CN112713011B - Method for preparing super capacitor with double-conducting network - Google Patents

Method for preparing super capacitor with double-conducting network Download PDF

Info

Publication number
CN112713011B
CN112713011B CN202011536112.0A CN202011536112A CN112713011B CN 112713011 B CN112713011 B CN 112713011B CN 202011536112 A CN202011536112 A CN 202011536112A CN 112713011 B CN112713011 B CN 112713011B
Authority
CN
China
Prior art keywords
gly
solution
double
electrolyte
pyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011536112.0A
Other languages
Chinese (zh)
Other versions
CN112713011A (en
Inventor
辛青
褚肖杰
臧月
林君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202011536112.0A priority Critical patent/CN112713011B/en
Publication of CN112713011A publication Critical patent/CN112713011A/en
Application granted granted Critical
Publication of CN112713011B publication Critical patent/CN112713011B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The invention discloses a method for preparing a super capacitor with a double-conducting network2SO4-Mo electricityDecomposing, and preparing Gly-Na2SO4-a Mo/Gly-Mo-PPy dual conductivity network supercapacitor; the invention relates to Gly-Na with double conductive networks and the electrolyte and the electrode having the same matrix2SO4-Mo/Gly-Mo-PPy Flexible supercapacitor, Gly-Na2SO4-Mo is an electrolyte, Gly-Mo-PPy is an electrode material grown on the electrolyte. Hydrophilic Gly and polypyrrole are embedded in the electrode to form an ion conductive network together with electrolyte; mo and PPy form an electronic conductive network in the electrode, and the performance of the supercapacitor is remarkably improved due to the effect of the double conductive network. Gly-Mo exists in the electrolyte and the electrode, so that the conductivity and the performance of the super capacitor are improved.

Description

Method for preparing super capacitor with double-conducting network
Technical Field
The invention belongs to the field of energy storage of new materials of super capacitors, and particularly relates to a method for preparing a super capacitor with a double-conducting network.
Background
With the rapid development of wearable and portable electronic devices, their reliability and security have also become a concern. The gel polymer electrolyte has the advantages of no leakage, safety, flexibility, high ionic conductivity and the like, so that the gel polymer electrolyte is widely applied, and the flexible super capacitor is developed on the basis. Efficient charging and discharging of supercapacitors depends on the diffusion of electrolyte ions in the material. The separate design of the electrolyte and the electrode in the traditional super capacitor influences the transmission impedance, the energy density and the like of the super capacitor. In addition, the different resistances of the electrode material and the electrolyte material, as well as the lower ionic and electronic conductivity between the electrolyte and the electrodes, also affect the performance of the supercapacitor. Therefore, the super capacitor with the double-conductive network and the electrolyte and the electrode having the same matrix can effectively improve the performance of the super capacitor. Glycerol (Gly) has mechanical elasticity, no toxicity and environmental friendliness, and has been widely used in many fields.
Disclosure of Invention
Aiming at the problems of improving the ionic conductivity, the energy density and the like of a super capacitor, the invention prepares the Gly-Na with a double-conductive network2SO4-Mo/Gly-Mo-PPy super capacitor.
A method for preparing a super capacitor with a double-conducting network comprises the following steps:
the method comprises the following steps: Gly-Na2SO4Preparation of-Mo electrolyte
(1) Na is added2SO4Added to glycerol Gly, Na2SO4And Gly in a mass ratio of 0.11-0.28: 1, stirring for 3 hours at the temperature of 60 ℃, and obtaining uniform and transparent Gly-Na after full dissolution2SO4And (3) mixing.
(2) After standing and cooling, the mixture is placed in Gly-Na2SO4Adding ammonium molybdate into the mixture, stirring for 3 hours at the temperature of 80 ℃, cooling to obtain a jelly-shaped solution, wherein the mass percent of Mo to Gly is 5-17%, and drying in vacuum to obtain Gly-Na2SO4-a Mo solid-state electrolyte.
Step two: Gly-Na2SO4Integrated preparation of-Mo/Gly-Mo-PPy double-conducting-network supercapacitor
(1) And doping ammonium molybdate into the Gly, wherein the mass percent of Mo and the Gly is 5-17%, stirring for 3 hours at the temperature of 80 ℃, and cooling to obtain a Gly-Mo solution.
(2) Dissolving pyrrole Py monomer in 0.5mol/L H2SO4In the presence of a catalyst to form a solution A, pyrrole and H2SO4In a molar ratio of 0.8 to 1: 1. reacting Gly-Na2SO4-Mo solid electrolyte is put into the A solution.
(3) Dissolving ammonium persulfate in 0.5mol/L H2SO4Wherein the molar ratio of ammonium persulfate to pyrrole in the solution A is 1: 1, H2SO4The molar ratio of the pyrrole to the pyrrole in the solution A is 1: 0.8-1. And pouring a Gly-Mo solution into the solution to obtain a solution B, wherein the mass ratio of ammonium persulfate to the Gly-Mo solution is 1: 6-9.
(4) Pouring the solution B into a container containing Gly-Na2SO4Polymerizing for 10 hours in the solution A of the-Mo solid electrolyte at the temperature of 0-8 ℃, and drying to obtain the solution A with the double-conductive network Gly-Na2SO4-Mo/Gly-Mo-PPy flexible supercapacitor.
Preferably, the Gly-Na2SO4-Mo solid electrolyte is put into the A solutionGly-Na2SO4The volume ratio of the-Mo solid electrolyte to the A solution is 1: 3-5.
Preferably, the Na is2SO4And Gly in a mass ratio of 0.11: 1.
preferably, the molar ratio of ammonium persulfate to pyrrole is 1: 1
Aiming at the effects of the prior art, the invention comprises the following steps: Gly-Na having a double conductive network and having the same matrix as the electrolyte and the electrodes2SO4-Mo/Gly-Mo-PPy flexible supercapacitor, wherein Gly-Na2SO4-Mo is an electrolyte, Gly-Mo-PPy is an electrode material grown on the electrolyte. Hydrophilic Gly and polypyrrole (PPy) are embedded in the electrode to form an ionic conduction network together with electrolyte; mo and PPy form an electronic conductive network in the electrode, and the performance of the supercapacitor is remarkably improved due to the effect of the double conductive network. In addition, as Gly-Mo exists in the electrolyte and the electrode of the capacitor, the conductivity is effectively improved, and the performance of the super capacitor is further improved.
Detailed Description
For a better understanding of the present invention, reference will now be made to the following examples which are set forth to illustrate, but are not to be construed to limit the present invention.
The first embodiment is as follows: mixing Na2SO4Added to Gly, Na2SO4And Gly in a mass ratio of 0.11: 1, stirring for 3 hours at the temperature of 60 ℃, and obtaining uniform and transparent Gly-Na after full dissolution2SO4And (3) mixing. After standing and cooling, the reaction product is placed in Gly-Na2SO4Ammonium molybdate was added, wherein Mo: Gly (wt.%) was 5%, and then stirred for 3 hours at a temperature of 80 ℃ with an exhaust fan, and cooled to obtain a jelly-like solution. Vacuum drying to remove free water to obtain Gly-Na2SO4-a Mo electrolyte.
Ammonium molybdate was added to 10ml Gly, where Mo: Gly (wt.%) was 5%, followed by stirring for 3 hours at 80 ℃ with a suction fan and cooling to give a Gly-Mo solution. Pyrrole monomer was dissolved in 0.5mol/L H2SO4Forming a solution A, wherein the molar ratio of the solution A to the solution A is 0.8: 1. mixing Gly-Na2SO4-Mo electrolyte is put into the A solution. Ammonium persulfate was dissolved in 0.5mol/L of H2SO4Wherein the molar ratio of ammonium persulfate to pyrrole is 1: 1, H2SO4The molar ratio to pyrrole is 1: 0.8. and pouring a Gly-Mo solution into the solution to form a solution B, wherein the mass ratio of ammonium persulfate to the Gly-Mo solution is 1: 6. pouring the solution B into a container containing Gly-Na2SO4Polymerization was carried out at 8 ℃ for 10 hours in the solution A of the-Mo electrolyte. Then taking out the mixture and drying the mixture to obtain the product with the specific capacitance of 360mF/cm2Integrated Gly-Na with double-conducting network2SO4-Mo/Gly-Mo-PPy flexible supercapacitor.
The second embodiment is as follows: mixing Na2SO4Added to Gly, Na2SO4And Gly in a mass ratio of 0.2: 1, stirring for 3 hours at the temperature of 60 ℃, and obtaining uniform and transparent Gly-Na after full dissolution2SO4And (3) mixing. After standing and cooling, the reaction product is placed in Gly-Na2SO4Ammonium molybdate was added, wherein Mo: Gly (wt.%) was 10%, and then stirred for 3 hours at a temperature of 80 ℃ with an exhaust fan, and cooled to obtain a jelly-like solution. Vacuum drying to remove free water to obtain Gly-Na2SO4-a Mo electrolyte.
Ammonium molybdate was added to 10ml Gly, where Mo: Gly (wt.%) was 10%, followed by stirring for 3 hours at 80 ℃ with a suction fan and cooling to give a Gly-Mo solution. Pyrrole monomer was dissolved in 0.5mol/L H2SO4The molar ratio of the solution A to the solution A is 0.9: 1. reacting Gly-Na2SO4-Mo electrolyte is put into the A solution. Ammonium persulfate was dissolved in 0.5mol/L of H2SO4Wherein the molar ratio of ammonium persulfate to pyrrole is 1: 1, H2SO4The molar ratio to pyrrole is 1: 0.9. and pouring a Gly-Mo solution into the solution to form a solution B, wherein the mass ratio of ammonium persulfate to the Gly-Mo solution is 1: 7.5. pouring the solution B into a container containing Gly-Na2SO4Polymerization was carried out at 4 ℃ for 10 hours in the solution A of the-Mo electrolyte. Then taking out and drying to obtain the product with specific capacitance of 490mF/cm2Has twoIntegrated Gly-Na of conductive network2SO4-Mo/Gly-Mo-PPy flexible supercapacitor.
The third concrete implementation mode: mixing Na2SO4Added to Gly, Na2SO4And Gly in a mass ratio of 0.28: 1, stirring for 3 hours at the temperature of 60 ℃, and obtaining uniform and transparent Gly-Na after full dissolution2SO4And (3) mixing. After standing and cooling, the reaction product is placed in Gly-Na2SO4Ammonium molybdate was added, wherein Mo: Gly (wt.%) was 17%, and then stirred for 3 hours at a temperature of 80 ℃ with an exhaust fan, and cooled to obtain a jelly-like solution. Vacuum drying to remove free water to obtain Gly-Na2SO4-a Mo electrolyte.
Ammonium molybdate was added to 10ml Gly, where Mo: Gly (wt.%) was 17%, followed by stirring for 3 hours at 80 ℃ with a suction fan and cooling to give a Gly-Mo solution. Pyrrole monomer was dissolved in 0.5mol/L H2SO4To form a solution A, and the molar ratio of the solution A to the solution A is 1: 1. reacting Gly-Na2SO4-Mo electrolyte is put into the A solution. Ammonium persulfate was dissolved in 0.5mol/L of H2SO4Wherein the molar ratio of ammonium persulfate to pyrrole is 1: 1, H2SO4The molar ratio to pyrrole is 1: 1. and pouring a Gly-Mo solution into the solution to form a solution B, wherein the mass ratio of ammonium persulfate to the Gly-Mo solution is 1: 9. pouring the solution B into a container containing Gly-Na2SO4Polymerization was carried out at 0 ℃ for 10 hours in the solution A of the-Mo electrolyte. Then taking out the mixture and drying the mixture to obtain the product with the specific capacitance of 630mF/cm2Integrated Gly-Na with double-conducting network2SO4-Mo/Gly-Mo-PPy flexible supercapacitor.

Claims (4)

1. A method for preparing a super capacitor with a double-conducting network is characterized by comprising the following steps:
the method comprises the following steps: Gly-Na2SO4Preparation of-Mo electrolyte
(1) Na is added2SO4Added to glycerol Gly, Na2SO4And Gly in a mass ratio of 0.11-0.28: 1, stirring for 3 hours at the temperature of 60 ℃, and obtaining uniform and transparent Gly-Na after full dissolution2SO4Mixing;
(2) after standing and cooling, the mixture is placed in Gly-Na2SO4Adding ammonium molybdate into the mixture, stirring for 3 hours at the temperature of 80 ℃, cooling to obtain a jelly-shaped solution, wherein the mass percent of Mo to Gly is 5-17%, and drying in vacuum to obtain Gly-Na2SO4-a Mo solid-state electrolyte;
step two: Gly-Na2SO4Integrated preparation of-Mo/Gly-Mo-PPy double-conducting-network supercapacitor
(1) Adding ammonium molybdate into Gly, wherein the mass percent of Mo and Gly is 5-17%, stirring for 3 hours at the temperature of 80 ℃, and cooling to obtain Gly-Mo solution;
(2) dissolving pyrrole Py monomer in 0.5mol/L H2SO4In the presence of a catalyst to form a solution A, pyrrole and H2SO4In a molar ratio of 0.8 to 1: 1; reacting Gly-Na2SO4-a Mo solid electrolyte is placed in the solution a;
(3) dissolving ammonium persulfate in 0.5mol/L H2SO4Wherein the molar ratio of ammonium persulfate to pyrrole in the solution A is 1: 1, H2SO4The molar ratio of the pyrrole to the pyrrole in the solution A is 1: 0.8 to 1; and pouring a Gly-Mo solution into the solution to obtain a solution B, wherein the mass ratio of ammonium persulfate to the Gly-Mo solution is 1: 6-9;
(4) pouring the solution B into a container containing Gly-Na2SO4Polymerizing for 10 hours in the solution A of the-Mo solid electrolyte at the temperature of 0-8 ℃, and drying to obtain the solution A with the double-conductive network Gly-Na2SO4-Mo/Gly-Mo-PPy flexible supercapacitor.
2. The method for preparing the super capacitor with the double-conducting network according to claim 1, wherein the method comprises the following steps: the Gly-Na2SO4putting-Mo solid electrolyte into A solution, wherein Gly-Na is2SO4The volume ratio of the-Mo solid electrolyte to the A solution is 1: 3-5.
3. The method for preparing the super capacitor with the double-conducting network according to claim 1, wherein the method comprises the following steps: said Na2SO4And Gly in a mass ratio of 0.11: 1.
4. the method for preparing the super capacitor with the double-conducting network according to claim 1, wherein the method comprises the following steps: the molar ratio of the ammonium persulfate to the pyrrole is 1: 1.
CN202011536112.0A 2020-12-23 2020-12-23 Method for preparing super capacitor with double-conducting network Active CN112713011B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011536112.0A CN112713011B (en) 2020-12-23 2020-12-23 Method for preparing super capacitor with double-conducting network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011536112.0A CN112713011B (en) 2020-12-23 2020-12-23 Method for preparing super capacitor with double-conducting network

Publications (2)

Publication Number Publication Date
CN112713011A CN112713011A (en) 2021-04-27
CN112713011B true CN112713011B (en) 2022-04-15

Family

ID=75545277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011536112.0A Active CN112713011B (en) 2020-12-23 2020-12-23 Method for preparing super capacitor with double-conducting network

Country Status (1)

Country Link
CN (1) CN112713011B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644273A (en) * 2021-08-13 2021-11-12 中科检测技术服务(重庆)有限公司 Ionic-electronic co-conductive material and preparation method and device thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819882A (en) * 2010-04-19 2010-09-01 中国科学院长春应用化学研究所 Electrolyte for super-capacitor and super-capacitor
CN106847547A (en) * 2017-02-09 2017-06-13 同济大学 Three-dimensional tubulose molybdenum bisuphide/polypyrrole composite electrode material for super capacitor and its preparation
CN109559901A (en) * 2017-09-25 2019-04-02 银隆新能源股份有限公司 Polypyrrole/molybdenum/titania nanotube ternary composite electrode preparation method
KR102636809B1 (en) * 2018-07-03 2024-02-14 주식회사 엘지에너지솔루션 Electrode materials for pseudocapacitor and a method for preparing the same
CN110415997B (en) * 2019-07-19 2021-09-17 肇庆市华师大光电产业研究院 Preparation method of self-healing flexible solid-state supercapacitor

Also Published As

Publication number Publication date
CN112713011A (en) 2021-04-27

Similar Documents

Publication Publication Date Title
Na et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors
CN109897316B (en) Preparation method of polyaniline/polyvinyl alcohol composite conductive gel
CN103996844A (en) Composite lithium nickel manganese oxide positive electrode material and preparation method thereof
CN110190284B (en) Water-based binder for lithium-sulfur battery positive electrode and preparation method and application thereof
CN110767470B (en) Super capacitor based on anti-freezing hydrogel electrolyte and preparation method thereof
CN112072168B (en) Semi-solid lithium battery electrolyte and preparation method thereof
CN112713011B (en) Method for preparing super capacitor with double-conducting network
CN108538633A (en) A kind of Novel super capacitor high conductivity polymeric ionic liquid electrolyte
CN112002562B (en) Preparation of self-healing hydrogel electrolyte with ion channel and application of self-healing hydrogel electrolyte in all-solid-state supercapacitor
CN109473294B (en) Flexible and solid-state supercapacitor and preparation method and application thereof
CN113658806B (en) Gel electrode doped with polyaniline in situ and preparation method and application thereof
CN111312528A (en) Chitin regenerated hydrogel and preparation method and application thereof
CN101714460B (en) Preparation method of polypyrrole/polyacrylic compound gel electrolyte
CN111952081B (en) Preparation method of redox gel electrolyte for all-solid-state supercapacitor
CN116365019A (en) Lithium ion battery flame-retardant gel electrolyte and preparation method and application thereof
CN110707324A (en) Preparation of conductive adhesive and application of conductive adhesive in battery electrode
CN112735854B (en) Preparation method of double-conducting-network supercapacitor based on MOF electrode
Wang et al. Self-Healable Poly (vinyl alcohol)─ Metal–Organic Hybrid Gel Electrolyte for Flexible Capacitor Sensors
CN109346331B (en) Double-network composite conductive rubber and preparation method and application thereof
JP2014197661A (en) Gel electrolyte, process of manufacturing the same, and electrochemical element using the gel electrolyte
Hu et al. A self-healing, high stretchable and wide-temperature tolerance hydrogel electrolyte for high-performance supercapacitor
CN114069039A (en) Polymer electrolyte, preparation method and application thereof, solid-state battery and application thereof
CN109273282B (en) Aniline-based graphene/EVA/polyaniline flexible composite conductive film and preparation method and application thereof
CN113436892B (en) Based on MoS 2 -PANI solid aluminum electrolytic capacitor and preparation method thereof
CN114429867B (en) Preparation method of full-gel flexible supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant