CN112737984B - 多载波非相干水声通信的频响估计及信号传输方法、*** - Google Patents

多载波非相干水声通信的频响估计及信号传输方法、*** Download PDF

Info

Publication number
CN112737984B
CN112737984B CN202011559780.5A CN202011559780A CN112737984B CN 112737984 B CN112737984 B CN 112737984B CN 202011559780 A CN202011559780 A CN 202011559780A CN 112737984 B CN112737984 B CN 112737984B
Authority
CN
China
Prior art keywords
amplitude
control information
frequency response
carrier
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011559780.5A
Other languages
English (en)
Other versions
CN112737984A (zh
Inventor
武岩波
朱敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN202011559780.5A priority Critical patent/CN112737984B/zh
Publication of CN112737984A publication Critical patent/CN112737984A/zh
Application granted granted Critical
Publication of CN112737984B publication Critical patent/CN112737984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明公开了多载波非相干水声通信的频响估计及信号传输方法、***。本发明利用对控制信息进行编码后的码字恒重的特性,对子载波的幅度频率响应进行初步的估计,通过深度神经网络对所有频点的幅频响应进行联合优化估计,之后进行根据各频点的幅频响应幅度对各个符号进行后验概率估计,获得比特对数似然序列,用于信道纠错码译码。本发明提高了非相干水声通信的传输速率、降低其对每比特能耗的要求。

Description

多载波非相干水声通信的频响估计及信号传输方法、***
技术领域
本发明属于水声通信领域,具体地,针对多载波非相干水声通信的频点分配、幅频响应估计及高阶调制,涉及多载波非相干水声通信的频响估计及信号传输方法、***。
背景技术
在海底观测无线网络中,采用水声通信的方式实现固定观测潜标、移动观测潜水器、无线中继潜标和无线网关之间的数据和指令传输。其中,非相干通信由于采用简单的能量检测方式,不需要跟踪快速变化的相位,具有无需导频开销、受多普勒效应影响小等优势。由于采用多载波并行传输方式,具有较强的抗多径的能力。非相干通信在无线拓展***中是最常用的传输体制,负责网络控制指令传输及大量的传感器数据的回传。非相干通信的错误率、传输速率和每比特能耗等技术指标直接决定着整个无线拓展网络的工作性能和生存周期。由于水声信道的多径严重,造成信道具有严重的频率选择性,现有的算法通常避免对各频点的幅度响应的估计,而是在发端采用恒重码字及开关键控(OOK,On-offkeying)的方式将信息序列调制到多个子载波上,接收端采用能量合并的检测方式。
现有的非相干水声通信方案中每个子载波最多只能携带编码后的1个比特,同时恒重码的使用进一步降低了通信速率,并且由于没有区分不同载波的频响差异,造成低信噪比时译码错误率高。
发明内容
本发明的目的在于提高非相干水声通信的传输速率、降低其对每比特能耗的要求。
为实现上述目的,本发明提供了一种多载波非相干水声通信的频响估计及信号传输方法,传输的每个数据包包括控制信息和数据信息,所述方法包括步骤:
发射端控制信息编码调制的步骤:
将表示控制信息的控制信息序列进行对偶K码和恒重码两级级联编码,恒重码编码后的码字再进行开关键控OOK调制,控制信息比特经编码调制后用于多载波传输;
发射端数据信息编码调制的步骤:
将表示数据信息的数据信息序列进行turbo码编码及交织,交织后的比特流进行多进制转换及幅移键控ASK调制,数据信息比特经编码调制后用于多载波传输;
发射端组包的步骤:
编码调制后的控制信息和数据信息通过逆傅立叶变换IFFT实现多载波并行传输,其中,同一恒重码码字经开关键控OOK调制后得到的信号由同一子载波传输,以保证子载波在整个控制信息传输中分配的能量相等;逆傅立叶变换IFFT之后的时域波形包括控制信息块和数据信息块;为提高抗多径能力,在逆傅立叶变换IFFT后的时域波形中***循环前缀,组帧并在每个帧前后的***同步信号,同步信号采用线性调频信号,每个同步信号的前后留有间隔,多个帧组成一个数据包,进而完成发射信号的生成;
接收端同步、频点幅度获取及控制信息译码的步骤:
接收端接收经水声信道传输而来的信号,通过对线性调频信号的检测,完成时间同步、平均多普勒补偿,得到载波幅度,载波幅度包括控制信息载波幅度和数据信息载波幅度两部分,之后进行傅立叶变换FFT并求模,得到控制信息载波幅度序列和数据信息载波幅度序列,然后对得到的控制信息载波幅度序列,先进行恒重码平方率软判决检测,之后进行对偶K码的多进制Viterbi译码,获得译码后的控制信息序列,然后将译码得到的控制信息序列进行发射端相同的对偶K码和恒重码级联编码,获得控制信息发射幅度估计序列;
幅频响应估计的步骤:
根据收到的控制信息载波幅度序列和恢复出的控制信息发射幅度估计序列,首先,将所有接收到的发射幅度为零的控制信息子载波符号进行能量平均,获得噪声方差估计,然后对接收到的同一子载波的发射幅度非零的控制信息子载波符号进行能量平均,并减去噪声方差估计,得到各个子载波的信道幅频响应估计,根据所有子载波的信道幅频响应估计得到幅频响应矢量;
基于幅频响应估计的ASK检测及turbo译码的步骤:
对数据信息载波幅度序列,基于信道幅频响应估计求得ASK符号携带的各个比特的对数似然比,将各ASK符号的各比特对数似然比经解交织后作为turbo译码器的输入,经过迭代及硬判决后,恢复数据信息序列,完成传输。
进一步的,所述幅移键控ASK调制采用格雷码映射并进行平均能量归一化,根据ASK阶数采用相应的幅移键控ASK幅度调制映射表。
进一步的,所述幅频响应估计的步骤中,在得到幅频响应矢量之后,通过深度神经网络DNN对幅频响应矢量进行优化调整。
进一步的,深度神经网络DNN包含两级隐藏层,隐藏层的激活函数选取Relu函数,优化时以均方误差作为性能损失函数。
本发明还提供了一种多载波非相干水声通信发送设备,包括:
控制信息编码调制模块,该模块将表示控制信息的控制信息序列进行对偶K码和恒重码两级级联编码,恒重码编码后的码字再进行开关键控OOK调制,控制信息比特经编码调制后用于多载波传输;
数据信息编码调制模块,该模块将表示数据信息的数据信息序列进行turbo码编码及交织,交织后的比特流进行多进制转换及幅移键控ASK调制,数据信息比特经编码调制后用于多载波传输;
组包模块,该模块将编码调制后的控制信息和数据信息通过逆傅立叶变换IFFT实现多载波并行传输,其中,同一恒重码码字经开关键控OOK调制后得到的信号由同一子载波传输,以保证子载波在整个控制信息传输中分配的能量相等;逆傅立叶变换IFFT之后的时域波形包括控制信息块和数据信息块;为提高抗多径能力,在逆傅立叶变换IFFT后的时域波形中***循环前缀,组帧并在每个帧前后的***同步信号,同步信号采用线性调频信号,每个同步信号的前后留有间隔,多个帧组成一个数据包,进而完成发射信号的生成。
进一步的,所述幅移键控ASK调制采用格雷码映射并进行平均能量归一化,根据ASK阶数采用相应的ASK幅度调制映射表。
本发明还提供了一种多载波非相干水声通信接收设备,包括:
同步、频点幅度及控制信息译码模块,该模块接收经水声信道传输而来的信号,通过对线性调频信号的检测,完成时间同步、平均多普勒补偿,得到载波幅度,载波幅度包括控制信息载波幅度和数据信息载波幅度两部分,之后进行傅立叶变换FFT并求模,得到控制信息载波幅度序列和数据信息载波幅度序列,然后对得到的控制信息载波幅度序列,先进行恒重码平方率软判决检测,之后进行对偶K码的多进制Viterbi译码,获得译码后的控制信息序列,然后将译码得到的控制信息序列进行发射端相同的对偶K码和恒重码级联编码,获得控制信息发射幅度估计序列;
幅频响应估计模块,该模块首先,将所有接收到的发射幅度为零的控制信息子载波符号进行能量平均,获得噪声方差估计,然后对接收到的同一子载波的发射幅度非零的控制信息子载波符号进行能量平均,并减去噪声方差估计,得到各个子载波的信道幅频响应估计,根据所有子载波的信道幅频响应估计得到幅频响应矢量;
基于幅频响应估计的ASK检测及turbo译码模块,该模块对数据信息载波幅度序列,基于信道幅频响应估计求得ASK符号携带的各个比特的对数似然比,将各ASK符号的各比特对数似然比经解交织后作为turbo译码器的输入,经过迭代及硬判决后,恢复数据信息序列,完成传输。
进一步的,所述接收设备还包括幅频响应优化模块,该模块通过深度神经网络DNN对幅频响应估计模块得到幅频响应矢量进行优化调整。
进一步的,深度神经网络DNN包含两级隐藏层,隐藏层的激活函数选取Relu函数,优化时以均方误差作为性能损失函数。
本发明还提供了一种多载波非相干水声通信的频响估计及信号传输***,其特征在包括发送设备和接收设备,其中,发送设备采用如权利要求上述发送设备,接收设备采用上述接收设备。
有益效果
本发明提高了非相干水声通信的传输速率、降低其对每比特能耗的要求,具体来说:
(1)本发明在幅频响应的估计中采用控制帧的波形进行估计,无需设置专用的训练导频,能避免导频开销。
(2)由于求模值计算的非线性影响,传统的线性最小均方误差信道估计算法不适用非相干水声通信,本发明在幅频响应的估计中先利用平均能量的方法,以低的计算复杂度合并多个符号时间的幅频估计,并且采用深度神经网络的方式进一步优化,利用各频点的幅频响应之间的非线性相关性,提高频响估计的精度,同时不依赖信道模型。
(3)本发明在获得各频点的幅频响应之后,对各频点的调制信息检测更加准确,可采用高阶幅度键控(ASK,amplitude shift keying)的调制方式提高信道利用率,并且无需导频开销。
(4)本发明对各载波上调制信息的检测形式是基于后验概率的对数似然比,相对于传统的能量检测,更适用于turbo译码器对比特信息形式的要求。
附图说明
图1为本发明多载波非相干水声通信的频响估计及信号传输方法原理框框图;
图2为本发明中发射包组成结构示意图;
图3为本发明中频响估计效果与真值的仿真对比图;
图4为在不同频响估计及检测方式下,译码迭代次数与误比特率的关系曲线对比图。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细的说明。
本发明基于可用于子载波幅度检测的发射波形生成方案、接收端对各子载波准确的幅度响应估计、以及对各载波上的信息进行后验概率检测,提出了多载波非相干水声通信的频响估计及信号传输方法、***及其发射设备和接收设备。
本发明利用对控制信息进行编码后的码字恒重的特性,对子载波的幅度频率响应进行初步的估计,通过深度神经网络对所有频点的幅频响应进行联合优化估计,之后进行根据各频点的幅频响应幅度对各个符号进行后验概率估计,获得比特对数似然序列,用于信道纠错码译码。
本发明的多载波非相干水声通信的频响估计及信号传输方法,包括:
发射端控制信息编码调制的步骤:
发射信号流程如图1所示。每个发送包需要传输控制信息和数据信息两部分内容。控制信息比特数量为NCtrl,所有控制信息比特记为
Figure BDA0002859038030000051
经过对偶K码编码后,得到编码的多进制序列为
Figure BDA0002859038030000052
其中
Figure BDA0002859038030000053
RDual为对偶K码的码率,NCWI为后级恒重码编码每个分组的输入比特数目。NCWO为恒重码编码分组的输出比特数目。恒重码映射矩阵记为
Figure BDA0002859038030000054
即当恒重码映射输入的多进制取值为i时,映射输出的二进制序列的第j位结果为
Figure BDA0002859038030000055
矩阵采用Hadamard矩阵生成,恒重码出现1的概率为
Figure BDA0002859038030000056
恒重码编码码率为
Figure BDA0002859038030000057
控制信息比特经过对偶K和恒重码级联编码,在OOK调制后,采用多载波传输的方式,NCarrier为并行的多载波个数。同一恒重码码字由同一子载波传输,以保证子载波在整个控制信息传输中分配的能量相等。第i个子载波的第j个多载波符号的幅度为:
Figure BDA0002859038030000061
其中,0≤i<NCarrier,0≤j<NCtrlSymb
Figure BDA0002859038030000062
为向下取整函数,且控制信息传输使用的多载波符号个数为
Figure BDA0002859038030000063
发射端数据信息编码调制的步骤:
待传输的数据信息比特记为
Figure BDA0002859038030000064
其中NData为数据信息比特的个数。经turbo码编码及交织后,获得的比特矢量为
Figure BDA0002859038030000065
其中
Figure BDA0002859038030000066
为turbo编码输出比特数,RTurbo为turbo编码的码率。
将编码及交织后比特流进行多进制序列转换,得到
Figure BDA0002859038030000067
其中NASK为每个ASK符号携带的比特数,对于不同的ASK阶数,采用格雷码映射并进行平均能量归一化,得到的ASK幅度映射(调制)表,1到3阶的映射表格如下:
Figure BDA0002859038030000068
其中
Figure BDA00028590380300000610
表示输入*时,输出的ASK幅度。
携带数据信息编码的第i个子载波第j个多载波符号的幅度为:
Figure BDA00028590380300000611
其中,0≤i<NCarrier,0≤j-NCtrlSymb<NDataSymb,且数据信息传输所使用的多载波符号的个数为
Figure BDA0002859038030000069
发射端的组包的步骤:
发送包的组成结构如图2所示,控制信息和数据信息经过编码和映射后,通过逆傅立叶变换(inverse Fast Fourier Transform,IFFT)实现多载波方式并行传输。最低和最高的子载波频率分别为fL和fH,子载波间隔为fδ。子载波的有效长度为Tδ。前面的控制信息块部分的多载波符号携带控制信息,后面的数据信息块的多载波符号携带数据信息。同一个多载波符号包含多个子载波,它们携带同一类型的信息。为了提高克服多径的能力,在时域波形中***循环前缀,其长度为Tg。一个帧内包含NSymbPerFrm个多载波符号,每个帧前后的***同步信号,进而完成发射信号的生成。同步信号采用线性调频的形式,其最低频率和最高频率分别为f0和f1,持续长度为TSync。每个同步信号的前后留有的空白长度为TGap。每个帧的长度为TFrm。根据发送包中帧的个数及帧长,得到包的传输长度为Tpacket
接收端同步、频点幅度获取及控制信息译码的步骤:
接收端的信号流程如图1所示。通过对线性调频信号的检测,完成时间同步、平均多普勒同步,进行傅立叶变换(Fast Fourier Transform,FFT)计算,获得整个包内的第i个子载波第j个符号的幅度为y(i,j),其中,0≤i<NCarrier,0≤j<NCtrlSymb+NDataSymb。其仿真生成模型表示为
y(i,j)=|h(i)x(i,j)+w(i,j)|
其中h(i)为第i个子载波的幅频响应,为待估计量,w(i,j)为对应子载波处的加性噪声。根据接收到的携带有控制信息的载波幅度,首先对恒重码进行传统的平方率软判决检测,之后进行对偶K码的多进制Viterbi译码,获得译码后的控制信息序列
Figure BDA0002859038030000071
将译码得到的控制信息序列进行发送端相同的对偶K码和恒重码级联编码,获得控制信息中的第i个子载波第j个符号的幅度的发射幅度估计,即
Figure BDA0002859038030000072
其中0≤i<NCarrier,0≤j<NCtrlSymb
幅频响应估计的步骤及其基于深度神经网络的改善估计
根据控制信息的接收幅度序列及接收端恢复出的控制信息发射幅度估计,首先将接收到的发射幅度为0的子载波符号进行能量平均,获得噪声方差估计为
Figure BDA0002859038030000073
然后,对每个子载波,将接收到的发射幅度非0的子载波符号的能量进行平均,并减去噪声方差,得到第i个子载波的信道幅频响应估计为
Figure BDA0002859038030000074
通过深度神经网络(deep neural network,DNN)对幅频响应矢量进行调整,输入幅频响应矢量和输出幅频响应矢量分别记为
Figure BDA0002859038030000075
Figure BDA0002859038030000076
DNN内部包含两级隐藏层,隐藏层的激活函数选取ReLu函数,记为fReLu(·)。因而DNN的输出矢量可表示为:
Figure BDA0002859038030000077
其中{W0,b0,W1,b1,W2,b2}为各级加权矩阵和偏置矢量,通过Adam工具训练优化获得这些参数,优化时以均方误差作为性能损失函数。
基于幅频响应估计的ASK检测及turbo译码的步骤:
对携带数据信息的第i个子载波的第j个符号(0≤i<NCarrier,NCtrlSymb≤j≤NCtrlSymb+NDataSymb),其ASK幅度为
Figure BDA00028590380300000812
的后验概率正比于非中心化参数为
Figure BDA0002859038030000081
尺度参数
Figure BDA0002859038030000082
的莱斯分布概率密度,即
Figure BDA0002859038030000083
其中莱斯分布的概率密度函数为
Figure BDA0002859038030000084
并且I0(·)为0阶第一类修正贝塞尔函数。此ASK符号携带的第n个比特的对数似然比为
Figure BDA0002859038030000085
Figure BDA0002859038030000086
其中
Figure BDA0002859038030000087
为求ASK符号对应的整数m的第n位比特,求解过程为
Figure BDA0002859038030000088
Figure BDA0002859038030000089
为向下取整函数。将各ASK符号的各比特对数似然比经解交织后作为turbo译码器的输入,经过多次迭代及硬判决后,恢复数据信息比特流,即
Figure BDA00028590380300000810
完成传输过程。
本发明中所用到的典型参数及其取值如下所示:
Figure BDA00028590380300000811
Figure BDA0002859038030000091
根据以上参数,进行了多径信道下的性能仿真。信道多径采用独立不相关瑞利分布,多径扩展长度为0.625ms,并用于生成用于DNN训练的频率响应样本。图3给出了不同方法获得的频响对比。包括真实频响、利用控制信息的频点进行平均能量估计获得的幅频响应估计,及经过DNN调整后的幅频估计,可看出DNN调整之后更接近真实值。
数据信息的编码器采用1/3码率的turbo码,其分量码为生成多项式为[37,21]的递归***卷积码。图4给出了4阶ASK的不同检测方式下,不同译码迭代次数与误比特率(biterror rate,BER)的关系曲线。所用的信噪比为10dB。其中,传统方法中的无频响估计的瑞利分布ASK检测方式,增加迭代次数,BER不能改善,说明采用传统的非相干技术不能进行高阶调制的可靠传输。通过本发明提出的基于控制信息恒重码的频响估计之后,基于莱斯分布假设的高阶ASK检测变得可信。对于两种不同的频响估计方式,均可通过多次迭代BER得到改善。采用DNN调整频响估计后,***的BER更低。
基于相同的发明构思,本发明具体实施方式还提供了多载波非相干水声通信的频响估计及信号传输***及该***中的发射设备和接收设备。发送设备包括控制信息编码调制模块、数据信息编码调制模块和组包模块。接收设备包括同步、频点幅度及控制信息译码模块,幅频响应估计模块,幅频响应优化模块,基于幅频响应估计的ASK检测及turbo译码模块。这些模块及组成的相应设备完成上述本发明多载波非相干水声通信的频响估计及信号传输方法的相应功能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种多载波非相干水声通信的频响估计及信号传输方法,其特征在于,传输的每个数据包包括控制信息和数据信息,所述方法包括步骤:
发射端控制信息编码调制的步骤:
将表示控制信息的控制信息序列进行对偶K码和恒重码两级级联编码,恒重码编码后的码字再进行开关键控OOK调制,控制信息比特经编码调制后用于多载波传输;
发射端数据信息编码调制的步骤:
将表示数据信息的数据信息序列进行turbo码编码及交织,交织后的比特流进行多进制转换及幅移键控ASK调制,数据信息比特经编码调制后用于多载波传输;
发射端组包的步骤:
编码调制后的控制信息和数据信息通过逆傅立叶变换IFFT实现多载波并行传输,其中,同一恒重码码字经开关键控OOK调制后得到的信号由同一子载波传输,以保证子载波在整个控制信息传输中分配的能量相等;逆傅立叶变换IFFT之后的时域波形包括控制信息块和数据信息块;为提高抗多径能力,在逆傅立叶变换IFFT后的时域波形中***循环前缀,组帧并在每个帧前后的***同步信号,同步信号采用线性调频信号,每个同步信号的前后留有间隔,多个帧组成一个数据包,进而完成发射信号的生成;
接收端同步、频点幅度获取及控制信息译码的步骤:
接收端接收经水声信道传输而来的信号,通过对线性调频信号的检测,完成时间同步、平均多普勒补偿,得到载波幅度,载波幅度包括控制信息载波幅度和数据信息载波幅度两部分,之后进行傅立叶变换FFT并求模,得到控制信息载波幅度序列和数据信息载波幅度序列,然后对得到的控制信息载波幅度序列,先进行恒重码平方率软判决检测,之后进行对偶K码的多进制Viterbi译码,获得译码后的控制信息序列,然后将译码得到的控制信息序列进行发射端相同的对偶K码和恒重码级联编码,获得控制信息发射幅度估计序列;
幅频响应估计的步骤:
根据收到的控制信息载波幅度序列和恢复出的控制信息发射幅度估计序列,首先,将所有接收到的发射幅度为零的控制信息子载波符号进行能量平均,获得噪声方差估计,然后对接收到的同一子载波的发射幅度非零的控制信息子载波符号进行能量平均,并减去噪声方差估计,得到各个子载波的信道幅频响应估计,根据所有子载波的信道幅频响应估计得到幅频响应矢量;
基于幅频响应估计的ASK检测及turbo译码的步骤:
对数据信息载波幅度序列,基于信道幅频响应估计求得ASK符号携带的各个比特的对数似然比,将各ASK符号的各比特对数似然比经解交织后作为turbo译码器的输入,经过迭代及硬判决后,恢复数据信息序列,完成传输。
2.如权利要求1所述的方法,其特征在于,所述幅移键控ASK调制采用格雷码映射并进行平均能量归一化,根据ASK阶数采用相应的幅移键控ASK幅度调制映射表。
3.如权利要求1所述的方法,其特征在于,所述幅频响应估计的步骤中,在得到幅频响应矢量之后,通过深度神经网络DNN对幅频响应矢量进行优化调整。
4.如权利要求3所述的方法,其特征在于,深度神经网络DNN包含两级隐藏层,隐藏层的激活函数选取Relu函数,优化时以均方误差作为性能损失函数。
5.一种多载波非相干水声通信发送设备,其特征在于包括:
控制信息编码调制模块,该模块将表示控制信息的控制信息序列进行对偶K码和恒重码两级级联编码,恒重码编码后的码字再进行开关键控OOK调制,控制信息比特经编码调制后用于多载波传输;
数据信息编码调制模块,该模块将表示数据信息的数据信息序列进行turbo码编码及交织,交织后的比特流进行多进制转换及幅移键控ASK调制,数据信息比特经编码调制后用于多载波传输;
组包模块,该模块将编码调制后的控制信息和数据信息通过逆傅立叶变换IFFT实现多载波并行传输,其中,同一恒重码码字经开关键控OOK调制后得到的信号由同一子载波传输,以保证子载波在整个控制信息传输中分配的能量相等;逆傅立叶变换IFFT之后的时域波形包括控制信息块和数据信息块;为提高抗多径能力,在逆傅立叶变换IFFT后的时域波形中***循环前缀,组帧并在每个帧前后的***同步信号,同步信号采用线性调频信号,每个同步信号的前后留有间隔,多个帧组成一个数据包,进而完成发射信号的生成。
6.如权利要求5所述的发送设备,其特征在于,所述幅移键控ASK调制采用格雷码映射并进行平均能量归一化,根据ASK阶数采用相应的ASK幅度调制映射表。
7.一种多载波非相干水声通信接收设备,用于接收如权利要求5或6所述的发送设备生成的发射信号,其特征在于包括:
同步、频点幅度及控制信息译码模块,该模块接收经水声信道传输而来的信号,通过对线性调频信号的检测,完成时间同步、平均多普勒补偿,得到载波幅度,载波幅度包括控制信息载波幅度和数据信息载波幅度两部分,之后进行傅立叶变换FFT并求模,得到控制信息载波幅度序列和数据信息载波幅度序列,然后对得到的控制信息载波幅度序列,先进行恒重码平方率软判决检测,之后进行对偶K码的多进制Viterbi译码,获得译码后的控制信息序列,然后将译码得到的控制信息序列进行发射端相同的对偶K码和恒重码级联编码,获得控制信息发射幅度估计序列;
幅频响应估计模块,该模块首先,将所有接收到的发射幅度为零的控制信息子载波符号进行能量平均,获得噪声方差估计,然后对接收到的同一子载波的发射幅度非零的控制信息子载波符号进行能量平均,并减去噪声方差估计,得到各个子载波的信道幅频响应估计,根据所有子载波的信道幅频响应估计得到幅频响应矢量;
基于幅频响应估计的ASK检测及turbo译码模块,该模块对数据信息载波幅度序列,基于信道幅频响应估计求得ASK符号携带的各个比特的对数似然比,将各ASK符号的各比特对数似然比经解交织后作为turbo译码器的输入,经过迭代及硬判决后,恢复数据信息序列,完成传输。
8.如权利要求7所述的接收设备,其特征在于还包括幅频响应优化模块,该模块通过深度神经网络DNN对幅频响应估计模块得到幅频响应矢量进行优化调整。
9.如权利要求8所述的接收设备,其特征在于,深度神经网络DNN包含两级隐藏层,隐藏层的激活函数选取Relu函数,优化时以均方误差作为性能损失函数。
10.一种多载波非相干水声通信的频响估计及信号传输***,其特征在于包括发送设备和接收设备,其中,发送设备采用如权利要求5-6之一所述的发送设备,接收设备采用如权利要求7-9之一所述的接收设备。
CN202011559780.5A 2020-12-25 2020-12-25 多载波非相干水声通信的频响估计及信号传输方法、*** Active CN112737984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011559780.5A CN112737984B (zh) 2020-12-25 2020-12-25 多载波非相干水声通信的频响估计及信号传输方法、***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011559780.5A CN112737984B (zh) 2020-12-25 2020-12-25 多载波非相干水声通信的频响估计及信号传输方法、***

Publications (2)

Publication Number Publication Date
CN112737984A CN112737984A (zh) 2021-04-30
CN112737984B true CN112737984B (zh) 2022-04-29

Family

ID=75615959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011559780.5A Active CN112737984B (zh) 2020-12-25 2020-12-25 多载波非相干水声通信的频响估计及信号传输方法、***

Country Status (1)

Country Link
CN (1) CN112737984B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115883298A (zh) * 2022-11-11 2023-03-31 中国船舶重工集团公司第七一五研究所 一种基于Haar分布域编码分集的水声通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101015132A (zh) * 2004-06-17 2007-08-08 W5网络公司 伪噪声编码通信***
CN106788782A (zh) * 2016-12-06 2017-05-31 哈尔滨工程大学 水声通信网络ofdm链路物理层与mac层跨层通信方法
CN109743117A (zh) * 2019-01-28 2019-05-10 湖南人文科技学院 一种水声通信模块、方法及水下无线传感器网络节点装置
CN109964140A (zh) * 2016-11-03 2019-07-02 Uwinloc公司 估计无线电信号的到达时刻的方法和接收设备,用于定位的方法和***
CN111884758A (zh) * 2020-07-07 2020-11-03 中国人民解放军战略支援部队信息工程大学 波形设计方法及译码方法、装置、设备和光通信***
CN112042161A (zh) * 2018-01-26 2020-12-04 加州理工学院 通过在零点上调制数据来进行通信的***和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135516A2 (en) * 2010-04-30 2011-11-03 International Business Machines Corporation Method and device for perfectly incoherent sampling to a haar domain
CN106559144B (zh) * 2016-11-15 2020-01-31 哈尔滨工程大学 基于时间反转技术的ofdm-mfsk水声通信方法
CN109347777B (zh) * 2018-08-29 2020-04-24 中国科学院声学研究所 一种高频带利用率mt-mfsk水声通信方法
CN110445554B (zh) * 2019-07-10 2020-12-01 中国科学院声学研究所 一种基于实际信道衰落统计的非相干水声通信方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101015132A (zh) * 2004-06-17 2007-08-08 W5网络公司 伪噪声编码通信***
CN109964140A (zh) * 2016-11-03 2019-07-02 Uwinloc公司 估计无线电信号的到达时刻的方法和接收设备,用于定位的方法和***
CN106788782A (zh) * 2016-12-06 2017-05-31 哈尔滨工程大学 水声通信网络ofdm链路物理层与mac层跨层通信方法
CN112042161A (zh) * 2018-01-26 2020-12-04 加州理工学院 通过在零点上调制数据来进行通信的***和方法
CN109743117A (zh) * 2019-01-28 2019-05-10 湖南人文科技学院 一种水声通信模块、方法及水下无线传感器网络节点装置
CN111884758A (zh) * 2020-07-07 2020-11-03 中国人民解放军战略支援部队信息工程大学 波形设计方法及译码方法、装置、设备和光通信***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Yanbo Wu ; Min Zhu.Design and implementation of acoustic modem for shallow water network.《2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)》.2014, *
接近非相干水声通信信道容量的信号处理算法;武岩波等;《声学学报》;20150115;第40卷(第01期);第1-7页 *

Also Published As

Publication number Publication date
CN112737984A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
US7313189B2 (en) Receiver which demodulates OFDM symbol
RU2304352C2 (ru) Способ и устройство для определения логарифмического отношения правдоподобия с предварительным кодированием
US7068628B2 (en) MIMO OFDM system
US7359313B2 (en) Space-time bit-interleaved coded modulation for wideband transmission
CN106559144B (zh) 基于时间反转技术的ofdm-mfsk水声通信方法
KR100651446B1 (ko) 시공간 블록 부호화 기법을 사용하는직교주파수다중화방식의 이동통신시스템에서 채널 추정 및주기적 프리픽스 재생성 장치 및 방법
Zhang et al. Frequency-domain turbo equalization with soft successive interference cancellation for single carrier MIMO underwater acoustic communications
CN102571666B (zh) 基于mmse的水声ofdm判决迭代信道均衡方法
KR100712606B1 (ko) 채널 디코딩의 성능을 개선하기 위하여 가변적인 양자화스텝 사이즈를 결정하는 방법, 가변적인 양자화 스텝사이즈를 기초로 채널 디코딩을 수행하는 방법 및 장치
CN109274630B (zh) 抗频率选择性衰落的多载波信号矢量分集合并方法
CN112737984B (zh) 多载波非相干水声通信的频响估计及信号传输方法、***
JP2010004280A (ja) 軟判定値補正方法、及び受信装置
CN106487738A (zh) 一种基于正交导频序列的水声ofdm通信***选择性映射峰均比抑制算法
CN112910808B (zh) 一种短保护间隔的多载波浅海水声通信方法
CN101150555A (zh) 编码方法与装置和解码方法与装置
CN103188176A (zh) 正交频分复用***中降低单频或窄带干扰影响的方法
CN115883298A (zh) 一种基于Haar分布域编码分集的水声通信方法
CN1667987B (zh) 自适应通信方法和装置
CN1705301A (zh) Ofdm***的信道均衡方法
Linton et al. Multiuser communications for underwater acoustic networks using MIMO-OFDM-IDMA
Sharma et al. Performance analysis of UFMC for 5G technologies with different channel coding techniques
CN116094893B (zh) 一种基于***率码的海洋浮标ofdm机会通信方法
Kan et al. Design of underwater acoustic communication system based on OFDM
Linton et al. Multiple-access communications for underwater acoustic sensor networks using OFDM-IDMA
CN109600333B (zh) 一种可以减少循环前缀的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant