CN112762927B - 水下动态重力数据采集半实物仿真方法及*** - Google Patents

水下动态重力数据采集半实物仿真方法及*** Download PDF

Info

Publication number
CN112762927B
CN112762927B CN202011504187.0A CN202011504187A CN112762927B CN 112762927 B CN112762927 B CN 112762927B CN 202011504187 A CN202011504187 A CN 202011504187A CN 112762927 B CN112762927 B CN 112762927B
Authority
CN
China
Prior art keywords
gravity
underwater
data
track
sampling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011504187.0A
Other languages
English (en)
Other versions
CN112762927A (zh
Inventor
李姗姗
王傲明
李新星
赵东明
张金辉
单建晨
范雕
黄炎
黄志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Engineering University of PLA Strategic Support Force
Original Assignee
Information Engineering University of PLA Strategic Support Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Engineering University of PLA Strategic Support Force filed Critical Information Engineering University of PLA Strategic Support Force
Priority to CN202011504187.0A priority Critical patent/CN112762927B/zh
Publication of CN112762927A publication Critical patent/CN112762927A/zh
Application granted granted Critical
Publication of CN112762927B publication Critical patent/CN112762927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明属于水下潜器半实物仿真技术领域,特别涉及一种水下动态重力数据采集半实物仿真方法及***,用于在实验室环境下模拟水下重力辅助惯性导航航迹上的重力测量数据的实时采集,包含:依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据;根据航迹数据通过计算角增量、速度增量和比力来模拟水下动态重力测量数据,并通过扣除有害加速度以及该点正常重力影响来获取水下采样点重力异常值;依据重力异常值及各采样点实际重力异常值的差值进行统计分析,评估半实物仿真精度。本发明能够对潜器沿水下航迹重力数据测量采集过程进行物理呈现,提供与实际测量环境相似的可靠便捷实验条件,节省人力物力财力。

Description

水下动态重力数据采集半实物仿真方法及***
技术领域
本发明属于水下潜器半实物仿真技术领域,特别涉及一种水下动态重力数据采集半实物仿真方法及***。
背景技术
水下潜器是指具有水下观察和作业能力的活动深潜水设备,主要用来执行水下考察、海底勘探、海底开发和打捞、救生等任务,并可以作为潜水员活动的水下作业基地。随着水下潜器在海岸工程中的应用,许多调查和检测工作都可以在更短的时间和更低的消费的情况下来完成。水下潜器自主性、隐蔽性和高精度的要求,决定了导航***必须是以惯性导航为核心,辅之以其他导航***的组合导航***。重力辅助惯性导航具有自主性强、隐蔽性好、不受地域和时域限制以及定位精度高等诸多优点,是目前实现水下潜器长期安全航行的重要手段之一。囿于实施水下实际重力辅助惯性导航实验受诸多条件的限制,因而难以通过实际采集数据对其关键技术、算法模型进行反复实验验证与优化。
发明内容
为此,本发明提供一种水下动态重力数据采集半实物仿真方法及***,能够对潜器沿水下航迹的重力数据测量采集过程进行物理呈现,为在实验室环境下进行水下重力辅助惯性导航的理论研究、模型验证提供与实际航迹采集相符、具有现实物理意义的数据支撑。
按照本发明所提供的设计方案,一种水下动态重力数据采集半实物仿真方法,用于在实验室环境下模拟水下重力辅助惯性导航航迹上的重力测量数据的实时采集,包含如下内容:
依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据,该航迹数据包含:位置、速度和姿态信息;
根据航迹数据通过计算角增量和速度增量来模拟水下动态重力测量数据,该水下动态重力测量数据包含惯性角增量和速度增量及比力;
针对水下动态重力测量数据,通过扣除有害加速度以及该点正常重力影响来获取水下采样点重力异常值;依据重力异常值及各采样点实际重力异常值的差值进行统计分析,评估半实物仿真精度。
作为本发明水下动态重力数据采集半实物仿真方法,进一步的,初始设定参数包含水下潜器初始姿态、速度、位置及运动加速度和角速度;利用航迹推算来获取水下潜器的预设航迹。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,通过分段设置机动动作,并依据惯导数据采样率从预设航迹上确定水下潜器在每个采样点上的航迹数据。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,针对航迹数据,通过捷联惯导反演算法来求取角增量与速度增量信息。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,根据前一时刻到当前时刻的导航系转换、导航系相对惯性系的转动角速度在导航系下的投影、机体坐标系转动的等效旋转矢量、比力及有害加速度引起的速度增量、地球自转角速度在导航系下投影、导航系相对地球坐标系角速度在导航系下投影来获取角增量与速度增量信息。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,考虑海水层质量影响,将已知的实际海洋重力异常延拓至水下采样点航迹处,基于采样点实际重力利用捷联惯导反演算法来获取角增量与速度增量信息;并加入重力测量白噪声来获取水下动态重力数据输出的比力值。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,模拟水下动态重力数据中,利用捷联惯导算法依据前一时刻水下潜器的航迹数据以更新周期内加速度计及陀螺仪采样输出来获取后一时刻前期航迹数据。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,依据导航系下水下动态重力测量方程,根据重力矢量模不变量性质来获取基于捷联惯导的动态重力测量方程。
作为本发明水下动态重力数据采集半实物仿真方法,进一步地,针对仿真实时提供的水下潜器航迹数据及加速度信息,通过从水下动态重力测量方程中扣除科里奥利加速度与运动加速度影响来获取水下采样点的重力异常值。
进一步地,基于上述的方法,本发明还提供一种水下动态重力数据采集半实物仿真***,用于在实验室环境下模拟水下重力辅助惯性导航航迹上的重力测量数据的实时采集,包含:预设模块、模拟模块和评估模块,其中,
预设模块,用于依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据,该航迹数据包含:位置、速度和姿态信息;
模拟模块,用于根据航迹数据通过计算角增量和速度增量来模拟水下动态重力测量数据,该水下动态重力测量数据包含惯性角增量和速度增量及比力;
评估模块,用于针对水下动态重力数据,通过扣除加速度影响来获取水下采样点重力异常值;依据重力异常值及各采样点实际重力异常值的差值进行统计分析,评估半实物仿真精度。
本发明的有益效果:
本发明通过对水下动态重力数据采集半实物仿真来实现对潜器沿水下航迹的重力数据测量采集过程的物理呈现,可为进行水下重力辅助惯性导航关键技术的深入研究提供与实际测量环境相似的可靠便捷的实验条件,从而节省大量的人力、物力和时间成本,并对仿真进行评估,提升模拟效果和精确度,具有较好的应用前景。
附图说明:
图1为实施例中水下动态重力数据采集半实物仿真方法示意;
图2为实施例中水下动态重力数据采集半实物仿真原理示意;
图3~7为实施例中各采样点航迹解算示意;
图8为实施例中采样点处重力仪的三个加速度计的输出仿真比力值示意;
图9为实施例中仿真重力异常示意;
图10为实施例中实际重力异常示意;
图11为实施例中重力异常差值示意。
具体实施方式:
为使本发明的目的、技术方案和优点更加清楚、明白,下面结合附图和技术方案对本发明作进一步详细的说明。
本发明实施例,参见图1所示,提供一种水下动态重力数据采集半实物仿真方法,用于在实验室环境下模拟水下重力辅助惯性导航航迹,包含如下内容:
S101、依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据,该航迹数据包含:位置、速度和姿态信息;
S102、根据航迹数据通过计算角增量和速度增量来模拟水下动态重力测量数据,该水下动态重力测量数据包含惯性角增量和速度增量及比力;
S103、针对水下动态重力数据,通过扣除有害加速度以及该点正常重力影响来获取水下采样点重力异常值;依据重力异常值及各采样点实际重力异常值的差值进行统计分析,评估半实物仿真精度。
通过对水下动态重力数据采集半实物仿真来实现对潜器沿水下航迹的重力数据测量采集过程的物理呈现,可为进行水下重力辅助惯性导航关键技术的深入研究提供与实际测量环境相似的可靠便捷的实验条件,从而节省大量的人力、物力和时间成本,并对仿真进行评估,提升模拟效果和精确度。
进一步地,本发明实施例中,通过设定水下潜器初始姿态、速度、位置以及运动加速度和角速度参数,基于航迹推算方法获取潜器的预设航迹;并按照惯导数据采样率,从预设航迹确定潜器在每个采样点上的姿态、速度、位置。
记当地水平坐标系为n系,载体坐标系为b系,俯仰、横滚、方位欧拉角向量为A=[θγ ψ]T、欧拉角速率向量ω=[ωθ ωγ ωψ]T、b系加速度ab=[0 ay 0]T,则水下航行运动航迹设置满足如下微分方程组:
Figure GDA0003161213260000031
其中
Figure GDA0003161213260000041
假设初值A(t0)=[θ0γ0ψ0]T
Figure GDA0003161213260000042
p(t0)=[B0L0 H0]T,RM为子午圈曲率半径,RN为卯酉圈曲率半径,B为大地纬度,H为大地高,
Figure GDA0003161213260000043
为由当前时刻欧拉角实时计算求得的姿态矩阵。
通过分段设置机动动作,即航迹分段输入参数ωθ、ωγ、ωψ和ay中的一个或多个,采用一阶欧拉法,依据惯导采样率设定步长参数求解(1)式时变微分方程,解得航迹参数A,vn和p,完成水下航迹预设。
惯性角增量与速度增量输出仿真,通过捷联惯导反演算法原理,求取角增量与速度增量信息,模拟惯性***的测量输出。
记tm时刻的姿态阵为
Figure GDA0003161213260000044
tm-1时刻的n系到tm时刻的n系的转换阵为
Figure GDA0003161213260000045
时刻的导航系相对惯性系的转动角速度在导航系下的投影为
Figure GDA0003161213260000046
tm-1时刻到tm时刻的b系转动的等效旋转矢量
Figure GDA0003161213260000047
时间段T=tm-tm-1内比力引起的速度增量为
Figure GDA0003161213260000048
时间段T=tm-tm-1内有害加速度引起的速度增量为
Figure GDA0003161213260000049
时刻地球自转角速度在n系下的投影为
Figure GDA00031612132600000410
时刻n系相对e系的角速度在n系下的投影为
Figure GDA00031612132600000411
时刻载体所在位置处的重力值为
Figure GDA00031612132600000412
完成潜器航迹设计后,航迹上各采样点的姿态、速度和位置参数均为已知,因此
Figure GDA00031612132600000413
Figure GDA00031612132600000414
等量均已知或可计算,由这些量即可求解惯性传感器的增量采样信息。
首先,角增量计算公式为:
Figure GDA00031612132600000415
令初值Δθ0=0。
速度增量计算公式为:
Figure GDA0003161213260000051
式中
Figure GDA0003161213260000052
Figure GDA0003161213260000053
令初值Δv0=0。依据(2)、(3)式完成角增量Δθm和速度增量Δvm的仿真,生成惯性输出角增量与速度增量。
水下动态重力测量比力输出仿真,顾及海水层质量影响,将海洋重力异常延拓至水下采样点航迹处;以该采样点实际重力值替代正常重力值代入捷联惯导反演算法获取角增量与速度增量信息,然后确定比力,该比力值可视为水下动态重力数据测量输出。
假定海水层的密度为δ0,则海水层质量影响为
Tz=2×2πGδ0h (6)
式中G是万有引力常数,h为潜器潜水深度。扣除海水层质量影响后,利用地球重力场模型(Cnm,Snm)计算重力异常Δg的垂直梯度变化,从而将海洋面重力异常向下延拓至潜器潜水深度。
Figure GDA0003161213260000054
式中,M为地球总质量,R表示地球平均半径,
Figure GDA0003161213260000055
系地心纬度、经度,
Figure GDA0003161213260000056
表示缔合勒让德函数。
依据WGS84正常重力公式计算采样点正常重力值:
Figure GDA0003161213260000061
将延拓后的海洋实际重力值代入(5)式,然后由(3)式计算速度增量,并对时间求微分可得比力:
Figure GDA0003161213260000062
注意式中Δvm由实际重力值代入(4)式求得。在此基础上加入重力测量白噪声,生成水下动态重力数据输出比力值。
惯性测量数据解算。由生成的惯性测量数据输出仿真,依据捷联惯导算法原理,确定潜器的姿态、速度、位置。
捷联惯导更新算法是一种递推算法,即根据前一时刻潜器的姿态、速度、位置,以及更新周期内加速度计与陀螺仪的采样输出,推算后一时刻潜器的姿态、速度、位置。
姿态更新,由矩阵链乘法则:
Figure GDA0003161213260000063
式中,
Figure GDA0003161213260000064
Figure GDA0003161213260000065
分别表示tm-1和tm时刻的姿态矩阵。
陀螺在[tm-1,tm],[tm-2,tm-1]时间段内进行角增量等间隔采样为Δθm和Δθm-1,令T=tm-tm-1,则有:
Figure GDA0003161213260000066
Figure GDA0003161213260000067
Figure GDA0003161213260000068
式(10)~式(13)即为捷联惯导数值递推姿态更新原理。
速度更新中,
Figure GDA0003161213260000071
其中,
Figure GDA00031612132600000713
Figure GDA0003161213260000072
分别为tm-1和tm时刻的速度。有害加速度引起的
Figure GDA0003161213260000073
速度增量计算按(5)式,比力积分速度增量
Figure GDA0003161213260000074
计算公式为:
Figure GDA0003161213260000075
Figure GDA0003161213260000076
Figure GDA0003161213260000077
式中Δθm和Δθm-1分别是在时间段[tm-1,tm],[tm-2,tm-1]内角增量输出,Δvm和Δvm-1分别是在时间段[tm-1,tm],[tm-2,tm-1]内速度增量输出。
Figure GDA0003161213260000078
为tm-1时刻的姿态矩阵。
位置更新,采用梯形积分法对式(1)的位置微分式进行离散化,得位置更新算法:
Figure GDA0003161213260000079
式中,Mpv(m-1/2)可采用线性外推,对矩阵整体Mpv进行外推;也可对矩阵元素中的位置变量B,H外推,再构造矩阵Mpv
水下动态重力测量数据处理,由惯性输出仿真通过惯性测量数据解算实时提供潜器位置、姿态、速度及加速度,从水下动态重力测量数据输出中扣除科里奥利加速度与运动加速度影响,生成水下采样点的重力异常值。
n系下的水下动态重力测量矢量方程描述为:
Figure GDA00031612132600000710
式中,gn为重力加速度。
Figure GDA00031612132600000711
为每个采样点上动态重力测量数据的比力输出值;
Figure GDA00031612132600000712
为科里奥利加速度。
本设计侧重于水下标量重力测量,为避免姿态误差的传递累积,根据重力矢量模不变量原理,将基于捷联惯导的动态重力测量方程改写为:
Figure GDA0003161213260000081
式中,
Figure GDA0003161213260000082
将重力仿真生成值经数据处理后获取的重力异常值与各采样点实际重力异常值的差值进行统计分析,评估水下动态重力数据采集半实物仿真***的仿真精度。
进一步,基于上述的方法,本发明实施例还提供一种水下动态重力数据采集半实物仿真***,用于在实验室环境下模拟水下重力辅助惯性导航航迹上的重力测量数据的实时采集,,包含:预设模块、模拟模块和评估模块,其中,
预设模块,用于依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据,该航迹数据包含:位置、速度和姿态信息;
模拟模块,用于根据航迹数据通过计算角增量和速度增量来模拟水下动态重力数据,该水下动态重力测量数据包含惯性角增量和速度增量及比力;
评估模块,用于针对水下动态测量重力数据,通过扣除有害加速度以及对应采样点处正常重力影响来获取水下采样点重力异常值;依据重力异常值及各采样点实际重力异常值的差值进行统计分析,评估半实物仿真精度。
为验证本案方案有效性,下面结合仿真数据做进一步解释说明:
设置水下航迹参数如下,航迹起始点经纬度pos0=(110.9° 7.5°);潜水深度100m;初始姿态att0=(0° 0° 0°);初始速度v0=(0 0 0)预设;机动动作以0.0172m/s2的加速度,匀加速300s,速度达到10节后,匀速直线运动1h,然后左转90°,匀速运动1h,然后右转90°,匀速运动1h,航迹结束。整个仿真时长为3h。在上述航迹参数设置的基础上,采样率设置为100HZ,得到图3~7所示的各采样点的姿态、速度、位置,如图3a到图7a分别所示的航迹归算俯仰角、横滚角、航向角、推算速度和推算位置;利用惯导反演算法生成惯性输出的角增量与速度增量,在不顾及陀螺以及加速度计的常值漂移和随机游走误差的影响下进行惯性导航解算,得到潜器的姿态、速度、位置,如图3b~图7b分别所示的无误差惯导解算俯仰角、横滚角、航向角、推算速度和推算位置。理论上解算得到的各采样点的姿态、速度、位置应与设计航迹上各采样点的姿态、速度、位置完全相等,但受模型误差和计算机字长的限制,两者之间存在有微小差异,如果姿态角误差在角秒级、速度误差在0.01m/s以下,则认为仿真得到的惯性输出信息符合精度要求。各采样点的姿态、速度、位置误差如图3c~图7c分别所示俯仰角误差、横滚角误差、航向角误差、推算速度误差和推算位置误差,误差统计列于表1到表3。
表1 姿态误差统计信息
Figure GDA0003161213260000091
由表1-表3可知,在仿真时长3h时间段内,姿态角的最大误差为0.29″,速度误差的最大值为0.002m/s,位置误差最大值为8.5m。由于潜器位置误差通常以海里为单位,位置误差在量级上完全能够满足水下导航对数据源仿真精度的要求,同时也验证了仿真惯性元器件信息的正确性。
将水下航迹生成采样点的实际重力值、姿态、速度、位置代入捷联惯导反演算法,确定各采样点处重力仪的三个加速度计的输出仿真比力值,如图8所示,(a)、(b)、(c)分别表示重力仪x、y、z方向加速度计比力输出。获得重力仪的实际测量值-比力后,截除潜器机动转向时间段的测量数据,然后利用惯导解算得到的各采样点的速度、位置、对重力测量值进行科里奥利加速度与运动加速度改正,即可确定该点处的重力异常。理论上,仿真测量获得的重力异常值应等于设计航迹上各采样点的实际重力异常值,但由于惯导仿真误差与计算误差的影响,仿真测量重力异常值与实际海洋重力异常值存在差异,其差异值如图9~11所示,误差统计列于表4,最大误差为0.026mGal,均方误差为0.0096mGal,实验结果说明所设计的水下动态重力数据采集半实物仿真***符合捷联式动态重力测量原理,可满足实验室水下重力测量的仿真要求。
表4 重力仿真精度评估/单位:mGal
Figure GDA0003161213260000092
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本发明的范围。
基于上述的***,本发明实施例还提供一种服务器,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的***。
基于上述的***,本发明实施例还提供一种计算机可读介质,其上存储有计算机程序,其中,该程序被处理器执行时实现上述的***。
本发明实施例所提供的装置,其实现原理及产生的技术效果和前述***实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述***实施例中相应内容。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***和装置的具体工作过程,可以参考前述***实施例中的对应过程,在此不再赘述。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
附图中的流程图和框图显示了根据本发明的多个实施例的***、***和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
在本申请所提供的几个实施例中,应该理解到,所揭示的***、装置和***,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述***的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭示的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

1.一种水下动态重力数据采集半实物仿真方法,用于在实验室环境下模拟水下重力辅助惯性导航航迹上的重力测量数据的实时采集,其特征在于,包含如下内容:
依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据,该航迹数据包含:位置、速度和姿态信息;
根据航迹数据计算角增量和速度增量,并对速度增量微分来模拟水下动态重力测量数据比力;
针对水下动态重力测量数据比力,通过扣除有害加速度以及对应采样点处正常重力影响来获取水下采样点重力异常值;对获取的水下采样点重力异常值与各采样点实际重力异常值两者的差值进行统计分析,评估半实物仿真精度;其中,通过扣除有害加速度以及对应采样点处正常重力影响来获取水下采样点重力异常值的公式表示为:
Figure FDA0003161213250000011
2.根据权利要求1所述的水下动态重力数据采集半实物仿真方法,其特征在于,初始设定参数包含水下潜器初始姿态、速度、位置及运动加速度和角速度;利用航迹推算来获取水下潜器的预设航迹。
3.根据权利要求1所述的水下动态重力数据采集半实物仿真方法,其特征在于,通过分段设置机动动作,并依据惯导数据采样率从预设航迹上确定水下潜器在每个采样点上的航迹数据。
4.根据权利要求1所述的水下动态重力数据采集半实物仿真方法,其特征在于,针对航迹数据,通过捷联惯导反演算法来求取角增量与速度增量信息。
5.根据权利要求4所述的水下动态重力数据采集半实物仿真方法,其特征在于,根据前一时刻到当前时刻的导航系转换、导航系相对惯性系的转动角速度在导航系下的投影、机体坐标系转动的等效旋转矢量、比力及有害加速度引起的速度增量、地球自转角速度在导航系下投影、导航系相对地球坐标系角速度在导航系下投影来获取角增量与速度增量信息。
6.根据权利要求4所述的水下动态重力数据采集半实物仿真方法,其特征在于,考虑海水层质量影响,将海洋重力异常延拓至水下采样点航迹处,基于采样点实际重力并利用捷联惯导反演算法来获取角增量与速度增量信息;并加入重力测量白噪声来获取水下动态重力数据输出的比力值。
7.根据权利要求1所述的水下动态重力数据采集半实物仿真方法,其特征在于,模拟水下动态重力数据中,利用捷联惯导算法依据前一时刻水下潜器的航迹数据以更新周期内加速度计及陀螺仪采样输出来获取后一时刻前期航迹数据。
8.根据权利要求1所述的水下动态重力数据采集半实物仿真方法,其特征在于,依据导航系下水下动态重力测量方程,根据重力矢量模不变量性质来获取基于捷联惯导的动态重力测量方程。
9.根据权利要求8所述的水下动态重力数据采集半实物仿真方法,其特征在于,针对仿真实时提供的水下潜器航迹数据及加速度信息,通过从水下动态重力测量方程中扣除科里奥利加速度与运动加速度影响来获取水下采样点的重力异常值。
10.一种水下动态重力数据采集半实物仿真***,用于在实验室环境下模拟水下重力辅助惯性导航航迹上的重力测量数据的实时采集,其特征在于,基于权利要求1所述的方法实现,包含:预设模块、模拟模块和评估模块,其中,
预设模块,用于依据初始设定参数获取水下潜器预设航迹,并依据预设航迹确定其在每个采样点上的航迹数据,该航迹数据包含:位置、速度和姿态信息;
模拟模块,用于根据航迹数据计算角增量和速度增量,并对速度增量微分来模拟水下动态重力测量数据比力;
评估模块,用于针对水下动态重力测量数据比力,通过扣除有害加速度以及对应采样点处正常重力影响来获取水下采样点重力异常值;对获取的水下采样点重力异常值与各采样点实际重力异常值两者的差值进行统计分析,评估半实物仿真精度。
CN202011504187.0A 2020-12-18 2020-12-18 水下动态重力数据采集半实物仿真方法及*** Active CN112762927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011504187.0A CN112762927B (zh) 2020-12-18 2020-12-18 水下动态重力数据采集半实物仿真方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011504187.0A CN112762927B (zh) 2020-12-18 2020-12-18 水下动态重力数据采集半实物仿真方法及***

Publications (2)

Publication Number Publication Date
CN112762927A CN112762927A (zh) 2021-05-07
CN112762927B true CN112762927B (zh) 2021-09-10

Family

ID=75694277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011504187.0A Active CN112762927B (zh) 2020-12-18 2020-12-18 水下动态重力数据采集半实物仿真方法及***

Country Status (1)

Country Link
CN (1) CN112762927B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514059B (zh) * 2021-05-19 2024-02-13 北京理工大学 一种重力辅助惯性导航***仿真平台
CN113960690B (zh) * 2021-09-03 2023-05-05 中国人民解放军战略支援部队信息工程大学 一种海面重力数据测量精度对海底地形反演结果影响计算方法及装置
CN117970514B (zh) * 2024-04-02 2024-07-09 中国科学院国家空间科学中心 一种基于水深的全球海洋重力场模型融合***及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424534A (zh) * 2008-12-09 2009-05-06 东南大学 惯性/重力组合导航半实物模拟装置
DE602004029253D1 (de) * 2003-07-03 2010-11-04 Northrop Grummann Corp Verfahren und vorrichtung zum erhöhen der inertialeicherter schwerkraftsgradiente
CN103674030A (zh) * 2013-12-26 2014-03-26 中国人民解放军国防科学技术大学 基于天文姿态基准保持的垂线偏差动态测量装置和方法
CN106405670A (zh) * 2016-10-10 2017-02-15 北京航天控制仪器研究所 一种适用于捷联式海洋重力仪的重力异常数据处理方法
CN107063269A (zh) * 2017-06-21 2017-08-18 湖南中森通信科技有限公司 构建水下重力辅助导航背景场的反距离加权插值算法
CN108444479A (zh) * 2018-03-15 2018-08-24 北京理工大学 基于自适应鲁棒无迹卡尔曼滤波的重力匹配方法
CN109001829A (zh) * 2018-07-12 2018-12-14 中国人民解放军国防科技大学 一种捷联式水下动态重力测量仪
CN109141426A (zh) * 2018-08-10 2019-01-04 中国空间技术研究院 一种水下重力匹配导航适配区的优选方法
CN111536971A (zh) * 2020-05-25 2020-08-14 中国人民解放军61540部队 一种基于相邻测线重力差信息的导航方法及***
CN111649763A (zh) * 2020-04-26 2020-09-11 中国人民解放军61540部队 一种基于重力灯塔建立的潜艇导航方法及***
CN111722295A (zh) * 2020-07-04 2020-09-29 东南大学 一种水下捷联式重力测量数据处理方法
CN111735442A (zh) * 2020-06-17 2020-10-02 东南大学 一种水下重力无源导航***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108612A1 (en) * 2015-10-15 2017-04-20 King Saud University Inertial system for gravity difference measurement

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004029253D1 (de) * 2003-07-03 2010-11-04 Northrop Grummann Corp Verfahren und vorrichtung zum erhöhen der inertialeicherter schwerkraftsgradiente
CN101424534A (zh) * 2008-12-09 2009-05-06 东南大学 惯性/重力组合导航半实物模拟装置
CN103674030A (zh) * 2013-12-26 2014-03-26 中国人民解放军国防科学技术大学 基于天文姿态基准保持的垂线偏差动态测量装置和方法
CN106405670A (zh) * 2016-10-10 2017-02-15 北京航天控制仪器研究所 一种适用于捷联式海洋重力仪的重力异常数据处理方法
CN107063269A (zh) * 2017-06-21 2017-08-18 湖南中森通信科技有限公司 构建水下重力辅助导航背景场的反距离加权插值算法
CN108444479A (zh) * 2018-03-15 2018-08-24 北京理工大学 基于自适应鲁棒无迹卡尔曼滤波的重力匹配方法
CN109001829A (zh) * 2018-07-12 2018-12-14 中国人民解放军国防科技大学 一种捷联式水下动态重力测量仪
CN109141426A (zh) * 2018-08-10 2019-01-04 中国空间技术研究院 一种水下重力匹配导航适配区的优选方法
CN111649763A (zh) * 2020-04-26 2020-09-11 中国人民解放军61540部队 一种基于重力灯塔建立的潜艇导航方法及***
CN111536971A (zh) * 2020-05-25 2020-08-14 中国人民解放军61540部队 一种基于相邻测线重力差信息的导航方法及***
CN111735442A (zh) * 2020-06-17 2020-10-02 东南大学 一种水下重力无源导航***
CN111722295A (zh) * 2020-07-04 2020-09-29 东南大学 一种水下捷联式重力测量数据处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
海洋重力测量误差补偿技术;奚碚华等;《中国惯性技术学报》;20110228;第19卷(第1期);1-5 *
重力辅助导航仿真演示***设计与实现;卢桢等;《舰船电子工程》;20090630;第29卷(第6期);86-89 *
长航时捷联惯导重力扰动影响及补偿;丛琳等;《计算机工程与应用》;20141231;第50卷(第11期);251-255 *

Also Published As

Publication number Publication date
CN112762927A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN112762927B (zh) 水下动态重力数据采集半实物仿真方法及***
CN105259902B (zh) 水下机器人惯性导航方法及***
CN104655131B (zh) 基于istssrckf的惯性导航初始对准方法
RU2701194C2 (ru) Способ оценки навигационного состояния в условиях ограниченной возможности наблюдения
CN105424036B (zh) 一种低成本水下潜器地形辅助惯性组合导航定位方法
CN103743395A (zh) 一种惯性重力匹配组合导航***中时间延迟的补偿方法
US20180149480A1 (en) System for incremental trajectory estimation based on real time inertial sensing
CN103759742A (zh) 基于模糊自适应控制技术的捷联惯导非线性对准方法
CN103389506A (zh) 一种用于捷联惯性/北斗卫星组合导航***的自适应滤波方法
CN105136166B (zh) 一种指定惯导位置精度的捷联惯导***误差模型仿真方法
CN105806363A (zh) 基于srqkf的sins/dvl水下大失准角对准方法
CN104296780B (zh) 一种基于重力视运动的sins自对准与纬度计算方法
Kiselev et al. Autonomous underwater robot as an ideal platform for marine gravity surveys
CN105973237B (zh) 基于实际飞行数据插值的仿真动态轨迹解析生成方法
Smith et al. Towards the improvement of autonomous glider navigational accuracy through the use of regional ocean models
CN109029499A (zh) 一种基于重力视运动模型的加速度计零偏迭代寻优估计方法
Dichev et al. A measuring system with an additional channel for eliminating the dynamic error
Agoshkov et al. Variational assimilation of observation data in the mathematical model of the Black Sea taking into account the tide-generating forces
Claus et al. A parameterized geometric magnetic field calibration method for vehicles with moving masses with applications to underwater gliders
CN104101345A (zh) 基于互补重构技术的多传感器姿态融合方法
CN103616026A (zh) 一种基于h∞滤波的auv操纵模型辅助捷联惯导组合导航方法
CN107036595A (zh) 基于交互式多模型滤波的船体变形角估计方法
CN104596540B (zh) 一种惯导/里程计组合导航的半实物仿真方法
Rainville Measurements of Nearshore Waves through Coherent Arrays of Small-Scale, Free-Drifting Wave Buoys
KR101665375B1 (ko) 이동체 항법 시스템 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant