CN112736134A - 碳化硅pnpn晶闸管注入型igbt器件 - Google Patents

碳化硅pnpn晶闸管注入型igbt器件 Download PDF

Info

Publication number
CN112736134A
CN112736134A CN202011145236.6A CN202011145236A CN112736134A CN 112736134 A CN112736134 A CN 112736134A CN 202011145236 A CN202011145236 A CN 202011145236A CN 112736134 A CN112736134 A CN 112736134A
Authority
CN
China
Prior art keywords
type
layer
collector
region
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011145236.6A
Other languages
English (en)
Inventor
蒋梦轩
潘惠龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202011145236.6A priority Critical patent/CN112736134A/zh
Publication of CN112736134A publication Critical patent/CN112736134A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

本发明所述碳化硅PNPN晶闸管注入型IGBT器件及其制备方法,在N型掺杂电场截止层与P+型集电层之间设有P型浮置层和N型层,形成的PNP集电极结构作为少数载流子源,向N‑型掺杂漂移区提供空穴,N型掺杂电场截止层、P型浮置层和N型层组成寄生NPN晶体管,且PNP集电极结构和寄生NPN晶体管形成了PNPN晶闸管结构,进而通过增加或降低P型浮置层的掺杂浓度来增加或降低电导调制效应,从而加速开关时间和降低开关损耗,且在透明P型集电极掺杂设计中,显著降低了其与集电极金属之间欧姆接触的制造难度。

Description

碳化硅PNPN晶闸管注入型IGBT器件
技术领域
本发明涉及高压大功率电力半导体器件技术领域,特别涉及一种碳化硅PNPN晶闸管注入型IGBT器件及其制备方法。
背景技术
IGBT(绝缘栅双极型晶体管)是国际上公认的电力电子技术第三次革命的最具代表性的产品,是目前电力电子技术领域中最具有优势的功率器件之一。IGBT能够提供高工作电压,低开关功耗,简单的门极电压控制,良好的开关可控性和安全工作区以及简单的短路保护措施等优点,因而广泛的应用于高频中小容量的电力电子***。典型的IGBT集成了双极性晶体管(Bipolar Junction Transistor,简称BJT)和金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,简称MOSFET)的电导调制效应和场控开关的优势,但是其中的BJT组成部分的分流作用引起IGBT的电导调制效应大为减弱,从而导致其电流密度和饱和压降仍然远逊于晶闸管和IGCT。
绝缘栅双极晶体管IGBT在高压大电流功率转换***中仍具有巨大的潜力。在最近几年,很多研究者对创新型IGBT结构和功率半导体器件进行研究。高桥等人设计了一种电荷存储型IGBT(charge storage IGBT,简称CS-IGBT),在p型基区底下设计n型区作为空穴阻挡层,以提高载流子浓度和降低饱和压降。Sumitomo等人通过挑战沟槽制造工艺,试验了部分窄台面IGBT(PNM-IGBT)。发明人之前也公开了一种发射极肖特基势垒IGBT,在上n型漂移区积累空穴、并降低饱和压降。这些设计均为在IGBT的顶部增加空穴浓度,然后降低饱和压降和开关损耗。此外,J.K.O Sin探索了一种横向肖特基注入场效应晶体管(SINFET),该晶体管具有n型漂移区/集电极区肖特基接触,可以提高集电极区的空穴浓度[9],但是会导致开关时间延长的和开关损耗增加。
发明内容
本发明针对现有技术中存在的缺陷或不足,提供碳化硅PNPN晶闸管注入型IGBT器件及其制备方法,其中PNPN晶闸管注入型IGBT器件(Thyristor Injection-InsulatedGate Bipolar Transistor,简称TI-IGBT),在集电极增加一个浮置P型层和一个N型层作为寄生N-P-N晶体管,通过浮置P型层和N型电场截止层(FS)之间的电位差降低空穴注入效率,同时降低集电极附近的空穴注入效率,显著减小开关时间,从而降低开关损耗。
本发明技术方案如下:
一种碳化硅PNPN晶闸管注入型IGBT器件,包括P型基区、多晶硅栅极区以及与所述P型基区的下表面接触的N-型掺杂漂移区,其特征在于,还包括设于N-型掺杂漂移区下方的N型掺杂电场截止层、P+型集电层、与所述P型基区的上表面接触的N+型掺杂源区、与所述P+型集电层的下表面接触的集电极金属层以及与所述P型基区和N+型掺杂源区的上表面均接触的发射极金属区;
所述多晶硅栅极区与所述N-型掺杂漂移区、所述P型基区、所述N+型掺杂源区和所述发射极金属区之间具有栅极氧化层。
所述N型掺杂电场截止层与所述P+型集电层之间还设有P型浮置层和N型层,所述P型浮置层的上表面与所述N型掺杂电场截止层的下表面相接触、上表面与所述N型层的上表面相接触,所述N型层的下表面与所述P+型集电层的上表面相接触;所述P型浮置层、所述N型层和所述P+型集电层组成PNP集电极结构,所述PNP集电极结构作为少数载流子源,向N-型掺杂漂移区提供空穴;所述N型掺杂电场截止层、所述P型浮置层和所述N型层组成寄生NPN晶体管,所述寄生NPN晶体管可以通过增加或降低P型浮置层的掺杂浓度来增加或降低电导调制效应;所述PNP集电极结构和所述寄生NPN晶体管形成PNPN晶闸管结构。
作为优选,所述P型浮置层的掺杂浓度较低,所述P型浮置层与所述N型掺杂电场截止层之间的电位差较低,所述寄生NPN晶体管抑制空穴注入,进而电导调制效应得到弱化。
作为优选,所述P型浮置层中掺杂浓度较高,所述P型浮置层与所述N型掺杂电场截止层之间的电位差较高,所述寄生NPN晶体管与寄生PNP晶体管互锁,增大空穴注入,进而电导调制效应急剧增加。
作为优选,所述栅极氧化层为氧化硅层。
作为优选,所述IGBT器件的半导体材料为宽禁带半导体碳化硅材料。
作为优选,所述多晶硅栅极区的结构为沟槽型和/或平面型。
作为优选,所述发射极金属区和所述集电极金属区的材料为铝或铜或钛镍银或硅化物。
作为优选,所述发射极金属区和所述集电极金属区的材料为合金。
一种上述碳化硅PNPN晶闸管注入型IGBT器件的制备方法,除了现有技术的IGBT器件制备方法外,增加由离子注入工艺或外延工艺制造而成的所述P型浮置层与所述N型层。
本发明相对于现有技术优势在于:
1、本发明所述的碳化硅PNPN晶闸管注入型IGBT器件及其制备方法,增加的N型层位于P+型集电层上方,而P型浮置层位于N型掺杂电场截止层之下和增加的N型层之上,在芯片背面形成的PNP集电极结构作为少数载流子源,向N-型掺杂漂移区提供空穴,并由N型掺杂电场截止层、所述P型浮置层和所述N型层组成寄生NPN晶体管,调节空穴注入效率,且所述PNP集电极结构和所述寄生NPN晶体管形成了PNPN晶闸管结构,可以通过增加或降低P型浮置层的掺杂浓度来增加或降低电导调制效应。
2、当P型浮置层中掺杂浓度较低时,P型浮置层与N型掺杂电场截止层(FS层)之间的电势差较小,寄生NPN晶体管抑制空穴注入,从而弱化电导调制效应。当P型浮置层中掺杂浓度较高时,P型浮置层与FS层之间的电位差较高,寄生NPN晶体管与寄生PNP晶体管互锁,增大空穴注入,急剧增加电导调制效应。
3、本发明所述的碳化硅PNPN晶闸管注入型IGBT器件其PNPN背面结构可显著降低碳化硅的饱和压降与损耗,大大削弱碳化硅材料寿命小对芯片的不利影响,从而有利于双极型功率半导体的产业化与广泛应用。
附图说明
图1本发明碳化硅PNPN晶闸管注入型IGBT器件的二维剖面元胞结构示意图;
图2是本发明碳化硅PNPN晶闸管注入型IGBT器件的等效电路图;
图3是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例的击穿特性对比图,其横坐标为集电极电压(V),纵坐标为集电极电流I(mA/cm2);
图4是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在15V的栅极电压下的正向导通特性对比图,其横坐标为集电极电压(V),纵坐标为集电极电流I(mA/cm2);
图5是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在正向电流为150A/cm2时,沿切割线AA'的空穴浓度分布对比图,其横坐标为P+型集电层到N-型掺杂漂移区的距离(μm),纵坐标为空穴浓度Hole(mA/cm2);
图6是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在集电极电流为150A/cm2的情况下,沿切割线AA'的quasi-Fermi potential分布对比图,其横坐标为从N-型掺杂漂移区到集电极金属层的距离(μm),纵坐标为quasi-Fermipotential,P(V);
图7是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在1.7v的集电极电压下的传输特性对比图,其横坐标为栅极电压(V),纵坐标为集电极电流I(mA/cm2);
图8是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在正向电流为150A/cm2,母线电压为600V,栅极电阻为5欧姆,杂散电感为10nH时的感应开关波形对比图,其横坐标为关断时间(μs),左侧纵坐标为集电极电流I(mA/cm2),右侧纵坐标为集电极电压U(V);
图9是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在正向电流为150A/cm2,母线电压为600V,杂散电阻为0.01欧姆、栅极电阻为5欧姆、杂散电感为10nH时的不同载流子寿命的开关损耗,其横坐标为栅极电压(V),纵坐标为关断损耗Eoff(mJ/cm2);
图10是本发明碳化硅PNPN晶闸管注入型IGBT器件实施例1-3与FS-IGBT对比例,在母线电压为600V,杂散电感为10nH,杂散电阻为0.01欧姆,热阻为100℃/cm2·kW时的理想动态短路特性对比图,其横坐标为短路时间(μs),左侧纵坐标为集电极电流I(mA/cm2),右侧纵坐标为集电极电压U(V)和温度T(K)。
附图标记列示如下:1—发射极金属区,2—N+型掺杂源区,3—多晶硅栅极区,4—P型基区,5—栅极氧化层,6—N-型掺杂漂移区,7—N型掺杂电场截止层,8—P型浮置层,9—N型层,10—P+型集电层,11—集电极金属层,12—PNPN空穴注入,13—NPN电子提取,AA’—载流子或空穴的分布情况,G—栅极,C—集电极,E—发射极。
具体实施方式
为了便于理解本发明,下面结合附图1-10和具体实施例,对本发明进行更详细的说明。
FS-IGBT中透明的p-集电极设计可以降低集电极侧的空穴浓度,但P+型集电层(掺杂浓度为5×1016cm-3)与集电极金属之间很难形成良好的欧姆接触。基于空穴注入控制和制造难度的考虑,设计本发明PNPN晶闸管注入型IGBT,通过改变P型浮置层的掺杂浓度来降低底部的空穴浓度,从而加速开关时间和降低开关损耗。
碳化硅PNPN晶闸管注入型IGBT器件,其二维剖面元胞结构如图1所示,包括发射极金属区1、N+型掺杂源区2、多晶硅栅极区3、P型基区4以及与所述P型基区4的下表面接触的N-型掺杂漂移区6,还包括设于N-型掺杂漂移区6下方的N型掺杂电场截止层7、P+型集电层10和集电极金属层11,所述N+型掺杂源区与所述P型基区的上表面接触,所述集电极金属层11与所述P+型集电层10的下表面接触,所述发射极金属区1与所述P型基区4和N+型掺杂源区2的上表面均接触;所述多晶硅栅极区3与所述N-型掺杂漂移区6、所述P型基区4、所述N+型掺杂源区2和所述发射极金属区1之间具有栅极氧化层5,所述栅极氧化层5为氧化硅层。
所述N型掺杂电场截止层7与所述P+型集电层10之间还设有P型浮置层8和N型层9,所述P型浮置层8的上表面与所述N型掺杂电场截止层7的下表面相接触、上表面与所述N型层9的上表面相接触,所述N型层9的下表面与所述P+型集电层10的上表面相接触;所述P型浮置层8、所述N型层9和所述P+型集电层10组成PNP集电极结构,所述PNP集电极结构作为少数载流子源,向N-型掺杂漂移区6提供空穴;所述N型掺杂电场截止层7、所述P型浮置层8和所述N型层9组成寄生NPN晶体管,所述寄生NPN晶体管可以通过增加或降低P型浮置层8的掺杂浓度来增加或降低电导调制效应;所述PNP集电极结构和所述寄生NPN晶体管形成PNPN晶闸管结构。图1中虚线AA'表示载流子或空穴的浓度及quasi-Fermi potential分布情况。
在通态条件下,由于P型浮置层8中的掺杂浓度较低,P型浮置层8与FS层7之间的电位差很小,因此寄生NPN晶体管抑制空穴注入,进而弱化电导调制效应。P型浮置层8与FS层7之间的电位差随着P型浮置层8中掺杂浓度的降低而减小,进而降低寄生NPN晶体管的导电水平和PNP集电极结构的空穴注入效率,具体见图4的正向导通特性对比图。在闭态模式下,PNP集电极结构比传统的FS-IGBT产生更小的共基极电流增益,因此其击穿电压略有上升。与传统的FS-IGBT相比,PNPN晶闸管结构在TI-IGBT的集电极侧建立了空穴注入通道和空穴阻挡层以降低载流子浓度。且P型浮置层8和N型层9的结构和厚度等可以进一步优化。作为优选,所述IGBT器件的半导体材料为宽禁带半导体碳化硅材料。作为优选,所述多晶硅栅极区的结构为沟槽型和/或平面型。作为优选,所述发射极金属区和所述集电极金属区的材料为铝或铜或钛镍银或硅化物。作为优选,所述发射极金属区和所述集电极金属区的材料为合金。作为优选,所述P型浮置层与所述N型层由离子注入工艺或外延工艺制造而成。
实施例1
一种碳化硅PNPN晶闸管注入型IGBT器件6e17 TI-IGBT,其P型浮置层8掺杂浓度为6×1017cm-3,元胞间距为4μm,N-型掺杂漂移区6的厚度为100μm,栅极氧化层5厚度为50nm,通道长度为2μm,沟道深度为6μm,沟道宽度为1μm,N-型掺杂漂移区6的掺杂浓度为5×1013cm-3,P型基区4的掺杂浓度为5×1017cm-3,N型掺杂电场截止(FS)层7的掺杂浓度为5×1016cm-3,P型浮置层8的深度为0.5μm,P+型集电层10的掺杂浓度为3×1017cm-3,载流子寿命0.4μs。
实施例2
一种碳化硅PNPN晶闸管注入型IGBT器件1e17 TI-IGBT,其P型浮置层8掺杂浓度为1×1017cm-3,元胞间距为4μm,N-型掺杂漂移区6的厚度为100μm,栅极氧化层5厚度为50nm,通道长度为2μm,沟道深度为6μm,沟道宽度为1μm,N-型掺杂漂移区6的掺杂浓度为5×1013cm-3,P型基区4的掺杂浓度为5×1017cm-3,N型掺杂电场截止(FS)层7的掺杂浓度为5×1016cm-3,P型浮置层8的深度为0.5μm,P+型集电层10的掺杂浓度为3×1017cm-3,载流子寿命0.4μs。
实施例3
一种碳化硅PNPN晶闸管注入型IGBT器件1e16 TI-IGBT,其P型浮置层8掺杂浓度为1×1016cm-3,元胞间距为4μm,N-型掺杂漂移区6的厚度为100μm,栅极氧化层5厚度为50nm,通道长度为2μm,沟道深度为6μm,沟道宽度为1μm,N-型掺杂漂移区6的掺杂浓度为5×1013cm-3,P型基区4的掺杂浓度为5×1017cm-3,N型掺杂电场截止(FS)层7的掺杂浓度为5×1016cm-3,P型浮置层8的深度为0.5μm,P+型集电层10的掺杂浓度为3×1017cm-3,载流子寿命0.4μs。
对比例
一种FS-IGBT器件,与本发明所述碳化硅PNPN晶闸管注入型IGBT器件的区别在于,不含有P型浮置层和N型层,其元胞间距为4μm,N-型掺杂漂移区6的厚度为100μm,栅极氧化层5厚度为50nm,通道长度为2μm,沟道深度为6μm,沟道宽度为1μm,N-型掺杂漂移区6的掺杂浓度为5×1013cm-3,P型基区4的掺杂浓度为5×1017cm-3,N型掺杂电场截止(FS)层7的掺杂浓度为5×1016cm-3,P型浮置层8的深度为0.5μm,P+型集电层10的掺杂浓度为3×1017cm-3,载流子寿命0.4μs。
对实施例1-3和对比例进行了TCAD仿真与对比研究。
击穿特性
所述PNP集电极结构和寄生NPN晶体管以darlington结构连接,形成正反馈结构,其等效电路模型如图2所示。在漏电流为1mA/cm2的条件下,实施例1-3的模拟击穿电压分别为1312V、1301V和1277V,对比例FS-IGBT的击穿电压为1266v。由于共基极电流增益随着P型浮置层8掺杂浓度的降低而降低,本发明实施例1-3所示的TI-IGBT显示出更高的击穿电压和更低的漏电流,其对比如图3所示。
B、由于从PNP集电极结构注入的空穴在导通模式下受到寄生NPN晶体管的导电水平的限制,在本发明实施例1-3的TI-IGBT中,通过改变P型浮置层8与N型掺杂电场截止层(FS层)7之间的电位差,可以调节其电导调制效应。在集电极电压为1.70V时,本发明实施例1-3的TI-IGBT正向传导电流分别为117A/cm2、139A/cm22和211A/cm2,具体如图4所示,通过对比可知,FS-IGBT的正向传导电流为150A/cm2。本发明实施例1-3的TI-IGBT和FS-IGBT的饱和压降分别为1.78V、1.72V、1.59V和1.70V,正向传导电流的减小或饱和压降的增加归因于本发明的TI-IGBT通过减小的电位差而使电导率调制效应弱化,同时使降低了图5中集电极侧附近的空穴浓度。图6中的quasi-Fermi potential分布也通过P型浮置层8与N型掺杂电场截止层(FS层)7之间的电位差证实了这种退化效应。而且PNP集电极结构引入了空穴注入和空穴阻挡的双重效应,但是其短路电流并没有得到改善,因为在短路条件下,空穴注入效率与FS-IGBT几乎相同,如图10所示,这与CS-IGBT、PNM-IGBT、HIGT、IEGT中随着发射极侧空穴浓度的提高而使短路电流增加的特性不同。
表1实施例1-3与对比例的关键参数表
参数 实施例1 实施例2 实施例3 对比例
元胞间距(μm) 4 4 4 4
N-型掺杂漂移区厚度(μm) 100 100 100 100
栅极氧化层厚度(μm) 50 50 50 50
通道长度(μm) 2 2 2 2
沟道深度(μm) 6 6 6 6
沟道宽度(μm) 1 1 1 1
N-型掺杂漂移区掺杂浓度(cm<sup>-3</sup>) 5×10<sup>13</sup> 5×10<sup>13</sup> 5×10<sup>13</sup> 5×10<sup>13</sup>
P型基区掺杂浓度(cm<sup>-3</sup>) 5×10<sup>17</sup> 5×10<sup>17</sup> 5×10<sup>17</sup> 5×10<sup>17</sup>
N型掺杂电场截止层掺杂浓度(cm<sup>-3</sup>) 3×10<sup>16</sup> 3×10<sup>16</sup> 3×10<sup>16</sup> 3×10<sup>16</sup>
P型浮置层掺杂浓度(cm<sup>-3</sup>) 6×10<sup>17</sup> 1×10<sup>17</sup> 1×10<sup>16</sup> -
P型浮置层的深度(μm) 0.5 0.5 0.5 -
P+型集电层掺杂浓度(cm<sup>-3</sup>) 3×10<sup>17</sup> 3×10<sup>17</sup> 3×10<sup>17</sup> 3×10<sup>17</sup>
载流子寿命(μm) 0.4 0.4 0.4 0.4
C、传输特性
如表1所示,由于沟道样式和P型基区4掺杂浓度的参数相同,如所示,在集电极电流为10mA/cm2时,本发明实施例1-3的TI-IGBT和FS-IGBT的阈值电压模拟为5.2V,见图7。这是因为对应的P型浮置层8掺杂的TI-IGBT和FS-IGBT的栅极结构完全相同。
D、开关特性
图8所示为正向传导电流为150A/cm2时的感性负载条件下的开关波形对比图。相应的本发明实施例1-3的TI-IGBT的关断时间分别为42ns、54ns、82ns,FS-IGBT的关断时间为52ns。由于寄生NPN晶体管中的P型浮置层8与N型掺杂电场截止层(FS层)7之间的电位差较低,降低PNP集电极结构的空穴注入效率,因此TI-IGBT的关断下降时间减少。计算结果表明,在1×1016cm-3的P型浮置层掺杂浓度下,TI-IGBT比FS-IGBT的关断下降时间减少了24%。然而,如图8所示,较短的关断下降时间可引起轻微振荡,因此,TI-IGBT的P型浮置层8掺杂浓度也可进一步优化以应用于高功率和高开关频率的情况。
E、关断损耗特性
图9显示了载流子寿命为0.2μs、0.4μs、1μs、2μs、4μs的关断损耗特性。由于关断时间较短,采用较低P型浮置层8掺杂浓度的TI-IGBT可以获得更好的关断损耗。与FS-IGBT相比,在1×1016cm-3的P型浮置层8掺杂浓度下,TI-IGBT的关断损耗降低了10%。可以推断,降低P型浮置层8掺杂浓度可以降低TI-IGBT的关断损耗。
F、短路特性
图10所示为杂散电感为10nH,杂散电阻为0.01ohm,热阻为100℃/cm2·kW时的短路特性。在25℃的环境温度下,TI-IGBT和FS-IGBT在短路后约4μs发生故障。由于P型浮置层8和FS层7之间的电位差减小,降低了寄生NPN晶体管的导电水平和空穴注入效率,这种新型的PNP集电极结构几乎不破坏原有IGBT的散热特性和短路特性。必须指出的是,在模拟中验证其内部故障机理使用的是上述参数的理想短路电流。
综上,本发明所述碳化硅PNPN晶闸管注入型IGBT器件,采用PNP集电极注入空穴,用寄生NPN晶体管限制空穴注入效率。TCAD数值模拟结果表明,与传统的FS-IGBT相比,本发明碳化硅PNPN晶闸管注入型IGBT器件在1×1016cm-3的P型浮置层8掺杂浓度下具有几乎相同的击穿电压和阈值电压,但是开关下降时间比传统的FS-IGBT降低了24%,开关损耗比传统的FS-IGBT降低了10%,且在透明P型集电极掺杂设计中,显著降低了其与集电极金属之间欧姆接触的制造难度。
在此指明,以上叙述有助于本领域技术人员理解本发明创造,但并非限制本发明创造的保护范围。任何没有脱离本发明创造实质内容的对以上叙述的等同替换、修饰改进和/或删繁从简而进行的实施,均落入本发明创造的保护范围。

Claims (9)

1.碳化硅PNPN晶闸管注入型IGBT器件,包括P型基区、多晶硅栅极区以及与所述P型基区的下表面接触的N-型掺杂漂移区,其特征在于,还包括设于N-型掺杂漂移区下方的N型掺杂电场截止层、P+型集电层、与所述P型基区的上表面接触的N+型掺杂源区、与所述P+型集电层的下表面接触的集电极金属层以及与所述P型基区和N+型掺杂源区的上表面均接触的发射极金属区;
所述多晶硅栅极区与所述N-型掺杂漂移区、所述P型基区、所述N+型掺杂源区和所述发射极金属区之间具有栅极氧化层,
所述N型掺杂电场截止层与所述P+型集电层之间还设有P型浮置层和N型层,所述P型浮置层的上表面与所述N型掺杂电场截止层的下表面相接触、上表面与所述N型层的上表面相接触,所述N型层的下表面与所述P+型集电层的上表面相接触;所述P型浮置层、所述N型层和所述P+型集电层组成PNP集电极结构,所述PNP集电极结构作为少数载流子源,向N-型掺杂漂移区提供空穴;所述N型掺杂电场截止层、所述P型浮置层和所述N型层组成寄生NPN晶体管,所述寄生NPN晶体管可以通过增加或降低P型浮置层的掺杂浓度来增加或降低电导调制效应;所述PNP集电极结构和所述寄生NPN晶体管形成PNPN晶闸管结构。
2.根据权利要求1所述碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述P型浮置层的掺杂浓度较低,所述P型浮置层与所述N型掺杂电场截止层之间的电位差较低,所述寄生NPN晶体管抑制空穴注入,进而电导调制效应得到弱化。
3.根据权利要求1所述碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述P型浮置层中掺杂浓度较高,所述P型浮置层与所述N型掺杂电场截止层之间的电位差较高,所述寄生NPN晶体管与寄生PNP晶体管互锁,增大空穴注入,进而电导调制效应急剧增加。
4.根据权利要求1-3之一所述碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述栅极氧化层为氧化硅层。
5.根据权利要求1-3之一所述碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述IGBT器件的半导体材料为宽禁带半导体碳化硅材料。
6.根据权利要求1-3之一所述碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述多晶硅栅极区的结构为沟槽型和/或平面型。
7.根据权利要求1-3之一所述碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述发射极金属区和所述集电极金属区的材料为铝或铜或钛镍银或硅化物。
8.根据权利要求1-3之一碳化硅PNPN晶闸管注入型IGBT器件,其特征在于,所述发射极金属区和所述集电极金属区的材料为合金。
9.一种权利要求1-8之一所述碳化硅PNPN晶闸管注入型IGBT器件的制备方法,其特征在于,所述P型浮置层与所述N型层由离子注入工艺或外延工艺制造而成。
CN202011145236.6A 2020-10-23 2020-10-23 碳化硅pnpn晶闸管注入型igbt器件 Pending CN112736134A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011145236.6A CN112736134A (zh) 2020-10-23 2020-10-23 碳化硅pnpn晶闸管注入型igbt器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011145236.6A CN112736134A (zh) 2020-10-23 2020-10-23 碳化硅pnpn晶闸管注入型igbt器件

Publications (1)

Publication Number Publication Date
CN112736134A true CN112736134A (zh) 2021-04-30

Family

ID=75597313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011145236.6A Pending CN112736134A (zh) 2020-10-23 2020-10-23 碳化硅pnpn晶闸管注入型igbt器件

Country Status (1)

Country Link
CN (1) CN112736134A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964197A (zh) * 2021-10-28 2022-01-21 湖南大学 一种低泄漏电流的igbt器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026428A (ja) * 2003-07-01 2005-01-27 Fuji Electric Holdings Co Ltd 半導体素子の製造方法
US20080006856A1 (en) * 2006-06-22 2008-01-10 Fuji Electric Device Technology Co., Ltd Semiconductor device with back surface electrode including a stress relaxation film
CN109643728A (zh) * 2016-08-19 2019-04-16 罗姆股份有限公司 半导体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026428A (ja) * 2003-07-01 2005-01-27 Fuji Electric Holdings Co Ltd 半導体素子の製造方法
US20080006856A1 (en) * 2006-06-22 2008-01-10 Fuji Electric Device Technology Co., Ltd Semiconductor device with back surface electrode including a stress relaxation film
CN109643728A (zh) * 2016-08-19 2019-04-16 罗姆股份有限公司 半导体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENGXUAN JIANG: "Numerical Study of a Thyristor Injection Insulated Gate Bipolar Transistor (TI-IGBT) Using P-N-P Collector", 《JOURNAL OF THE ELECTRON DEVICE SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964197A (zh) * 2021-10-28 2022-01-21 湖南大学 一种低泄漏电流的igbt器件及其制备方法
CN113964197B (zh) * 2021-10-28 2023-06-02 湖南大学 一种低泄漏电流的igbt器件及其制备方法

Similar Documents

Publication Publication Date Title
US7932583B2 (en) Reduced free-charge carrier lifetime device
CN110797403B (zh) 一种rc-igbt半导体装置
US8564097B2 (en) Reverse conducting IGBT
JP3968912B2 (ja) ダイオード
CN109427869B (zh) 一种半导体器件
JP2012142537A (ja) 絶縁ゲート型バイポーラトランジスタとその製造方法
JP6139312B2 (ja) 半導体装置
US20150129930A1 (en) Insulating gate-type bipolar transistor
CN109888007B (zh) 具有二极管钳位载流子存储层的soi ligbt器件
CN111834449B (zh) 一种具有背面双mos结构的快速关断rc-igbt器件
CN109166917B (zh) 一种平面型绝缘栅双极晶体管及其制备方法
US9263560B2 (en) Power semiconductor device having reduced gate-collector capacitance
CN108493242B (zh) 一种优化体内电场的载流子增强型igbt器件
CN110137250B (zh) 一种具有超低导通压降的高速igbt器件
CN115832039A (zh) 一种逆导型igbt器件
CN109065608B (zh) 一种横向双极型功率半导体器件及其制备方法
CN107516670B (zh) 一种具有高电流上升率的栅控晶闸管
US8222671B2 (en) Power semiconductor devices
CN110504305B (zh) 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件
CN112736134A (zh) 碳化硅pnpn晶闸管注入型igbt器件
CN109686787B (zh) 一种利用二极管钳位的具有载流子存储层的igbt器件
CN107564959B (zh) 一种mos栅控晶闸管及其制作方法
US20150187922A1 (en) Power semiconductor device
CN113054012B (zh) 绝缘栅双极晶体管及其制造方法
JP3885616B2 (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210430