CN112719285B - Sacrificial template agent coated nano-gold particles and preparation method thereof - Google Patents

Sacrificial template agent coated nano-gold particles and preparation method thereof Download PDF

Info

Publication number
CN112719285B
CN112719285B CN202011502912.0A CN202011502912A CN112719285B CN 112719285 B CN112719285 B CN 112719285B CN 202011502912 A CN202011502912 A CN 202011502912A CN 112719285 B CN112719285 B CN 112719285B
Authority
CN
China
Prior art keywords
parts
sacrificial template
gold
stirring
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011502912.0A
Other languages
Chinese (zh)
Other versions
CN112719285A (en
Inventor
唐诗洋
张玥
丁会敏
杨光
赵娴
王志成
张宇
陆海玲
张帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy and Environment Research Institute of Heilongjiang Province
Original Assignee
Energy and Environment Research Institute of Heilongjiang Province
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy and Environment Research Institute of Heilongjiang Province filed Critical Energy and Environment Research Institute of Heilongjiang Province
Priority to CN202011502912.0A priority Critical patent/CN112719285B/en
Publication of CN112719285A publication Critical patent/CN112719285A/en
Application granted granted Critical
Publication of CN112719285B publication Critical patent/CN112719285B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

A sacrificial template agent coated nano gold particle and a preparation method thereof belong to the technical field of preparation of gold nano particle catalysts. The technical problems to be solved by the invention are particle uniformity, dispersibility and size reduction of particle size. The invention is mainly prepared from 2.6-18.2 parts of chloroauric acid, 21.5-27.5 parts of sodium citrate, 38.7-42.6 parts of F127, 13.4-17.3 parts of P123 and 8.2-10 parts of urea. According to the invention, polyoxyethylene polyoxypropylene and polyethylene oxide-polypropylene oxide-polyethylene oxide high-molecular block copolymer are added as a template agent for wrapping gold particles, and when chloroauric acid is reduced, a large amount of H is enriched on the surfaces of the gold nanoparticles + The high-molecular block copolymer is adsorbed and wrapped on the surfaces of the gold particles to form micelles, so that the agglomeration among the particles is prevented, and good dispersibility is obtained.

Description

Sacrificial template agent coated nano-gold particles and preparation method thereof
Technical Field
The invention belongs to the technical field of gold nanoparticle catalyst preparation; in particular to a sacrificial template agent coated nano-gold particle and a preparation method thereof.
Background
The use of gold in catalysis has long been very limited because gold in bulk form (bulk gold) has essentially no catalytic activity. At the end of the last century, m.haruta found that gold, when reduced in particle size to the nanometer size range (3-5 nm), exhibited better catalytic activity and high catalytic selectivity. Gold nanoparticles have extremely high surface free energy and tend to spontaneously aggregate and fuse under reaction conditions. Usually it is supported on a carrier, such as activated carbon, polymer, molecular sieve or other oxide surface, and the nanogold catalyst is first applied to the selective oxidation of hydrocarbons. And Y.A. Kalvachev and the like firstly load gold nanoparticles in the Ti-MCM-41 pore channel and apply the gold nanoparticles to the epoxidation reaction of propylene. An initial conversion of 2% and a selectivity to propylene oxide of greater than 95% was obtained at 100 c. However, the catalytic activity may decrease with time due to agglomeration of gold nanoparticles or sintering under reaction conditions. Although the gold nanoparticle catalyst has excellent catalytic performance, because of the small particle size, the gold nanoparticle catalyst needs to be loaded on a carrier when in use, and how to better load the gold nanoparticle catalyst on the carrier so that the gold nanoparticle catalyst is not easy to fall off in the reaction process, and meanwhile, under the reaction condition, the gold nanoparticle catalyst is ensured not to agglomerate or fuse, so that the problem which needs to be faced is solved. C.Y.Mou designs and synthesizes a catalyst with a Yolk-Shell structure, which takes nano-gold particles as a core and silicon oxide as a Shell, and is used for discussing CO oxidation reaction, but the prepared core-Shell structure has uneven particle size and poor dispersibility. The carbon-coated gold nanoparticles synthesized by the Liningning et al have poor morphology regularity and weak catalytic performance. Luis M et al adopts self-assembly method to prepare Au @ SiO 2 The material has long preparation period, complex operation and large particle size. Therefore, the application of the carbon-coated gold nanoparticles with the core-shell structure in catalysis, adsorption, electrochemistry, sensors and the like is limited due to the problems of agglomeration or size morphology and the like of the carbon-coated gold nanoparticles with the core-shell structure.
Disclosure of Invention
The invention aims to provide sacrificial template agent coated nano gold particles with uniform micro morphology and good dispersibility and a preparation method thereof.
The invention is realized by the following technical scheme:
the sacrificial template agent coated nano-gold particles are mainly prepared from 2.6-18.2 parts by weight of chloroauric acid, 21.5-27.5 parts by weight of sodium citrate, 38.7-42.6 parts by weight of F127, 13.4-17.3 parts by weight of P123 and 8.2-10 parts by weight of urea.
The sacrificial template agent coated nano-gold particle is prepared from 2.6 parts of chloroauric acid, 27.5 parts of sodium citrate, 42.6 parts of F127, 17.3 parts of P123 and 10 parts of urea.
The sacrificial template agent coated nano-gold particle is prepared from 18.2 parts of chloroauric acid, 21.5 parts of sodium citrate, 38.7 parts of F127, 13.4 parts of P123 and 8.2 parts of urea.
The sacrificial template agent coated nano-gold particle is prepared from 10.8 parts of chloroauric acid, 23.2 parts of sodium citrate, 40.8 parts of F127, 16.1 parts of P123 and 9.1 parts of urea.
The preparation method of the sacrificial template agent coated nano gold particles comprises the following steps:
step 1, weighing chloroauric acid and sodium citrate according to parts by weight, dissolving the chloroauric acid and the sodium citrate into purified water with a certain volume according to a material-liquid ratio, and stirring the mixture uniformly to obtain a first mixed solution for later use;
step 2, weighing urea according to parts by weight, preparing a urea solution, adding the prepared urea solution into the first mixed solution prepared in the step 1, and uniformly stirring to obtain a second mixed solution for later use;
step 3, weighing F127 and P123 according to parts by weight, and dissolving the materials and the solution in purified water with a certain volume according to the material-to-solution ratio to obtain a mixed solution of the F127 and the P123 for later use;
and 4, slowly dropwise adding the mixed solution of F127 and P123 obtained in the step 3 into the second mixed solution prepared in the step 2, reacting for a certain time under the stirring condition, centrifugally collecting the obtained product, washing the obtained solid phase to be neutral, drying, and calcining in a muffle furnace to obtain the sacrificial template agent coated nano-gold particles.
According to the preparation method of the sacrificial template agent coated nano gold particles, the material-liquid ratio of a mixture of chloroauric acid and sodium citrate to purified water in the step 1 is 1.2-1.5, the stirring condition in the step 1 is 20-30 ℃, the stirring time is 20-60 min, and the stirring speed is 50-200 r/min.
According to the preparation method of the sacrificial template agent coated nano gold particles, the concentration of the urea solution in the step 2 is 10-12 wt%, the stirring condition in the step 2 is that the urea solution is stirred for 10-20 min at the temperature of 50-60 ℃, and the stirring speed is 50-200 r/min.
According to the preparation method of the sacrificial template agent coated nano gold particles, the material-liquid ratio of the mixture of F127 and P123 to purified water in step 3 is 4-6.
According to the preparation method of the sacrificial template agent coated nano gold particles, stirring conditions in step 4 are that stirring is carried out for 2-4 hours at 75-85 ℃, the stirring speed is 50-200 r/min, and the muffle furnace calcination conditions are that calcination is carried out for 2-3 hours at 500-600 ℃.
The preparation method of the sacrificial template agent coated nano gold particles comprises the steps of washing 3-5 times with purified water in step 4 until the particles are neutral, drying with an oven at the drying temperature of 60-80 ℃ for 1-2 h.
According to the preparation method of the sacrificial template agent coated nano gold particles, the F127 (polyoxyethylene polyoxypropylene) and P123 (polyethylene oxide-polypropylene oxide-polyethylene oxide) high-molecular block copolymer is added to serve as the template agent for coating the gold particles, and when chloroauric acid is reduced, a large amount of H is enriched on the surfaces of the gold particles + The high molecular block copolymer is adsorbed and coated on the surface of the gold particleMicelles are formed, agglomeration among the particles is prevented, and good dispersibility is obtained.
The preparation method of the sacrificial template agent coated nano gold particles comprises the steps of adding urea serving as a catalyst (also serving as a precipitator), adopting a uniform precipitation method, keeping the urea unchanged at room temperature, mixing a urea solution and a nano gold particle solution, slowly dropwise adding a mixed solution of F127 (polyoxyethylene polyoxypropylene) and P123 (polyethylene oxide-polypropylene oxide-polyethylene oxide) at 50-60 ℃ under stirring, and when the temperature reaches about 75-85 ℃, starting to perform slow hydrolysis reaction on the urea to generate ammonia water and carbon dioxide, wherein the ammonia water is rapidly decomposed into OH - Uniformly distributed in the solution, and an alkaline environment is provided, so that the high-molecular block copolymer starts to wrap the nano-gold particles to form crystal nuclei. Urea and OH - The existence in the reaction solution is in an equilibrium state, so the reaction rate of the gold particles wrapped by the high-molecular block copolymer is very slow, the nucleation rate of crystal nuclei is greater than the growth rate of the crystal nuclei, and the high-quality sacrificial template agent (high-molecular block copolymer mixture) wrapped gold nanoparticles with small size and uniform particle size can be obtained, and the particle size is about 50nm.
Drawings
FIG. 1 is an SEM photograph of gold nanoparticles encapsulated by a sacrificial templating agent, as described in one embodiment;
FIG. 2 is an XRD plot of one of the sacrificial templating agent-coated gold nanoparticles prepared according to one embodiment;
FIG. 3 is an SEM photograph of gold nanoparticles encapsulated by a sacrificial templating agent as described in the second embodiment;
FIG. 4 is a TEM image of a sacrificial templating agent coated gold nanoparticle prepared according to the second embodiment;
FIG. 5 is an SEM photograph of gold nanoparticles encapsulated by a sacrificial templating agent, as prepared by the third process embodiment;
fig. 6 is an XRD profile of said gold nanoparticles encapsulated with sacrificial templating agent prepared according to the third embodiment.
Detailed Description
The first embodiment is as follows:
a preparation method of nano gold particles wrapped by sacrificial template comprises the following steps:
step 1, weighing chloroauric acid and sodium citrate according to parts by weight, dissolving the chloroauric acid and the sodium citrate into purified water with a certain volume according to a material-liquid ratio, and stirring uniformly to obtain a first mixed solution for later use;
step 2, weighing urea according to parts by weight, preparing a urea solution, adding the prepared urea solution into the first mixed solution prepared in the step 1, and uniformly stirring to obtain a second mixed solution for later use;
step 3, weighing F127 and P123 according to parts by weight, and dissolving the materials and the solution in purified water with a certain volume according to the material-to-solution ratio to obtain a mixed solution of the F127 and the P123 for later use;
and 4, slowly dropwise adding the mixed solution of F127 and P123 obtained in the step 3 into the second mixed solution prepared in the step 2, reacting for a certain time under the condition of stirring, centrifugally collecting the obtained product, washing the solid phase to be neutral, drying, and calcining in a muffle furnace to obtain the sacrificial template agent coated nano-gold particles.
In the preparation method of the sacrificial template-coated gold nanoparticle according to the embodiment, the sacrificial template-coated gold nanoparticle is mainly prepared from chloroauric acid, sodium citrate, F127, P123 and urea, and the sacrificial template-coated gold nanoparticle is prepared from 2.6 parts of chloroauric acid, 27.5 parts of sodium citrate, 42.6 parts of F127, 17.3 parts of P123 and 10 parts of urea.
According to the preparation method of the sacrificial template agent coated nano gold particles, in the step 1, the material-liquid ratio of the mixture of chloroauric acid and sodium citrate to purified water is 1.2 100g/ml, the stirring condition in the step 1 is 30 ℃ and 30min, and the stirring speed is 100r/min.
In the preparation method of the sacrificial template agent coated gold nanoparticles according to the embodiment, the concentration of the urea solution in the step 2 is 10wt%, the stirring condition in the step 2 is stirring at 55 ℃ for 15min, and the stirring speed is 100r/min.
In the preparation method of the gold nanoparticles wrapped by the sacrificial template agent according to the embodiment, the material-to-liquid ratio of the mixture of F127 and P123 to purified water in step 3 is 4.
In the preparation method of the sacrificial template coated gold nanoparticles, in the step 4, stirring is performed at 80 ℃ for 2 hours, the stirring speed is 100r/min, and the muffle furnace calcination is performed at 500 ℃ for 2 hours.
In the preparation method of the sacrificial template agent coated gold nanoparticles, in step 4, purified water is used for washing for 5 times until the particles are neutral, and the particles are dried by an oven at a drying temperature of 80 ℃ for 2 hours.
An SEM photograph of the gold nanoparticles coated with the sacrificial template prepared by the method for preparing gold nanoparticles coated with the sacrificial template according to the present embodiment is shown in fig. 1, and it can be seen from fig. 1 that the prepared particles have uniform size, good dispersibility, and a particle size of about 25 nm.
An XRD curve of the sacrificial template-coated gold nanoparticle prepared by the method for preparing a sacrificial template-coated gold nanoparticle according to the present embodiment is shown in fig. 2, and it can be seen from fig. 2 that diffraction peaks appear at 2 θ =37.5 °, 44.5 °, 64.5 °, and 78 °, no overlap phenomenon and no impurity peak appear, which indicates that the obtained product is the sacrificial template-coated gold nanoparticle.
In the preparation method of the sacrificial template agent coated gold nanoparticles, urea is added as a catalyst (also as a precipitator), a uniform precipitation method is adopted, the urea is unchanged at room temperature, the urea solution and the gold nanoparticles solution are mixed, then a mixed solution of F127 (polyoxyethylene polyoxypropylene) and P123 (polyethylene oxide-polypropylene oxide-polyethylene oxide) is slowly added dropwise under stirring at 50-60 ℃, when the temperature reaches about 75-85 ℃, the urea starts to perform slow hydrolysis reaction to generate ammonia water and carbon dioxide, and the ammonia water is rapidly decomposed into OH - Uniformly distributed in the solution, and an alkaline environment is provided, so that the high-molecular block copolymer starts to wrap the nano gold particles to form crystal nuclei. Urea and OH - In a reaction solutionThe reaction rate of the gold particles coated by the high-molecular block copolymer is very slow, the nucleation rate of crystal nuclei is greater than the growth rate of the crystal nuclei, and the high-quality sacrificial template agent (high-molecular block copolymer mixture) coated gold nanoparticles with small size and uniform granularity can be obtained, wherein the particle size is about 50nm.
The second embodiment is as follows:
a preparation method of nano gold particles wrapped by sacrificial template comprises the following steps:
step 1, weighing chloroauric acid and sodium citrate according to parts by weight, dissolving the chloroauric acid and the sodium citrate into purified water with a certain volume according to a material-liquid ratio, and stirring uniformly to obtain a first mixed solution for later use;
step 2, weighing urea according to parts by weight, preparing a urea solution, adding the prepared urea solution into the first mixed solution prepared in the step 1, and uniformly stirring to obtain a second mixed solution for later use;
step 3, weighing F127 and P123 according to parts by weight, and then dissolving the materials and the solution in purified water with a certain volume according to the material-to-solution ratio to obtain a mixed solution of the F127 and the P123 for later use;
and 4, slowly dropwise adding the mixed solution of F127 and P123 obtained in the step 3 into the second mixed solution prepared in the step 2, reacting for a certain time under the stirring condition, centrifugally collecting the obtained product, washing the obtained solid phase to be neutral, drying, and calcining in a muffle furnace to obtain the sacrificial template agent coated nano-gold particles.
In the preparation method of the sacrificial template-coated gold nanoparticle according to the embodiment, the sacrificial template-coated gold nanoparticle is prepared from 18.2 parts of chloroauric acid, 21.5 parts of sodium citrate, 38.7 parts of F127, 13.4 parts of P123 and 8.2 parts of urea.
In the preparation method of the sacrificial template agent-coated gold nanoparticles according to the embodiment, the material-liquid ratio of the mixture of chloroauric acid and sodium citrate to purified water in step 1 is 1.5 100g/ml, the stirring condition in step 1 is stirring at 20 ℃ for 40min, and the stirring speed is 60r/min.
In the preparation method of the sacrificial template agent coated gold nanoparticles according to the embodiment, the concentration of the urea solution in the step 2 is 12wt%, the stirring condition in the step 2 is stirring at 50 ℃ for 20min, and the stirring speed is 60r/min.
In the preparation method of the gold nanoparticles coated with the sacrificial template, in step 3, the material-to-liquid ratio of the mixture of F127 and P123 to purified water is 6.
In the preparation method of the sacrificial template agent coated nano gold particles, in the step 4, stirring is performed for 3 hours at 80 ℃, the stirring speed is 50r/min, and the muffle furnace calcination is performed for 2.5 hours at 500 ℃.
In the preparation method of the sacrificial template agent coated gold nanoparticles, in step 4, purified water is used for washing for 3 times until the particles are neutral, and the particles are dried by an oven at 75 ℃ for 2 hours.
An SEM photograph of the gold nanoparticles coated with the sacrificial templating agent, which is prepared by the method for preparing gold nanoparticles coated with the sacrificial templating agent according to the embodiment, is shown in fig. 3, and it can be seen from fig. 3 that the prepared particles have uniform size and good dispersibility.
A TEM photograph of the gold nanoparticle coated with the sacrificial template prepared by the method for preparing a gold nanoparticle coated with the sacrificial template according to the embodiment is shown in fig. 4, and it can be seen from fig. 4 that the prepared gold nanoparticle coated with the sacrificial template has a regular spherical shape, good dispersibility, uniform coating, and a particle size of about 50nm.
In the preparation method of the sacrificial template-coated gold nanoparticle according to this embodiment, a polymer block copolymer of F127 (polyoxyethylene polyoxypropylene) and P123 (polyethylene oxide-polypropylene oxide-polyethylene oxide) is added as a template agent for coating the gold nanoparticle, and when chloroauric acid is reduced, a large amount of H is enriched on the surface of the gold nanoparticle + The high-molecular block copolymer is adsorbed and wrapped on the surfaces of the gold particles to form micelles, so that the agglomeration among the particles is prevented, and good dispersibility is obtained.
The third concrete implementation mode:
a preparation method of gold nanoparticles wrapped by a sacrificial template agent comprises the following steps:
step 1, weighing chloroauric acid and sodium citrate according to parts by weight, dissolving the chloroauric acid and the sodium citrate into purified water with a certain volume according to a material-liquid ratio, and stirring the mixture uniformly to obtain a first mixed solution for later use;
step 2, weighing urea according to parts by weight, preparing a urea solution, adding the prepared urea solution into the first mixed solution prepared in the step 1, and uniformly stirring to obtain a second mixed solution for later use;
step 3, weighing F127 and P123 according to parts by weight, and then dissolving the materials and the solution in purified water with a certain volume according to the material-to-solution ratio to obtain a mixed solution of the F127 and the P123 for later use;
and 4, slowly dropwise adding the mixed solution of F127 and P123 obtained in the step 3 into the second mixed solution prepared in the step 2, reacting for a certain time under the stirring condition, centrifugally collecting the obtained product, washing the obtained solid phase to be neutral, drying, and calcining in a muffle furnace to obtain the sacrificial template agent coated nano-gold particles.
In the preparation method of the sacrificial template-coated gold nanoparticle according to the embodiment, the sacrificial template-coated gold nanoparticle is prepared from 10.8 parts of chloroauric acid, 23.2 parts of sodium citrate, 40.8 parts of F127, 16.1 parts of P123 and 9.1 parts of urea.
In the preparation method of the sacrificial template agent-coated gold nanoparticles according to the embodiment, the material-liquid ratio of the mixture of chloroauric acid and sodium citrate to purified water in step 1 is 1.3 100g/ml, the stirring condition in step 1 is stirring at 30 ℃ for 20min, and the stirring speed is 100r/min.
In the preparation method of the sacrificial template agent coated gold nanoparticles according to the embodiment, the concentration of the urea solution in step 2 is 11wt%, the stirring condition in step 2 is stirring at 55 ℃ for 15min, and the stirring speed is 100r/min.
In the preparation method of the gold nanoparticles coated with the sacrificial template, in step 3, the material-to-liquid ratio of the mixture of F127 and P123 to purified water is 5.
In the preparation method of the sacrificial template agent coated gold nanoparticles, in the step 4, stirring is performed for 4 hours at 80 ℃, the stirring speed is 100r/min, and the calcining is performed for 3 hours at 600 ℃ in a muffle furnace.
In the preparation method of the sacrificial template agent coated gold nanoparticles, in step 4, purified water is used for washing for 4 times until the particles are neutral, and the particles are dried by an oven at 70 ℃ for 2 hours.
An SEM photograph of the gold nanoparticles coated with the sacrificial template prepared by the method for preparing gold nanoparticles coated with the sacrificial template according to the present embodiment is shown in fig. 5, and it can be seen from fig. 5 that the prepared particles have uniform morphology, high dispersion degree, and small particle size, and the particle size is about 50nm.
An XRD curve of the sacrificial template-coated gold nanoparticle prepared by the method for preparing a sacrificial template-coated gold nanoparticle according to this embodiment is shown in fig. 6, and it can be seen from an XRD characterization chart that diffraction peaks appear at 2 θ =37.5 °, 44.5 °, 64.5 °, and 78 °, no overlap phenomenon occurs and no impurity peak appears, indicating that the obtained product is a sacrificial template-coated gold nanoparticle.

Claims (2)

1. A preparation method of nano-gold particles coated by a sacrificial template agent is characterized by comprising the following steps: the method comprises the following steps:
step 1, weighing chloroauric acid and sodium citrate according to parts by weight, dissolving the chloroauric acid and the sodium citrate into purified water with a certain volume according to a material-liquid ratio, and stirring uniformly to obtain a first mixed solution for later use;
step 2, weighing urea according to parts by weight, preparing a urea solution, adding the prepared urea solution into the first mixed solution prepared in the step 1, and uniformly stirring to obtain a second mixed solution for later use;
step 3, weighing F127 and P123 according to parts by weight, and then dissolving the materials and the solution in purified water with a certain volume according to the material-to-solution ratio to obtain a mixed solution of the F127 and the P123 for later use;
step 4, slowly dropwise adding the mixed solution of F127 and P123 obtained in the step 3 into the second mixed solution prepared in the step 2, reacting for a certain time under the condition of stirring, centrifugally collecting the obtained product, washing the solid phase to be neutral, drying, and calcining in a muffle furnace to obtain the sacrificial template agent coated nano-gold particles;
the sacrificial template agent coated nano gold particles are mainly prepared from 2.6-18.2 parts by weight of chloroauric acid, 21.5-27.5 parts by weight of sodium citrate, 38.7-42.6 parts by weight of F127, 13.4-17.3 parts by weight of P123 and 8.2-10 parts by weight of urea;
in the step 1, the material-liquid ratio of the mixture of the chloroauric acid and the sodium citrate to the purified water is 1.2-1.5, the stirring condition in the step 1 is that the mixture is stirred for 20-60 min at the temperature of 20-30 ℃, and the stirring speed is 50-200 r/min;
the concentration of the urea solution in the step 2 is 10-12 wt%, the stirring condition in the step 2 is that the urea solution is stirred for 10-20 min at 50-60 ℃, and the stirring speed is 50-200 r/min;
in the step 3, the material-liquid ratio of the mixture of F127 and P123 to the purified water is 4-6;
in the step 4, the stirring condition is that the mixture is stirred for 2 to 4 hours at the temperature of between 75 and 85 ℃, the stirring speed is between 50 and 200r/min, and the muffle furnace calcining condition is that the mixture is calcined for 2 to 3 hours at the temperature of between 500 and 600 ℃.
2. The method for preparing the gold nanoparticles wrapped with the sacrificial template according to claim 1, wherein the method comprises the following steps: and 4, washing the mixture for 3 to 5 times by using purified water until the mixture is neutral, and drying the mixture by using an oven at the drying temperature of between 60 and 80 ℃ for 1 to 2 hours.
CN202011502912.0A 2020-12-18 2020-12-18 Sacrificial template agent coated nano-gold particles and preparation method thereof Active CN112719285B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011502912.0A CN112719285B (en) 2020-12-18 2020-12-18 Sacrificial template agent coated nano-gold particles and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011502912.0A CN112719285B (en) 2020-12-18 2020-12-18 Sacrificial template agent coated nano-gold particles and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112719285A CN112719285A (en) 2021-04-30
CN112719285B true CN112719285B (en) 2022-12-13

Family

ID=75602991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011502912.0A Active CN112719285B (en) 2020-12-18 2020-12-18 Sacrificial template agent coated nano-gold particles and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112719285B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160130B (en) * 2021-12-21 2024-03-19 黑龙江省能源环境研究院 Ordered porous monolithic catalyst of limited-domain nano-gold and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026665A (en) * 2009-07-27 2011-02-10 National Institute For Materials Science Metal nanoparticle having dendritic portion and method for producing the same
CN102806357A (en) * 2011-06-02 2012-12-05 中国科学院过程工程研究所 Preparation method of high-stability nano-gold particles
CN103285828A (en) * 2013-05-17 2013-09-11 武汉理工大学 Preparation method of magnesium oxide adsorbent capable of absorbing azo dyes and being recycled and regenerated
CN103658672A (en) * 2012-09-11 2014-03-26 中国科学院大连化学物理研究所 Aqueous phase preparation method for metal nanoparticles
CN109676153A (en) * 2019-01-28 2019-04-26 武汉科技大学 A kind of method that can prepare simultaneously porous gold nano grain Yu hexagon gold-nano-piece
CN110614124A (en) * 2018-12-20 2019-12-27 南京工程学院 Nano-gold catalyst with multi-stage structure and preparation method thereof
CN110842214A (en) * 2019-12-18 2020-02-28 中国科学院青岛生物能源与过程研究所 Preparation method of gold nanorods
CN112138696A (en) * 2020-08-22 2020-12-29 上海师范大学 Preparation method of transition metal loaded nitrogen modified ordered mesoporous carbon nanospheres

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805303B1 (en) * 2006-10-27 2008-02-20 한국기계연구원 Porous ceramic materials with various pore configuration and preparation thereof
CN106345462A (en) * 2016-08-23 2017-01-25 上海师范大学 Mesoporous carbon nano-sphere loaded gold catalyst as well as synthesis method and application thereof
CN106824183B (en) * 2016-12-28 2019-10-25 苏州大学 The hollow mesoporous Nano carbon balls composite material and preparation method of load gold nano particle and the application in lasting processing CO

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026665A (en) * 2009-07-27 2011-02-10 National Institute For Materials Science Metal nanoparticle having dendritic portion and method for producing the same
CN102806357A (en) * 2011-06-02 2012-12-05 中国科学院过程工程研究所 Preparation method of high-stability nano-gold particles
CN103658672A (en) * 2012-09-11 2014-03-26 中国科学院大连化学物理研究所 Aqueous phase preparation method for metal nanoparticles
CN103285828A (en) * 2013-05-17 2013-09-11 武汉理工大学 Preparation method of magnesium oxide adsorbent capable of absorbing azo dyes and being recycled and regenerated
CN110614124A (en) * 2018-12-20 2019-12-27 南京工程学院 Nano-gold catalyst with multi-stage structure and preparation method thereof
CN109676153A (en) * 2019-01-28 2019-04-26 武汉科技大学 A kind of method that can prepare simultaneously porous gold nano grain Yu hexagon gold-nano-piece
CN110842214A (en) * 2019-12-18 2020-02-28 中国科学院青岛生物能源与过程研究所 Preparation method of gold nanorods
CN112138696A (en) * 2020-08-22 2020-12-29 上海师范大学 Preparation method of transition metal loaded nitrogen modified ordered mesoporous carbon nanospheres

Also Published As

Publication number Publication date
CN112719285A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP4654428B2 (en) Highly dispersed silica nano hollow particles and method for producing the same
CN108855095B (en) Methane reforming multi-core-shell hollow catalyst nickel-nickel silicate-SiO2Preparation method of (1)
CN112719285B (en) Sacrificial template agent coated nano-gold particles and preparation method thereof
CN108525669A (en) A kind of high degree of dispersion Silica Nanotube supported nickel catalyst and preparation method thereof
CN108906058B (en) Non-noble metal catalyst and preparation method thereof
CN109926060B (en) Core-shell structure nano copper-cerium composite oxide catalyst, preparation method and application
CN109092326B (en) Core-shell nickel tungstate microsphere supported palladium catalyst and preparation method and application thereof
CN103896284B (en) A kind of monodisperse silica nano particle and preparation method thereof
CN113559916A (en) Molecular sieve encapsulated noble metal catalyst and preparation method and application thereof
CN108452816B (en) Small-particle-size metal phosphide nanoparticle/reduced graphene composite material and preparation method thereof
CN112023977A (en) Y-type molecular sieve packaged platinum group noble metal nanoparticle catalyst and preparation method thereof
CN110842212A (en) Superfine Pd tetrahedral nano material and preparation method and application thereof
CN113731484B (en) Pd-based hierarchical pore mesoporous-microporous TS-1 molecular sieve monocrystal catalyst and preparation method thereof
CN113198518B (en) Epitaxial grain molecular sieve packaged sub-nano metal catalyst, and preparation method and application thereof
CN108187739B (en) Raisin bread type gold-silicon dioxide nano catalyst and preparation and application thereof
CN114260027A (en) Method for preparing metal oxide @ metal organic framework core-shell material
CN112295515B (en) Preparation method of zinc oxide/cerium oxide hollow microspheres with inverted blueberry-shaped structures
CN106693962A (en) Method for preparing dual-precious-metal nanometer catalyst
CN102746715B (en) Silica with surface subjected to polymerization modification, and preparation method thereof
CN106669754B (en) Catalyst of cupric and preparation method thereof
CN112846213B (en) Preparation method of low-oxygen high-dispersion nano spherical cobalt powder
CN108927152B (en) Method for synthesizing spherical core-shell structure carbon-coated gold nanoparticles by one-step method
CN111013668B (en) Nano platinum catalyst with multilevel structure and one-step preparation method thereof
CN104495848B (en) A kind of preparation method of monodisperse spherical zirconium carbide superfine powder
CN112876807A (en) Fe2O3Preparation method of Ag/phenolic resin sandwich structure nano disc

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant