利要求4所述的装置,其特征在于,所述对消子***包括模拟模块,所述模拟模块包括前端放大子模块和滤波子模块。
6.根据权利要求4所述的装置,其特征在于,所述对消子***还包括数字模块,所述数字模块包括主动降噪处理子模块、波达方向估计子模块以及云台联动控制子模块;
所述主动降噪处理子模块包括自适应的FxLMS单元和周期性干扰源信息提取单元;还包括声学部件以及声电信号转换的模拟电子元件;
所述云台联动控制子模块,包括步进电机控制单元或舵机控制单元;
所述周期性干扰源信息提取单元对周期性干扰源进行频域分析以及幅值分析,用于为波达方向估计子模块提供参考信息。
7.根据权利要求6所述的装置,其特征在于,所述采集子***包括声学模块,所述声学模块包括麦克风传感器阵列、拾音器阵列;所述麦克风传感器阵列的每个传感器后均配备了A/D转换通道、抗混叠前置模拟滤波器电子元件,对原始声音信号进行并行化采集,完成声信号到模拟电信号,再到数字信号的转换,为波达方向估计子模块提供所有传感器的原始信息及各个传感器直接的时间差信息。
CN202110225539.7A 2021-03-01 2021-03-01 一种麦克风阵列定位与云台联动的方法、装置 Active CN112788482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110225539.7A CN112788482B (zh) 2021-03-01 2021-03-01 一种麦克风阵列定位与云台联动的方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110225539.7A CN112788482B (zh) 2021-03-01 2021-03-01 一种麦克风阵列定位与云台联动的方法、装置

Publications (2)

Publication Number Publication Date
CN112788482A CN112788482A (zh) 2021-05-11
CN112788482B true CN112788482B (zh) 2021-07-30

Family

ID=75762077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110225539.7A Active CN112788482B (zh) 2021-03-01 2021-03-01 一种麦克风阵列定位与云台联动的方法、装置

Country Status (1)

Country Link
CN (1) CN112788482B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777450A (zh) * 2015-04-29 2015-07-15 西安电子科技大学 一种两级music麦克风阵列测向方法
CN105157204A (zh) * 2015-10-19 2015-12-16 珠海格力电器股份有限公司 一种降噪方法、***、电子膨胀阀和空调
CN105788604A (zh) * 2016-04-07 2016-07-20 虞安波 一种基于fxlms的优化主动降噪方法
CN108389586A (zh) * 2017-05-17 2018-08-10 宁波桑德纳电子科技有限公司 一种远程集音装置、监控装置及远程集音方法
CN108495227A (zh) * 2018-05-25 2018-09-04 会听声学科技(北京)有限公司 主动降噪方法、主动降噪***和耳机
CN109151672A (zh) * 2018-09-19 2019-01-04 西安交通大学 基于列阵麦克风的声源跟踪***及其控制方法
CN109151393A (zh) * 2018-10-09 2019-01-04 深圳市亿联智能有限公司 一种声音定位识别侦测方法
CN109346054A (zh) * 2018-10-23 2019-02-15 山东超越数控电子股份有限公司 一种主动降噪方法与装置
CN111025233A (zh) * 2019-11-13 2020-04-17 阿里巴巴集团控股有限公司 一种声源方向定位方法和装置、语音设备和***
CN111060867A (zh) * 2019-12-17 2020-04-24 南京愔宜智能科技有限公司 一种指向性麦克风微阵列波达方向估计方法
CN111583897A (zh) * 2020-05-21 2020-08-25 清华大学苏州汽车研究院(相城) 一种用于厨房家电的主动降噪***及其控制方法
CN111596261A (zh) * 2020-04-02 2020-08-28 云知声智能科技股份有限公司 一种声源定位方法及装置
CN111627415A (zh) * 2020-04-28 2020-09-04 重庆邮电大学 一种基于自适应MFxLMS算法的主动降噪装置及FPGA实现
CN111800688A (zh) * 2020-03-24 2020-10-20 深圳市豪恩声学股份有限公司 一种主动降噪方法、装置、电子设备及存储介质
CN111883095A (zh) * 2020-04-27 2020-11-03 珠海市杰理科技股份有限公司 主动降噪方法、装置、***以及相关设备
CN112270915A (zh) * 2020-10-21 2021-01-26 上海奥立信息技术有限公司 一种室内空间主动降噪方法
CN112289295A (zh) * 2020-06-08 2021-01-29 珠海市杰理科技股份有限公司 主动降噪***训练方法以及相关设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107887B2 (en) * 2012-04-13 2018-10-23 Qualcomm Incorporated Systems and methods for displaying a user interface

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777450A (zh) * 2015-04-29 2015-07-15 西安电子科技大学 一种两级music麦克风阵列测向方法
CN105157204A (zh) * 2015-10-19 2015-12-16 珠海格力电器股份有限公司 一种降噪方法、***、电子膨胀阀和空调
CN105788604A (zh) * 2016-04-07 2016-07-20 虞安波 一种基于fxlms的优化主动降噪方法
CN108389586A (zh) * 2017-05-17 2018-08-10 宁波桑德纳电子科技有限公司 一种远程集音装置、监控装置及远程集音方法
CN108495227A (zh) * 2018-05-25 2018-09-04 会听声学科技(北京)有限公司 主动降噪方法、主动降噪***和耳机
CN109151672A (zh) * 2018-09-19 2019-01-04 西安交通大学 基于列阵麦克风的声源跟踪***及其控制方法
CN109151393A (zh) * 2018-10-09 2019-01-04 深圳市亿联智能有限公司 一种声音定位识别侦测方法
CN109346054A (zh) * 2018-10-23 2019-02-15 山东超越数控电子股份有限公司 一种主动降噪方法与装置
CN111025233A (zh) * 2019-11-13 2020-04-17 阿里巴巴集团控股有限公司 一种声源方向定位方法和装置、语音设备和***
CN111060867A (zh) * 2019-12-17 2020-04-24 南京愔宜智能科技有限公司 一种指向性麦克风微阵列波达方向估计方法
CN111800688A (zh) * 2020-03-24 2020-10-20 深圳市豪恩声学股份有限公司 一种主动降噪方法、装置、电子设备及存储介质
CN111596261A (zh) * 2020-04-02 2020-08-28 云知声智能科技股份有限公司 一种声源定位方法及装置
CN111883095A (zh) * 2020-04-27 2020-11-03 珠海市杰理科技股份有限公司 主动降噪方法、装置、***以及相关设备
CN111627415A (zh) * 2020-04-28 2020-09-04 重庆邮电大学 一种基于自适应MFxLMS算法的主动降噪装置及FPGA实现
CN111583897A (zh) * 2020-05-21 2020-08-25 清华大学苏州汽车研究院(相城) 一种用于厨房家电的主动降噪***及其控制方法
CN112289295A (zh) * 2020-06-08 2021-01-29 珠海市杰理科技股份有限公司 主动降噪***训练方法以及相关设备
CN112270915A (zh) * 2020-10-21 2021-01-26 上海奥立信息技术有限公司 一种室内空间主动降噪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于自适应噪声相消的语音增强***研究;霍陆陆;《中国优秀硕士学位论文全文数据库》;20200215;全文 *

Also Published As

Publication number Publication date
CN112788482A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
JP3780516B2 (ja) ロボット聴覚装置及びロボット聴覚システム
CN107479030B (zh) 基于分频和改进的广义互相关双耳时延估计方法
JP4664116B2 (ja) 能動騒音抑制装置
US7697700B2 (en) Noise removal for electronic device with far field microphone on console
JP4376902B2 (ja) 音声入力システム
US20070223732A1 (en) Methods and apparatuses for adjusting a visual image based on an audio signal
EP2893532A1 (en) Apparatus and method for providing an informed multichannel speech presence probability estimation
CN110322892B (zh) 一种基于麦克风阵列的语音拾取***和方法
CN111078185A (zh) 录制声音的方法及设备
CN113507662B (zh) 降噪处理方法、装置、设备、存储介质及程序
Schmidt et al. A novel ego-noise suppression algorithm for acoustic signal enhancement in autonomous systems
JP4866958B2 (ja) コンソール上にファーフィールドマイクロフォンを有する電子装置におけるノイズ除去
JP2023508063A (ja) オーディオ信号処理方法、装置、機器及びコンピュータプログラム
CN111627456B (zh) 噪音排除方法、装置、设备及可读存储介质
CN112788482B (zh) 一种麦克风阵列定位与云台联动的方法、装置
JP2001215990A (ja) ロボット聴覚装置
US20200279548A1 (en) Frequency-based causality binary limiter for active noise control systems
Hosseini et al. Time difference of arrival estimation of sound source using cross correlation and modified maximum likelihood weighting function
CN112584266B (zh) 一种信号处理方法、装置及耳机
Ince et al. Whole body motion noise cancellation of a robot for improved automatic speech recognition
CN113056786A (zh) 降低噪声的方法、状态确定方法和电子设备
JP2010056762A (ja) マイクロホンアレー
CN113744752A (zh) 语音处理方法及装置
Kuo et al. An integrated audio and active noise control system
JP2005062096A (ja) 話者位置検出方法、装置、プログラム、および記録媒体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant