CN112608932A - Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli - Google Patents

Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli Download PDF

Info

Publication number
CN112608932A
CN112608932A CN202011391371.9A CN202011391371A CN112608932A CN 112608932 A CN112608932 A CN 112608932A CN 202011391371 A CN202011391371 A CN 202011391371A CN 112608932 A CN112608932 A CN 112608932A
Authority
CN
China
Prior art keywords
fiber
pxmj19
protein
plasmid
escherichia coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011391371.9A
Other languages
Chinese (zh)
Inventor
方倪冉
郑航辉
叶俊贤
董楠
杨小云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanong Zhaoqing Biological Industry Technology Research Institute Co ltd
Original Assignee
Huanong Zhaoqing Biological Industry Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanong Zhaoqing Biological Industry Technology Research Institute Co ltd filed Critical Huanong Zhaoqing Biological Industry Technology Research Institute Co ltd
Priority to CN202011391371.9A priority Critical patent/CN112608932A/en
Publication of CN112608932A publication Critical patent/CN112608932A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention belongs to the technical field of bioengineering, and discloses a method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli. Respectively taking the PET-21a-GX-1-Fiber2 plasmid and the PXMJ19-C1786T-hexon (T7) plasmid as templates, and carrying out amplification by using designed primers to obtain a Fiber-2 target fragment and a PXMJ19-C1786T-T7 carrier fragment; then carrying out homologous recombination to obtain a recombinant plasmid PXMJ19-T7-his-fiber 2; finally, the cells are transformed into Shuffle T7-B competent cells for expressing the Fiber-2 protein. The invention adopts the plasmid capable of improving the copy number of the exogenous gene as a vector to construct the PXMJ19-T7-his-Fiber2 recombinant plasmid so as to enhance the soluble expression of the Fiber-2 protein.

Description

Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli
Technical Field
The invention relates to the technical field of bioengineering, in particular to a method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli.
Background
The avian adenovirus belongs to the family of adenoviridae and the genus avian adenovirus, exists in poultry, and chickens, ducks, geese and the like are all susceptible hosts. The avian adenovirus has strong infectivity and stable transmission, is not pathogenic in a host body generally, and is an opportunistic pathogen. In recent years, the main prevalent strains in china are avian adenovirus serotype 4 and 8b, with the serotype 4 strain predominant. FADV4 was first reported at 8 months 1987 and was found in the region of Pakistan Ampalas. The serum 4 epidemic strain HN strain which is outbreaked in 2015 has strong pathogenicity and high lethality, has larger difference with a classical strain, and brings huge loss to poultry industry, so the research on the epidemic strain is urgent and necessary. The Fiber protein of the avian adenovirus comprises Fiber-1 and Fiber-2, wherein the Fiber-1 protein is longer, and the Fiber-2 protein is shorter, which are closely related to the infectivity and pathogenicity of the virus. The spike protein not only contains main species-specific antigenic determinants and minor subgeneric-specific antigenic determinants of the avian adenovirus, but also can determine the preference of the virus for host cells and initiate virus infection. Fiber-1 deletion, once it causes a decrease in the number of viruses in the host, while Fiber-2 deletion causes the virions to fail. Thus, the Fiber-2 protein of the serotype 4 circulating strain (HN strain) may be associated with enhanced viral virulence and may have protective potency as a subunit vaccine. In conclusion, the antibody preparation of Fiber-2 protein of avian adenovirus serotype 4 (HN strain) is a precondition for researching whether Fiber-2 protein is related to the enhancement of the toxicity of avian adenovirus, is a basis for further exploring the immunological function and pathogenesis of avian adenovirus serotype 4, and has important significance for the monitoring and prevention of avian adenovirus and the targeted treatment after virus infection.
Guohoran et al disclose the expression and purification of avian adenovirus type 4Fiber2 protein and the preparation of polyclonal antibody, journal of agricultural biotechnology 10 in 2019. The document discloses that the complete gene synthesis sequence of FAdV-4Fiber2 after codon optimization is subjected to in vitro amplification, and then the complete gene synthesis sequence is cloned into a p Cold expression vector to construct a prokaryotic expression vector pCold-Fiber 2. The pCold-Fiber2 recombinant plasmid is transformed into Escherichia coli (Escherichia coli) PGTf2 competent cells, isopropyl thiogalactoside (IPTG) is used for inducing expression, the Fiber2 protein is purified, and the protein is used for immunizing rabbits (Oryctolagus cuniculus) to successfully prepare the polyclonal antibody of the anti-FAdV-4 Fiber2 protein. Western blot and indirect immunofluorescence assay (IFA) results show that the polyclonal antibody against the FAdV-4Fiber2 protein can perform specific reaction with the Fiber2 protein and the FAdV-4 protein after being purified, and the Fiber2 protein is proved to have good immunogenicity. The established indirect ELISA detection method of the FAdV-4 antibody shows that the detection sensitivity of the method is 96 percent, and the specificity is 100 percent. Patent CN 110128508A discloses an avian adenovirus fiber protein subunit vaccine. The sequence of the novel antigen fiber protein of the avian adenovirus is optimized to ensure that the fiber protein obtains soluble expression in escherichia coli, and the expression product is used for preparing subunit vaccine. Patent CN 109750036A discloses a nucleotide sequence, a method for improving protein expression efficiency by using the nucleotide sequence and application thereof. The method comprises the following steps: transforming the recombinant vector containing the protein gene into escherichia coli, wherein the recombinant vector is a recombinant expression vector; and step (2) expressing the protein; the expression of the protein is tandem co-expression or fusion expression of multiple proteins; the recombinant expression vector of the protein gene is a recombinant pET28 plasmid, a pColdIII plasmid or a pCDFDuet plasmid, and the Escherichia coli is Escherichia coli BL21(DE 3); the protein gene is one or more of chicken infectious bursal disease virus VP2 protein, avian adenovirus Penton protein, avian adenovirus Fiber-2 protein, avian egg drop syndrome virus Penton protein, or avian egg drop syndrome virus Fiber protein.
Although the above-mentioned documents and patent methods achieve the expression of Fiber2 protein, there is room for further improvement in the preparation of expression vectors and in the optimization of soluble expression.
Disclosure of Invention
Aiming at the defects and shortcomings of the prior art, the invention aims to provide a method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli. The method adopts the modified PXMJ19 plasmid PXMJ19-C1786T-hexon (T7) as a prokaryotic expression vector (from CN 110951767A, a corynebacterium and escherichia coli double expression vector with high copy capacity and a PXMJ19-C1786T plasmid in the construction method thereof) to construct a PXMJ19-T7-his-Fiber2 recombinant plasmid to promote the efficient soluble expression of the Fiber-2 protein. And the enhanced strain Shuffle T7-B is adopted to promote the high-efficiency expression of heterologous proteins.
In order to achieve the purpose, the invention provides the following technical scheme:
a method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli comprises the following steps:
(1) carrying out amplification by taking the PET-21a-GX-1-Fiber2 plasmid as a template and Fiber-2-F and Fiber-2-R as primers to obtain a Fiber-2 target fragment;
(2) PXMJ19-C17 1786T-hexon (T7) plasmid is used as a template, PXMJ19-T7-his-F and PXMJ19-T7-his-R are used as primers for amplification, and a PXMJ19-C1786T-T7 vector fragment is obtained;
(3) carrying out homologous recombination on the Fiber-2 target fragment and the PXMJ19-C17 1786T-T7 vector fragment to obtain a recombinant plasmid PXMJ19-T7-his-Fiber 2;
(4) the recombinant plasmid PXMJ19-T7-his-Fiber2 is transformed into Shuffle T7-B competent cells for expressing the Fiber-2 protein;
the primer sequences are respectively as follows:
Fiber-2-F:AAGAAGGAGATATAATGCTGCGTGCGC;
Fiber-2-R:AGCCGGATCTCATCAGTGGTGGTGG;
PXMJ19-T7-his-F:CCACCACCACTGATGAGATCCGGCT;
PXMJ19-T7-his-R:CACGCAGCATTATATCTCCTTCTTA;
the nucleotide sequence of the PET-21a-GX-1-fiber2 plasmid is SEQ ID NO. 6, and the plasmid map is shown in figure 1.
The nucleotide sequence of the PXMJ19-C17 1786T-hexon (T7) plasmid is SEQ ID NO. 7, and the plasmid map of the PXMJ 19-C173532-hexon plasmid is shown in FIG. 2.
Further, the nucleotide sequence of the Fiber-2 target fragment obtained in the step (1) is SEQ ID NO: 8.
Further, the nucleotide sequence of the PXMJ19-C1786T-T7 vector fragment obtained in the step (2) is SEQ ID NO. 9.
Further, the homologous recombination conditions in step (3) are as follows:
adding the Fiber-2 target fragment and the PXMJ19-C17 1786T-T7 vector fragment into the reaction solution according to the volume ratio of 1:2, shaking up, incubating in a water bath kettle at 37 ℃ for 30min, and then cooling at 4 ℃ or on ice to obtain the recombinant product.
Further, the step of transforming the recombinant plasmid PXMJ19-T7-his-fiber2 into Shuffle T7-B competent cells described in step (4) is: adding the recombinant plasmid PXMJ19-T7-his-fiber2 into the Shuffle T7-B competent cells, uniformly mixing, standing on ice for 30min, performing water bath heat shock at 42 ℃ for 45sec, immediately placing on ice for cooling for 2-3min, adding an SOC culture medium, and shaking the cells at 37 ℃ and the rotation speed of 200-; preheating LB solid culture medium containing chloramphenicol resistance in a 37 ℃ incubator, centrifuging to remove supernatant, re-suspending the thallus with the rest culture medium, uniformly coating on a flat culture medium containing chloramphenicol resistance with a sterile coating rod, and performing inverted culture in the 37 ℃ incubator for 12-16 h.
Further, the expression steps of the Fiber-2 protein in the step (4) are as follows:
the single colony after transformation culture was picked up, inoculated into LB solid medium with chloramphenicol resistance, the bacteria were shake-cultured at 200rpm at 30 ℃ until the logarithmic phase (OD600 ═ 0.4-0.8), IPTG (isopropylthio-. beta. -D-galactoside) was added to a final concentration of 1mM, and induced in a shaker at 16 ℃ for 15 hours.
Compared with the prior art, the invention has the beneficial effects that:
(1) a plasmid PXMJ19-C1786T-hexon (T7) (derived from CN 110951767A, a corynebacterium and escherichia coli double expression vector with high copy capacity and a PXMJ19-C1786T plasmid in the construction method thereof, wherein a specific nucleotide sequence is SEQ ID NO:6, and a plasmid map is shown in figure 2) are adopted as a vector to construct a PXMJ19-T7-his-Fiber2 recombinant plasmid, so that the high-efficiency soluble expression of the Fiber-2 protein is enhanced.
(2) Respectively amplifying a target fragment and a vector fragment by adopting a specific plasmid template, and directly obtaining a recombinant plasmid PXMJ19-T7-his-fiber2 by adopting homologous recombination; enzyme digestion and ligase are not needed, and the operation steps are reduced.
(3) The method does not need to optimize or change the Fiber-2 target fragment, but adopts PXMJ19-C1786T-T7 modified by mutating one base as a vector, improves the replication efficiency of the target protein, is simpler than the optimization of the target fragment and reduces the influence caused by a heterologous sequence.
(4) The invention adopts an enhanced strain, namely, the Shuffle bacterium Shuffle T7-B, is in Lon and OmpT protease defect type, is suitable for protein expression started by a T7 promoter and enhances the expression of Fiber-2 in escherichia coli.
(5) The invention adopts different transformation conditions and expression conditions to optimize the soluble expression of the Fiber-2 protein.
Drawings
FIG. 1 is a structural diagram of the template plasmid PET-21a-GX-1-fiber2 of the present invention;
FIG. 2 is a structural diagram of the template plasmid PXMJ19-C17 1786T-hexon (T7) of the present invention;
FIG. 3 is a diagram showing the results of gel electrophoresis identification of the amplification products of Fiber-2 target fragments in the examples;
FIG. 4 is a diagram showing the results of gel electrophoresis identification of the product of the amplification of the PXMJ19-C1786T-T7 vector fragment in the example;
FIG. 5 is a diagram showing the identification result of the recombinant product in the examples;
FIG. 6 is a diagram showing the results of gel electrophoresis of the recombinant products of examples after double digestion with NdeI and SacI;
FIG. 7 is a graph showing the results of SDS-PAGE gel electrophoresis of the pellet and supernatant after sonication of the cells transformed in different competent cells and expressed at different temperatures and times in the examples.
Detailed Description
The present invention will be described in further detail with reference to examples, but the embodiments of the present invention are not limited thereto.
The following examples illustrate the major reagents and sources:
TaqDNA polymerase, 10 XPCR Buffer (with Mg)2+:100mM Tris-HCl pH 8.8at 25℃;500mM KCl,0.8%(v/v)Nonidet)、MgCl2(25mM), dNTP (10mM), Marker, 6 XDNA Loading Dye (sangon); 10 XTAE (400mM Tris-acetate and 10mM EDTA, pH8.0) (sangon); primers (sangon); 4S Red Plus nucleic acid stain (BBI a 606695); a column type DNA gel recovery kit (sangon SK 8131); one-step method rapid competent cell preparation kit (SK9307 sangon); a plasmid petiole kit (Tiangen DP 103-03); DL-8000DNA Size maker, DL-15000DNA Size maker (all-type Jinbiol Ltd.); PageRulerTM Prestained Protein Ladder(26619,Thermo);BeyoBlueTMCoomassie brilliant blue ultrafast staining solution (Beyotime); SDS-PAGE gel preparation kit (Taraka); 2xRapid Taq Master Mix (Vazyme); NdeI; SacI (NEB).
The following examples illustrate the major instrument models and sources:
a dual temperature control dry thermostat (Hangzhou mi-Ou instruments Co., Ltd.); HC-2518R high-speed refrigerated centrifuge (Anhui Zhongzhongjia instruments, Inc.); DYY-6C type voltage and current stabilized electrophoresis apparatus (Beijing Liuyi); h6-1 mini electrophoresis tank (Shanghai Jingyi organic glass products apparatus factory); FR980 gel imaging system (shanghai complex science ltd); SMA4000 microphotometer (merinton); PCR reaction amplifier (BIO Co.); a pipette (range 100-; PCR apparatus T100(BIO-RAD), electronic balance (Sadoris); a chemostat incubator; a constant temperature culture shaking table (constant); three-hole electric heating constant temperature water tank (constant); decoloration shaker (its Linbel).
Primer design and source description in the following examples:
according to SnapGene software, a homologous recombination technology is adopted to design a gene Fiber-2, a vector PXMJ19-T7-his and a general primer L4440-F for bacterial liquid identification, and the primers are synthesized by the company Limited in the biological engineering (Shanghai), and are designed as the following table 1:
TABLE 1 primer sets and sequences
Primer name Primer sequence (5 '-3')
Fiber-2-F AAGAAGGAGATATAATGCTGCGTGCGC;(SEQ ID NO:1)
Fiber-2-R AGCCGGATCTCATCAGTGGTGGTGG;(SEQ ID NO:2)
PXMJ19-T7-his-F CCACCACCACTGATGAGATCCGGCT;(SEQ ID NO:3)
PXMJ19-T7-his-R CACGCAGCATTATATCTCCTTCTTA;(SEQ ID NO:4)
L4440-F AGCGAGTCAGTGAGCGAG;(SEQ ID NO:5)
Fiber-2-R AGCCGGATCTCATCAGTGGTGGTGG;(SEQ ID NO:2)
Examples
(1) Amplification of the fragment of Fiber-2 interest:
the PCR amplification system and the PCR amplification program are respectively shown in the following tables 2 and 3 by using PET-21a-GX-1-Fiber2 (the nucleotide sequence is SEQ ID NO:6, and the plasmid map is shown in figure 1) as a template and Fiber-2-F and Fiber-2-R as primers to amplify a Fiber-2 target fragment.
TABLE 2 Fiber-2 amplification PCR System
Figure BDA0002812940920000041
Figure BDA0002812940920000051
TABLE 3 Fiber-2 amplification PCR program
Figure BDA0002812940920000052
After the PCR amplification, the results of the 1% nucleic acid gel electrophoresis identification are shown in FIG. 3. The gel containing the target band is cut under ultraviolet light, the size of the cut gel is just enough to contain all the target bands, the gel is not too large, the cutting is rapid, the ultraviolet is immediately turned off after the cutting, and the target fragment is prevented from being degraded due to the over-irradiation of the ultraviolet. The cut gel was transferred to a 2mL EP tube, gel recovery was performed, and the DNA concentration was measured. The nucleotide sequence of the amplification product is SEQ ID NO. 8.
(2) Amplification of vector fragment PXMJ 19-C1786T-T7:
PXMJ19-C17 1786T-hexon (T7) plasmid (nucleotide sequence is SEQ ID NO:7, and the plasmid map is shown in figure 2) is used as a template, and PXMJ19-T7-his-F and PXMJ19-T7-his-R are used as primers to amplify the PXMJ19-C1786T-T7 vector fragment. The amplification PCR system and procedure are shown in tables 4 and 5 below, respectively.
TABLE 4 PXMJ19-C1786T-T7 amplification PCR System
Figure BDA0002812940920000053
TABLE 5 PXMJ19-C1786T-T7 amplification PCR program
Figure BDA0002812940920000054
Figure BDA0002812940920000061
After the PCR amplification, 0.8% nucleic acid gel electrophoresis was performed to identify the DNA fragment, and the results are shown in FIG. 4. And (2) an obvious target band appears at about 6516bp, the gel containing the target band is cut under ultraviolet light, the size of the cut gel is ensured to be just equal to all the target bands to the greatest extent, the gel is not excessively large, the ultraviolet light is quickly cut when the gel is cut, and the target fragment is prevented from being degraded due to over-irradiation of the ultraviolet light. The cut gel was transferred to a 2mL EP tube, gel recovery was performed, and the DNA concentration was measured. The nucleotide sequence of the amplification product is SEQ ID NO. 9.
(3) Carrying out homologous recombination on the Fiber-2 target fragment and the PXMJ19-C17 1786T-T7 vector fragment:
after the recovery of the gel, the target fragment and the vector fragment were prepared in the appropriate volumes on ice as shown in Table 6.
TABLE 6 homologous recombination System
Figure BDA0002812940920000062
Gently shaking, incubating in water bath at 37 deg.C for 30min, and cooling at 4 deg.C or on ice to obtain recombinant product.
1. And (3) identifying the bacterial liquid of the recombinant product, which comprises the following specific steps:
chemically competent cells for cloning, shuffle-T7-B cells, were thawed on ice, 10. mu.l of the recombinant product was added to 100. mu.l of the competent cells, gently flicked against the vessel wall (Do not shake well), and allowed to stand on ice for 30 min. After heat shock in 42 deg.C water bath for 45sec, immediately cooling on ice for 2-3 min. 900 μ l SOC medium was added and shaken at 37 ℃ for 1h (rotation speed 200-. LB plate solid media, which are resistant to chloramphenicol, were preheated in a 37 ℃ incubator. Centrifuge at 5,000rpm for 5min and discard 900. mu.l of supernatant. The cells were resuspended in the remaining medium and spread gently on chloramphenicol resistant plates using a sterile spreading rod. Culturing at 37 deg.C in incubator by inverting overnight (12-16 h). After overnight culture, the colonies on the plate were examined and 9 of them were picked up, placed in a 2mL EP tube containing a chloramphenicol-resistant LP medium, cultured at 37 ℃ for about 5 hours in a shaker, and then identified with a bacterial suspension, and the sizes were all around 2389bp, which is consistent with the theoretical values, as shown in FIG. 5. Identification of PCR System As shown in Table 7 below, the nucleotide sequence of the amplification product is SEQ ID NO 10.
TABLE 7 bacteria liquid identification PCR System
Figure BDA0002812940920000063
Figure BDA0002812940920000071
2. Carrying out enzyme digestion identification and sequencing on the recombinant product, and specifically comprising the following steps:
a) extracting recombinant plasmids:
taking 100uL of the bacteria liquid with positive identification, and carrying out large shaking and overnight culture in a 50mL centrifuge tube added with LB culture medium with chloramphenicol resistance. 15ml of overnight-cultured broth was added to a centrifuge tube and centrifuged at 12,000rpm (13,400 Xg) for 1min using a conventional tabletop centrifuge, and the supernatant was aspirated as much as possible. To the tube containing the pellet was added 500. mu.l of solution P1 (Tiangen DP103-03 plasmid miniprep kit) and the pellet was suspended thoroughly using a pipette or vortex shaker. The cells were lysed by gently inverting the tube for 6-8 times by adding 500. mu.l of solution P2 (Tiangen DP103-03 plasmid miniprep kit) to the tube. Note that: gently mix without vigorous shaking to avoid disrupting the genomic DNA and resulting in mixing of genomic DNA fragments with the extracted plasmid. At this time, the bacterial liquid should be clear and viscous, and the time for using the bacterial liquid should not exceed 5min so as to prevent the plasmid from being damaged. If the cells are not clear, the cells may be too much and the lysis is incomplete, so that the cell mass should be reduced. Add 700. mu.l of solution P3 (Tiangen DP103-03 plasmid miniprep kit) to the centrifuge tube, gently invert up and down 6-8 times immediately, mix well, at which time white flocculent precipitate will appear. Centrifuge at 12,000rpm (. about.13,400 Xg) for 10 min. Note that: the P3 should be mixed immediately after addition to avoid local precipitation. If there is a small white precipitate in the supernatant, the supernatant can be centrifuged again. The collected supernatant was transferred to an adsorption column CP3 (column equilibration before use: 500. mu.l of equilibration solution BL was added to adsorption column CP3 (adsorption column was put into collection tube), centrifuged at 12,000rpm (. about.13,400 Xg) for 1min, the waste solution in the collection tube was discarded, the adsorption column was put back into the collection tube), centrifuged at 12,000rpm (. about.13,400 Xg) for 30-60sec, the waste solution in the collection tube was discarded, and adsorption column CP3 was put into the collection tube. 600 mul of rinsing liquid PW (anhydrous ethanol is added firstly) is added into the adsorption column CP3, centrifugation is carried out for 30-60sec at 12,000rpm (-13,400 Xg), waste liquid in the collection tube is poured out, and the adsorption column CP3 is placed into the collection tube. The PW rinsing step was repeated, and then the adsorption column CP3 was placed in the collection tube and centrifuged at 12,000rpm (. about.13,400 Xg) for 2min to remove the residual rinse from the adsorption column. The adsorption column CP3 was uncapped and left at room temperature for several minutes to completely dry the residual rinse solution in the adsorption material. Placing the adsorption column CP3 in a clean centrifuge tube, dripping 50-100 μ l elution buffer EB into the middle part of the adsorption membrane, placing for 2min at room temperature, centrifuging for 2min at 12,000rpm (13,400 Xg), and collecting the plasmid solution in the centrifuge tube to obtain the recombinant plasmid.
b) Enzyme digestion identification and sequencing:
the double digestion with NdeI and SacI is carried out, the digestion system is 300uL, and the digestion system is divided into 6 tubes with 50uL of each tube, and the system is shown in the following table 8:
TABLE 8 enzyme digestion System
Figure BDA0002812940920000072
After completion of the digestion, the DNA fragment was identified by 1% gel electrophoresis, and the results are shown in FIG. 6 (M: 8000, 5000, 3000, 1500, 1000, 500; 1: NdeI, SacI double digestion fragment). The sizes of the fragments are 2714bp and 5258bp respectively, which are consistent with the size of a theoretical value. After the bands are identified correctly, the bands are sent to the company Limited of Biotechnology engineering (Shanghai) for sequencing, and the sequencing results are SEQ ID NO. 11 and SEQ ID NO. 12 which are completely the same as the theoretical values.
(4) The recombinant plasmid PXMJ19-T7-his-Fiber2 was transformed into Shuffle T7-B competent cells for expression of the Fiber-2 protein (and BL21 competent cells as a control):
a) chemical conversion:
the recombinant plasmid PXMJ19-T7-his-fiber 210 ng was added to 100. mu.l of BL21 and Shuffle T7-B competent cells, respectively, gently flicked to mix the walls of the tubes (Do Shake mix well), and left on ice for 30 min. After heat shock in 42 deg.C water bath for 45sec, immediately cooling on ice for 2-3 min. 900 μ l SOC medium was added and shaken at 37 ℃ for 1h (rotation speed 200-. LB plate solid media, which are resistant to chloramphenicol, were preheated in a 37 ℃ incubator. Centrifuge at 5,000rpm for 5min and discard 900. mu.l of supernatant. The cells were resuspended in the remaining medium and spread gently on chloramphenicol resistant plates using a sterile spreading rod. Culturing in 37 deg.C incubator for 12-16 h. The plate labeled for transformation into competent cells BL21 was A and the plate transformed into competent cells Shuffle T7-B was B.
b) Protein expression:
single colonies were picked in plate A, B and inoculated into 10ml LB medium with chloramphenicol resistance; all cultured overnight, 1mL is extracted and added into 20mL of chloramphenicol resistant LB culture medium; culturing the bacteria at 30 ℃ and 200rpm with shaking until logarithmic phase (OD600 is 0.4-0.8); dividing two bottles of bacterial liquid into 2 bottles, each bottle is 10mL, adding IPTG into each bottle to the final concentration of 1mM, respectively transferring to a shaking table, and performing experiments according to 30 ℃ induction for 8 hours and 16 ℃ induction overnight (15 hours); after induction is finished, centrifugally collecting thalli; sterile PBS and one in ten thousand EDTA were added; performing ultrasonic lysis until the solution is clear, centrifuging at 12000rpm for 1min, and respectively collecting the inclusion body precipitate and lysis supernatant; the inclusion body pellet was resuspended in PBS (one ten thousandth of EDTA).
The resulting pellet and supernatant were subjected to SDS-PAGE gel electrophoresis, and the results are shown in FIG. 7 (from left to right, 180kDa maker, Fiber-2 positive sample (+), expression of recombinant plasmid PXMJ19-T7-Fiber2 in supernatant and pellet of Shuffle cells, expression of PXMJ19-T7-Fiber2 in supernatant and pellet of BL21 cells; where s denotes supernatant and p denotes pellet, respectively). From the results of FIG. 7, it can be seen that:
1) the recombinant plasmid in BL21 cells, the protein expression of Fiber-2 in the supernatant and the precipitate of the bacterial liquid is less, and is obviously lower than the protein expression of Fiber-2 in the shuffle cells.
2) Recombinant plasmid is expressed in shuffle cells, Fiber-2 protein in supernatant and sediment of bacterial liquid is induced and cultured for 15h at 16 ℃ and then for 8h at the temperature higher than 30 ℃, so that the dissolution and folding of a protein structure are facilitated due to low temperature and increased culture time; and for protein expression under two different conditions, the expression of the supernatant of the bacterial liquid is better than that of the supernatant of the bacterial liquid.
To sum up: by using a PXMJ19-C1786T-hexon (T7) plasmid for enhancing copy level of foreign proteins by point mutation as a template, a recombinant plasmid PXMJ19-T7-his-Fiber2 is constructed, and then prokaryotic expression is carried out in an enhanced strain Shuffle T7-B cell, and higher Fiber-2 protein expression can be seen in the supernatant of bacterial liquid, thus: the optimized Fiber-2 protein has better solubility, and lays an experimental foundation for the development of subsequent vaccines.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.
Sequence listing
<110> Chongqing research institute of BioIndustrial technology, Inc
<120> method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 27
<212> DNA
<213> Artificial sequence ()
<400> 1
aagaaggaga tataatgctg cgtgcgc 27
<210> 2
<211> 25
<212> DNA
<213> Artificial sequence ()
<400> 2
agccggatct catcagtggt ggtgg 25
<210> 3
<211> 25
<212> DNA
<213> Artificial sequence ()
<400> 3
ccaccaccac tgatgagatc cggct 25
<210> 4
<211> 25
<212> DNA
<213> Artificial sequence ()
<400> 4
cacgcagcat tatatctcct tctta 25
<210> 5
<211> 18
<212> DNA
<213> Artificial sequence ()
<400> 5
agcgagtcag tgagcgag 18
<210> 6
<211> 6861
<212> DNA
<213> Artificial sequence ()
<400> 6
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660
ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780
agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900
tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020
aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080
tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560
caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620
aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680
accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980
gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160
cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400
gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580
gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640
gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760
tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820
ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880
tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940
ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060
gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120
tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180
acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240
cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg 3360
gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc 3420
cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg 3480
gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca 3540
tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag 3600
atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt 3660
tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 3720
gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc 3780
tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc 3840
cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct 3900
tcggtatcgt cgtatcccac taccgagata tccgcaccaa cgcgcagccc ggactcggta 3960
atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg 4020
atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct 4080
tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga 4140
cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc 4200
aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg 4260
ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct 4320
tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt 4380
tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc 4440
gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc 4500
gacggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc 4560
gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact 4620
ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga 4680
taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc 4740
ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg 4800
atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag 4860
tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc 4920
gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat 4980
gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc 5040
aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat 5100
ctcgatcccg cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc 5160
cctctagaaa taattttgtt taactttaag aaggagatat acatatggct agcatgactg 5220
gtggacagca aatgggtcgc ggatccatgc tgcgtgcgcc gaaacgccgt cactctgaaa 5280
acggtaaacc ggaaaccgaa gcgggtccgt ctccggcgcc gatcaaacgt gcgaaacgta 5340
tggtgcgcgc gtctcagctg gacctggttt acccgttcga ttacgtggcg gacccggttg 5400
gcggcctgaa cccgccgttc ctgggtggct ctggcccgct ggttgaccag ggcggccagc 5460
tgaccctgaa cgttaccgat ccgatcatca ttaaaaaccg ttccgttgac ctggctcacg 5520
atccgtctct ggatgtgaac gcgcagggcc agctggcagt ggctgttgat ccggaaggcg 5580
cgctggatat caccccggat ggtctggatg ttaaagtgga tggcgttacc gtgatggtta 5640
acgacgattg ggaactggcg gttaaagttg acccgtccgg tggcctggat tctaccgcgg 5700
gcggtctggg tgtgtctgtt gatgacaccc tgctggttga tcagggtgaa ctgggtgttc 5760
acctgaacca gcagggcccg atcacggcgg attctagcgg catcgacctg gaaatcaacc 5820
cgaacatgtt caccgtgaac acctccaccg gttccggtgt gctggaactg aacctgaaag 5880
cccagggcgg tatccaggcg gcttctagcg gtgttggtgt tagcgttgat gaatctctgc 5940
agattgttaa caacaccctg gaagttaaac cagatccgtc tggtccgctg accgttagcg 6000
cgaacggtct cggcctgaaa tatgacacca acaccctggc ggtgaccgcg ggtgcactga 6060
ccgtggttgg cggtggtagc gtttccaccc cgatcgccac cttcgtgtcc ggtagcccgt 6120
ctctgaacac ctacaacgca accaccgtta actcttccgc taacgcgttc tcctgcgcgt 6180
actacctgca gcagtggaac atccagggcc tgctggttac ctctctgtac ctgaaactgg 6240
actccgcgac catgggtaac cgtccgggtg acctgaactc tgccaacgcg aaatggttca 6300
ccttctgggt tagcgcctac ctgcagcagt gcaacccgtc cggtatccag gcgggtaccg 6360
ttagcccgag caccgcaacc ctgaccgact tcgaaccgat ggcgaaccgt agcgtgacca 6420
gcccgtggac ctactctgca aacggttact acgaaccgtc catcggcgaa ttccaggttt 6480
tctctccggt tgttaccggc gcgtggaacc caggtaacat tggtatccgt gtgctgccgg 6540
tgccggtgag cgcgagcggt gaacgttaca ccctgctgtg ctacagcctg cagtgcacca 6600
acgcgagcat cttcaacccg aacaactctg gtaccatgat cgttggtccg gtgctgtact 6660
cttgcccggc ggcgagcctg ccgaagcttg cggccgcact cgagcaccac caccaccacc 6720
actgagatcc ggctgctaac aaagcccgaa aggaagctga gttggctgct gccaccgctg 6780
agcaataact agcataaccc cttggggcct ctaaacgggt cttgaggggt tttttgctga 6840
aaggaggaac tatatccgga t 6861
<210> 7
<211> 7711
<212> DNA
<213> Artificial sequence ()
<400> 7
ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc 60
agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt 120
cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt 180
caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc 240
tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa 300
ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac 360
ctacaccgaa ctgagatacc tacagcgtga gcattgagaa agcgccacgc ttcccgaagg 420
gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga 480
gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact 540
tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa 600
cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt tctttcctgc 660
gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcg 720
ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcaaaag tgctcatcat 780
tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc 840
gatgtaaccc actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc 900
tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa 960
atgttgaata ctcatactct tcctttttca atattattga agcatttatc agggttattg 1020
tctcatgagc ggatacatat ttgaatgtat ttagaaaaat aaacaaaaga gtttgtagaa 1080
acgcaaaaag gccatccgtc aggatggcct tctgcttaat ttgatgcctg gcagtttatg 1140
gcgggcgtcc tgcccgccac cctccgggcc gttgcttcgc aacgttcaaa tccgctcccg 1200
gcggatttgt cctactcagg agagcgttca ccgacaaaca acagataaaa cgaaaggccc 1260
agtctttcga ctgagccttt cgttttattt gatgcctggc agttccctac tctcgcatgg 1320
ggagacccca cactaccatc ggcgctacgg cgtttcactt ctgagttcgg catggggtca 1380
ggtgggacca ccgcgctact gccgccaggc aaattctgtt ttatcagacc gcttctgcgt 1440
tctgatttaa tctgtatcag gctgaaaatc ttctctcatc cgccaaaaca gccaagctga 1500
attcgagctc ggtacccggg gatcctctag agtcgacctg caggcatgca agctttaata 1560
cgactcacta taggggaatt gtgagcggat aacaattccc ctctagaaat aattttgttt 1620
aactttaaga aggagatata atggctgcac taactccaga tttaacaact gctacaccca 1680
ggctacaata ttttcacatt gcgggcccgg gcacccgtga gtatctgagc gaggatctgc 1740
agcaattcat cagcgcgacc ggtagctatt tcgacctgaa gaacaaattt cgtcagaccg 1800
tggttgcgcc gacccgtaac gttaccaccg aaaaggcgca gcgtctgcaa atccgttttt 1860
acccgattca aaccgacgat accagcaccg gttatcgtgt gcgttacaac attaacgttg 1920
gtgacggctg ggtgctggat atgggcagca cctatttcga catcaagggt attctggatc 1980
gtggcccgag ctttaaaccg tattgcggta ccgcgtacaa cccgctggcg ccgaaagaga 2040
gcatgttcaa caactggagc gaaaccgcgc cgggtcagaa cgttagcgcg agcggccaac 2100
tgagcaacgt gtacaccaac accagcacca gcaaggatac caccgcggcg caggttacca 2160
aaatcagcgg cgtgtttccg aacccgaacc aaggtccggg tcgtaacccg ctgcgtcgtg 2220
ttcaaaacgc gaacaccggt gtgctgggcc gttttgcgaa gagccaatac aactatgcgt 2280
acggtgcgta cgttaaaccg gtggcggcgg atggcagcca gagcctgacc caaaccccgt 2340
attggattat ggacaacacc ggtaccaact acctgggcgc ggttgcggtg gaggactata 2400
ccaacagcct gagctatccg gataccattg tggtgccgcc gccggaagac tatgacgact 2460
acaacattgg taccacccgt gcgctgcgtc cgaactatat cggcttccgt gataacttta 2520
ttaacctgct gtaccacgac agcggtgttt gcagcggcac cctgaacagc gagcgtagcg 2580
gtatgaacgt ggttgtggag ctgccggatc gtaacaccga actgagctat cagtacatgc 2640
tggcggacat gatgagccgt caccactatt ttgcgctgtg gaaccaggcg gttgaccaat 2700
acgatccgga agtgcgtgtg ttcagcaacg acggttatga ggaaggcgcg ccgagctacg 2760
cgtttaaccc ggaagcggtg ggcgcgggcg agggttacgg tccggatctg agccaaatca 2820
aactgtatac caacaacacc caccaccacc accaccactg agatccggct gctaacaaag 2880
cccgaaagga agctgagttg gctgctgcca ccgctgagca ataactagca taaccccttg 2940
gggcctctaa acgggtcttg aggggttttt tggacaccat cgaatggtgc aaaacctttc 3000
gcggtatggc atgatagcgc ccggaagaga gtcaattcag ggtggtgaat gtgaaaccag 3060
taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt tcccgcgtgg 3120
tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg gcgatggcgg 3180
agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag tcgttgctga 3240
ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc gcggcgatta 3300
aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa cgaagcggcg 3360
tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt gggctgatca 3420
ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc actaatgttc 3480
cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt ttctcccatg 3540
aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag caaatcgcgc 3600
tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc tggcataaat 3660
atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg agtgccatgt 3720
ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact gcgatgctgg 3780
ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc gggctgcgcg 3840
ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca tgttatatcc 3900
cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccacg tggaccgctt 3960
gctgcaactc tctcagggcc aggcggtgaa gggcaatcag ctgttgcccg tctcactggt 4020
gaaaagaaaa accaccctgg cgccggggat cagccccgga tgctttggat acggtctatg 4080
agctggcagc gtatttgacc gatccggaca cctgggataa tgtgtggatt ttgtcggatc 4140
agcttgagta ggacaaatcc gccgagcttc gacgagattt tcaggagcta aggaagctaa 4200
aatggagaaa aaaatcactg gatataccac cgttgatata tcccaatggc atcgtaaaga 4260
acattttgag gcatttcagt cagttgctca atgtacctat aaccagaccg ttcagctgga 4320
tattacggcc tttttaaaga ccgtaaagaa aaataagcac aagttttatc cggcctttat 4380
tcacattctt gcccgcctga tgaatgctca tccggagttc cgtatggcaa tgaaagacgg 4440
tgagctggtg atatgggata gtgttcaccc ttgttacacc gttttccatg agcaaactga 4500
aacgttttca tcgctctgga gtgaatacca cgacgatttc cggcagtttc tacacatata 4560
ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat ttccctaaag ggtttattga 4620
gaatatgttt ttcgtctcag ccaatccctg ggtgagtttc accagttttg atttaaacgt 4680
ggccaatatg gacaacttct tcgcccccgt tttcaccatg ggcaaatatt atacgcaagg 4740
cgacaaggtg ctgatgccgc tggcgattca ggttcatcat gccgtctgtg atggcttcca 4800
tgtcggcaga atgcttaatg aattacaaca gtactgcgat gagtggcagg gcggggcgta 4860
atttttttaa ggcagttatt ggtgcccttc gaaatgaccg accaagcgac gcccaacctg 4920
ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt 4980
ttccgggacg ccaacaacaa gacccatcat agtttgcccc cgcgacattg accataaatt 5040
catcgcacaa aatatcgaac ggggtttatg ccgcttttag tgggtgcgaa gaatagtctg 5100
ctcattaccc gcgaacaccg ccgcattcag atcacgctta gtagcgtccc catgagtagg 5160
cagaaccgcg tccaagtcca catcatccat aacgatcatg cacggggtgg aatccacacc 5220
cagacttgcc agcacctcat tagcgacacg ttgcgcagcg gccacgtcct tagccttatc 5280
cacgcaatcg agaacgtact gcctaaccgc gaaatcagac tgaatcagtt tccaatcatc 5340
gggcttcacc aaagcaacag caacgcgggt tgattcgacc cgttccggtg cttccagacc 5400
ggcgagcttg tacagttctt cttccatttc acgacgtaca tcagcgtcta tgtaatcaat 5460
gcccaaagca cgcttagccc cacgtgacca ggacgaacgc aggtttttag aaccaacctc 5520
atactcacgc caccgagcca ccaaaacagc gtccatatcc tcgccggcgt cgctttgatc 5580
ggccaacata tccaacatct gaaacggcgt gtacgacccc ttagacgcgg ttttagtagc 5640
ggagccagtc agttcctgag acatgccctt agcgaggtag gttgccattt tcgcagcgtc 5700
tccaccccag gtagacacct gatcaagttt gaccccgtgc tcacgcagtg gcgcgtccat 5760
accggcctta accacaccag cagaccagcg ggaaaacatg gaatcctcaa acgccttgag 5820
ttcatcgtca gacagtggac gatccaagaa caacagcatg ttgcggtgca agtgccaacc 5880
gttcgcccaa gagtctgtga cctcatagtc actataggtg tgctccaccc cgtaccgtgc 5940
acgttctttc ttccactgag atgttttcac catcgaagag tacgcagtct taatacccgc 6000
ttcaacctgc gcaaatgact gtgagcggtt gtgtcgaaca gtgcccacaa acatcatgag 6060
cgcgccaccc gccgccaagt gattcttagt agcaatagcc agctcaatgc ggcgttcgcc 6120
catgacttcc aattcagcca gaggtgaccc ccagcgagag tgagagtttt gcagaccctc 6180
aaactgcgaa gcaccgttag acgaccagga caccgcaaca gcttcgtccc tgcgccacct 6240
atggcacccc gccagagcct tactattggt gatcttgtac atgacgtttt gcctacgcca 6300
cgccctagcg cgagtgacct tagaaccctc attgacctgc ggttccttag aggtgttcac 6360
ttctatttca gtgttactca gtgttaccta gacccgatgt tgtgcggggt tgcgcagtgc 6420
gagtttgtgc gggtgttgtg cccgttgtct tagctagtgc tatggttgtc aattgaaacc 6480
ccttcgggtt atgtggcccc cgtgcatatg agttagtagc tcgcacgggg gtttgtcttg 6540
tctagggact attaattttt agtggtgttt ggtggccgcc tagcttggct atgcgtgcca 6600
gcttacccgt actcaatgtt aaagatttgc atcgacatgg gagggttacg tgtccgatac 6660
ctaggggggg tatccgcgac taggtgcccc ggtgctcact gtctgtaccg gcggggcaag 6720
ccccacaccc cgcatggaca gggtggctcc gccccctgca cccccagcaa tctgcatgta 6780
catgttttac acattagcac gacatgactg catgtgcatg cactgcatgc agactaggta 6840
aatatgagta tgtacgacta gtaacaggag cactgcacat aatgaatgag ttgcaggaca 6900
atgtttgcta cgcatgcgca tgacatatcg caggaaagct actagagtct taaagcatgg 6960
caaccaaggc acagctagaa cagcaactac aagaagctca acaggcacta caggcgcagc 7020
aagcgcaggc acaagccacc atcgaagcac tagaagcgca ggcaaaggct aagcccgtcg 7080
tggtcaccgc acgcgttcct ttggcactac gtgaggacat gaagcgcgca ggcatgcaga 7140
acggtgaaaa cctccaagag ttcatgatcg ccgcgtttac cgagcggcta gaaaagctca 7200
ccaccaccga caacgaggaa aacaatgtct aacccactag ttctctttgc ccaccgtgac 7260
ccggtaaatg acgtgacgtt cgagtgcatt gagcacgcca cctacgacac actttcacac 7320
gctaaagacc agatcaccgc ccaaatgcaa gccctagacg aagaagccgc cctactgccc 7380
taatgggtgt ttcatgggtg tttccctagt gtttcatggt gttttcacct aagctaggga 7440
attgcgcgag aagtctcgca aaaatcagca acccccggaa ccacacagtt cacgggggtt 7500
cttctatgcc agaaatcaga aaggggaacc agtgaacgac cccgaatggc tggatgatcc 7560
tccagcgcgg ggatctcatg ctggagttct tcgcccaccc caaaaggatc taggtgaaga 7620
tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 7680
cagaccccgt agaaaagatc aaaggatctt c 7711
<210> 8
<211> 1505
<212> DNA
<213> Artificial sequence ()
<400> 8
aagaaggaga tataatgctg cgtgcgccga aacgccgtca ctctgaaaac ggtaaaccgg 60
aaaccgaagc gggtccgtct ccggcgccga tcaaacgtgc gaaacgtatg gtgcgcgcgt 120
ctcagctgga cctggtttac ccgttcgatt acgtggcgga cccggttggc ggcctgaacc 180
cgccgttcct gggtggctct ggcccgctgg ttgaccaggg cggccagctg accctgaacg 240
ttaccgatcc gatcatcatt aaaaaccgtt ccgttgacct ggctcacgat ccgtctctgg 300
atgtgaacgc gcagggccag ctggcagtgg ctgttgatcc ggaaggcgcg ctggatatca 360
ccccggatgg tctggatgtt aaagtggatg gcgttaccgt gatggttaac gacgattggg 420
aactggcggt taaagttgac ccgtccggtg gcctggattc taccgcgggc ggtctgggtg 480
tgtctgttga tgacaccctg ctggttgatc agggtgaact gggtgttcac ctgaaccagc 540
agggcccgat cacggcggat tctagcggca tcgacctgga aatcaacccg aacatgttca 600
ccgtgaacac ctccaccggt tccggtgtgc tggaactgaa cctgaaagcc cagggcggta 660
tccaggcggc ttctagcggt gttggtgtta gcgttgatga atctctgcag attgttaaca 720
acaccctgga agttaaacca gatccgtctg gtccgctgac cgttagcgcg aacggtctcg 780
gcctgaaata tgacaccaac accctggcgg tgaccgcggg tgcactgacc gtggttggcg 840
gtggtagcgt ttccaccccg atcgccacct tcgtgtccgg tagcccgtct ctgaacacct 900
acaacgcaac caccgttaac tcttccgcta acgcgttctc ctgcgcgtac tacctgcagc 960
agtggaacat ccagggcctg ctggttacct ctctgtacct gaaactggac tccgcgacca 1020
tgggtaaccg tccgggtgac ctgaactctg ccaacgcgaa atggttcacc ttctgggtta 1080
gcgcctacct gcagcagtgc aacccgtccg gtatccaggc gggtaccgtt agcccgagca 1140
ccgcaaccct gaccgacttc gaaccgatgg cgaaccgtag cgtgaccagc ccgtggacct 1200
actctgcaaa cggttactac gaaccgtcca tcggcgaatt ccaggttttc tctccggttg 1260
ttaccggcgc gtggaaccca ggtaacattg gtatccgtgt gctgccggtg ccggtgagcg 1320
cgagcggtga acgttacacc ctgctgtgct acagcctgca gtgcaccaac gcgagcatct 1380
tcaacccgaa caactctggt accatgatcg ttggtccggt gctgtactct tgcccggcgg 1440
cgagcctgcc gaagcttgcg gccgcactcg agcaccacca ccaccaccac tgatgagatc 1500
cggct 1505
<210> 9
<211> 6516
<212> DNA
<213> Artificial sequence ()
<400> 9
ccaccaccac tgatgagatc cggctgctaa caaagcccga aaggaagctg agttggctgc 60
tgccaccgct gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg 120
ttttttggac accatcgaat ggtgcaaaac ctttcgcggt atggcatgat agcgcccgga 180
agagagtcaa ttcagggtgg tgaatgtgaa accagtaacg ttatacgatg tcgcagagta 240
tgccggtgtc tcttatcaga ccgtttcccg cgtggtgaac caggccagcc acgtttctgc 300
gaaaacgcgg gaaaaagtgg aagcggcgat ggcggagctg aattacattc ccaaccgcgt 360
ggcacaacaa ctggcgggca aacagtcgtt gctgattggc gttgccacct ccagtctggc 420
cctgcacgcg ccgtcgcaaa ttgtcgcggc gattaaatct cgcgccgatc aactgggtgc 480
cagcgtggtg gtgtcgatgg tagaacgaag cggcgtcgaa gcctgtaaag cggcggtgca 540
caatcttctc gcgcaacgcg tcagtgggct gatcattaac tatccgctgg atgaccagga 600
tgccattgct gtggaagctg cctgcactaa tgttccggcg ttatttcttg atgtctctga 660
ccagacaccc atcaacagta ttattttctc ccatgaagac ggtacgcgac tgggcgtgga 720
gcatctggtc gcattgggtc accagcaaat cgcgctgtta gcgggcccat taagttctgt 780
ctcggcgcgt ctgcgtctgg ctggctggca taaatatctc actcgcaatc aaattcagcc 840
gatagcggaa cgggaaggcg actggagtgc catgtccggt tttcaacaaa ccatgcaaat 900
gctgaatgag ggcatcgttc ccactgcgat gctggttgcc aacgatcaga tggcgctggg 960
cgcaatgcgc gccattaccg agtccgggct gcgcgttggt gcggatatct cggtagtggg 1020
atacgacgat accgaagaca gctcatgtta tatcccgccg ttaaccacca tcaaacagga 1080
ttttcgcctg ctggggcaaa ccacgtggac cgcttgctgc aactctctca gggccaggcg 1140
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccg 1200
gggatcagcc ccggatgctt tggatacggt ctatgagctg gcagcgtatt tgaccgatcc 1260
ggacacctgg gataatgtgt ggattttgtc ggatcagctt gagtaggaca aatccgccga 1320
gcttcgacga gattttcagg agctaaggaa gctaaaatgg agaaaaaaat cactggatat 1380
accaccgttg atatatccca atggcatcgt aaagaacatt ttgaggcatt tcagtcagtt 1440
gctcaatgta cctataacca gaccgttcag ctggatatta cggccttttt aaagaccgta 1500
aagaaaaata agcacaagtt ttatccggcc tttattcaca ttcttgcccg cctgatgaat 1560
gctcatccgg agttccgtat ggcaatgaaa gacggtgagc tggtgatatg ggatagtgtt 1620
cacccttgtt acaccgtttt ccatgagcaa actgaaacgt tttcatcgct ctggagtgaa 1680
taccacgacg atttccggca gtttctacac atatattcgc aagatgtggc gtgttacggt 1740
gaaaacctgg cctatttccc taaagggttt attgagaata tgtttttcgt ctcagccaat 1800
ccctgggtga gtttcaccag ttttgattta aacgtggcca atatggacaa cttcttcgcc 1860
cccgttttca ccatgggcaa atattatacg caaggcgaca aggtgctgat gccgctggcg 1920
attcaggttc atcatgccgt ctgtgatggc ttccatgtcg gcagaatgct taatgaatta 1980
caacagtact gcgatgagtg gcagggcggg gcgtaatttt tttaaggcag ttattggtgc 2040
ccttcgaaat gaccgaccaa gcgacgccca acctgccatc acgagatttc gattccaccg 2100
ccgccttcta tgaaaggttg ggcttcggaa tcgttttccg ggacgccaac aacaagaccc 2160
atcatagttt gcccccgcga cattgaccat aaattcatcg cacaaaatat cgaacggggt 2220
ttatgccgct tttagtgggt gcgaagaata gtctgctcat tacccgcgaa caccgccgca 2280
ttcagatcac gcttagtagc gtccccatga gtaggcagaa ccgcgtccaa gtccacatca 2340
tccataacga tcatgcacgg ggtggaatcc acacccagac ttgccagcac ctcattagcg 2400
acacgttgcg cagcggccac gtccttagcc ttatccacgc aatcgagaac gtactgccta 2460
accgcgaaat cagactgaat cagtttccaa tcatcgggct tcaccaaagc aacagcaacg 2520
cgggttgatt cgacccgttc cggtgcttcc agaccggcga gcttgtacag ttcttcttcc 2580
atttcacgac gtacatcagc gtctatgtaa tcaatgccca aagcacgctt agccccacgt 2640
gaccaggacg aacgcaggtt tttagaacca acctcatact cacgccaccg agccaccaaa 2700
acagcgtcca tatcctcgcc ggcgtcgctt tgatcggcca acatatccaa catctgaaac 2760
ggcgtgtacg accccttaga cgcggtttta gtagcggagc cagtcagttc ctgagacatg 2820
cccttagcga ggtaggttgc cattttcgca gcgtctccac cccaggtaga cacctgatca 2880
agtttgaccc cgtgctcacg cagtggcgcg tccataccgg ccttaaccac accagcagac 2940
cagcgggaaa acatggaatc ctcaaacgcc ttgagttcat cgtcagacag tggacgatcc 3000
aagaacaaca gcatgttgcg gtgcaagtgc caaccgttcg cccaagagtc tgtgacctca 3060
tagtcactat aggtgtgctc caccccgtac cgtgcacgtt ctttcttcca ctgagatgtt 3120
ttcaccatcg aagagtacgc agtcttaata cccgcttcaa cctgcgcaaa tgactgtgag 3180
cggttgtgtc gaacagtgcc cacaaacatc atgagcgcgc cacccgccgc caagtgattc 3240
ttagtagcaa tagccagctc aatgcggcgt tcgcccatga cttccaattc agccagaggt 3300
gacccccagc gagagtgaga gttttgcaga ccctcaaact gcgaagcacc gttagacgac 3360
caggacaccg caacagcttc gtccctgcgc cacctatggc accccgccag agccttacta 3420
ttggtgatct tgtacatgac gttttgccta cgccacgccc tagcgcgagt gaccttagaa 3480
ccctcattga cctgcggttc cttagaggtg ttcacttcta tttcagtgtt actcagtgtt 3540
acctagaccc gatgttgtgc ggggttgcgc agtgcgagtt tgtgcgggtg ttgtgcccgt 3600
tgtcttagct agtgctatgg ttgtcaattg aaaccccttc gggttatgtg gcccccgtgc 3660
atatgagtta gtagctcgca cgggggtttg tcttgtctag ggactattaa tttttagtgg 3720
tgtttggtgg ccgcctagct tggctatgcg tgccagctta cccgtactca atgttaaaga 3780
tttgcatcga catgggaggg ttacgtgtcc gatacctagg gggggtatcc gcgactaggt 3840
gccccggtgc tcactgtctg taccggcggg gcaagcccca caccccgcat ggacagggtg 3900
gctccgcccc ctgcaccccc agcaatctgc atgtacatgt tttacacatt agcacgacat 3960
gactgcatgt gcatgcactg catgcagact aggtaaatat gagtatgtac gactagtaac 4020
aggagcactg cacataatga atgagttgca ggacaatgtt tgctacgcat gcgcatgaca 4080
tatcgcagga aagctactag agtcttaaag catggcaacc aaggcacagc tagaacagca 4140
actacaagaa gctcaacagg cactacaggc gcagcaagcg caggcacaag ccaccatcga 4200
agcactagaa gcgcaggcaa aggctaagcc cgtcgtggtc accgcacgcg ttcctttggc 4260
actacgtgag gacatgaagc gcgcaggcat gcagaacggt gaaaacctcc aagagttcat 4320
gatcgccgcg tttaccgagc ggctagaaaa gctcaccacc accgacaacg aggaaaacaa 4380
tgtctaaccc actagttctc tttgcccacc gtgacccggt aaatgacgtg acgttcgagt 4440
gcattgagca cgccacctac gacacacttt cacacgctaa agaccagatc accgcccaaa 4500
tgcaagccct agacgaagaa gccgccctac tgccctaatg ggtgtttcat gggtgtttcc 4560
ctagtgtttc atggtgtttt cacctaagct agggaattgc gcgagaagtc tcgcaaaaat 4620
cagcaacccc cggaaccaca cagttcacgg gggttcttct atgccagaaa tcagaaaggg 4680
gaaccagtga acgaccccga atggctggat gatcctccag cgcggggatc tcatgctgga 4740
gttcttcgcc caccccaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa 4800
aatcccttaa cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg 4860
atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc 4920
gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac 4980
tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca 5040
ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt 5100
ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc 5160
ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg 5220
aacgacctac accgaactga gatacctaca gcgtgagcat tgagaaagcg ccacgcttcc 5280
cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac 5340
gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct 5400
ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc 5460
cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt 5520
tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac 5580
cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag caaaagtgct 5640
catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc tgttgagatc 5700
cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttta ctttcaccag 5760
cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa taagggcgac 5820
acggaaatgt tgaatactca tactcttcct ttttcaatat tattgaagca tttatcaggg 5880
ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac aaaagagttt 5940
gtagaaacgc aaaaaggcca tccgtcagga tggccttctg cttaatttga tgcctggcag 6000
tttatggcgg gcgtcctgcc cgccaccctc cgggccgttg cttcgcaacg ttcaaatccg 6060
ctcccggcgg atttgtccta ctcaggagag cgttcaccga caaacaacag ataaaacgaa 6120
aggcccagtc tttcgactga gcctttcgtt ttatttgatg cctggcagtt ccctactctc 6180
gcatggggag accccacact accatcggcg ctacggcgtt tcacttctga gttcggcatg 6240
gggtcaggtg ggaccaccgc gctactgccg ccaggcaaat tctgttttat cagaccgctt 6300
ctgcgttctg atttaatctg tatcaggctg aaaatcttct ctcatccgcc aaaacagcca 6360
agctgaattc gagctcggta cccggggatc ctctagagtc gacctgcagg catgcaagct 6420
ttaatacgac tcactatagg ggaattgtga gcggataaca attcccctct agaaataatt 6480
ttgtttaact ttaagaagga gatataatgc tgcgtg 6516
<210> 10
<211> 2389
<212> DNA
<213> Artificial sequence ()
<400> 10
agcgagtcag tgagcgagga agcaaaagtg ctcatcattg gaaaacgttc ttcggggcga 60
aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac tcgtgcaccc 120
aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa aacaggaagg 180
caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact catactcttc 240
ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg atacatattt 300
gaatgtattt agaaaaataa acaaaagagt ttgtagaaac gcaaaaaggc catccgtcag 360
gatggccttc tgcttaattt gatgcctggc agtttatggc gggcgtcctg cccgccaccc 420
tccgggccgt tgcttcgcaa cgttcaaatc cgctcccggc ggatttgtcc tactcaggag 480
agcgttcacc gacaaacaac agataaaacg aaaggcccag tctttcgact gagcctttcg 540
ttttatttga tgcctggcag ttccctactc tcgcatgggg agaccccaca ctaccatcgg 600
cgctacggcg tttcacttct gagttcggca tggggtcagg tgggaccacc gcgctactgc 660
cgccaggcaa attctgtttt atcagaccgc ttctgcgttc tgatttaatc tgtatcaggc 720
tgaaaatctt ctctcatccg ccaaaacagc caagctgaat tcgagctcgg tacccgggga 780
tcctctagag tcgacctgca ggcatgcaag ctttaatacg actcactata ggggaattgt 840
gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag gagatataat 900
gctgcgtgcg ccgaaacgcc gtcactctga aaacggtaaa ccggaaaccg aagcgggtcc 960
gtctccggcg ccgatcaaac gtgcgaaacg tatggtgcgc gcgtctcagc tggacctggt 1020
ttacccgttc gattacgtgg cggacccggt tggcggcctg aacccgccgt tcctgggtgg 1080
ctctggcccg ctggttgacc agggcggcca gctgaccctg aacgttaccg atccgatcat 1140
cattaaaaac cgttccgttg acctggctca cgatccgtct ctggatgtga acgcgcaggg 1200
ccagctggca gtggctgttg atccggaagg cgcgctggat atcaccccgg atggtctgga 1260
tgttaaagtg gatggcgtta ccgtgatggt taacgacgat tgggaactgg cggttaaagt 1320
tgacccgtcc ggtggcctgg attctaccgc gggcggtctg ggtgtgtctg ttgatgacac 1380
cctgctggtt gatcagggtg aactgggtgt tcacctgaac cagcagggcc cgatcacggc 1440
ggattctagc ggcatcgacc tggaaatcaa cccgaacatg ttcaccgtga acacctccac 1500
cggttccggt gtgctggaac tgaacctgaa agcccagggc ggtatccagg cggcttctag 1560
cggtgttggt gttagcgttg atgaatctct gcagattgtt aacaacaccc tggaagttaa 1620
accagatccg tctggtccgc tgaccgttag cgcgaacggt ctcggcctga aatatgacac 1680
caacaccctg gcggtgaccg cgggtgcact gaccgtggtt ggcggtggta gcgtttccac 1740
cccgatcgcc accttcgtgt ccggtagccc gtctctgaac acctacaacg caaccaccgt 1800
taactcttcc gctaacgcgt tctcctgcgc gtactacctg cagcagtgga acatccaggg 1860
cctgctggtt acctctctgt acctgaaact ggactccgcg accatgggta accgtccggg 1920
tgacctgaac tctgccaacg cgaaatggtt caccttctgg gttagcgcct acctgcagca 1980
gtgcaacccg tccggtatcc aggcgggtac cgttagcccg agcaccgcaa ccctgaccga 2040
cttcgaaccg atggcgaacc gtagcgtgac cagcccgtgg acctactctg caaacggtta 2100
ctacgaaccg tccatcggcg aattccaggt tttctctccg gttgttaccg gcgcgtggaa 2160
cccaggtaac attggtatcc gtgtgctgcc ggtgccggtg agcgcgagcg gtgaacgtta 2220
caccctgctg tgctacagcc tgcagtgcac caacgcgagc atcttcaacc cgaacaactc 2280
tggtaccatg atcgttggtc cggtgctgta ctcttgcccg gcggcgagcc tgccgaagct 2340
tgcggccgca ctcgagcacc accaccacca ccactgatga gatccggct 2389
<210> 11
<211> 2714
<212> DNA
<213> Artificial sequence ()
<400> 11
tatgagttag tagctcgcac gggggtttgt cttgtctagg gactattaat ttttagtggt 60
gtttggtggc cgcctagctt ggctatgcgt gccagcttac ccgtactcaa tgttaaagat 120
ttgcatcgac atgggagggt tacgtgtccg atacctaggg ggggtatccg cgactaggtg 180
ccccggtgct cactgtctgt accggcgggg caagccccac accccgcatg gacagggtgg 240
ctccgccccc tgcaccccca gcaatctgca tgtacatgtt ttacacatta gcacgacatg 300
actgcatgtg catgcactgc atgcagacta ggtaaatatg agtatgtacg actagtaaca 360
ggagcactgc acataatgaa tgagttgcag gacaatgttt gctacgcatg cgcatgacat 420
atcgcaggaa agctactaga gtcttaaagc atggcaacca aggcacagct agaacagcaa 480
ctacaagaag ctcaacaggc actacaggcg cagcaagcgc aggcacaagc caccatcgaa 540
gcactagaag cgcaggcaaa ggctaagccc gtcgtggtca ccgcacgcgt tcctttggca 600
ctacgtgagg acatgaagcg cgcaggcatg cagaacggtg aaaacctcca agagttcatg 660
atcgccgcgt ttaccgagcg gctagaaaag ctcaccacca ccgacaacga ggaaaacaat 720
gtctaaccca ctagttctct ttgcccaccg tgacccggta aatgacgtga cgttcgagtg 780
cattgagcac gccacctacg acacactttc acacgctaaa gaccagatca ccgcccaaat 840
gcaagcccta gacgaagaag ccgccctact gccctaatgg gtgtttcatg ggtgtttccc 900
tagtgtttca tggtgttttc acctaagcta gggaattgcg cgagaagtct cgcaaaaatc 960
agcaaccccc ggaaccacac agttcacggg ggttcttcta tgccagaaat cagaaagggg 1020
aaccagtgaa cgaccccgaa tggctggatg atcctccagc gcggggatct catgctggag 1080
ttcttcgccc accccaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa 1140
atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga 1200
tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg 1260
ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact 1320
ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac 1380
cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg 1440
gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg 1500
gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga 1560
acgacctaca ccgaactgag atacctacag cgtgagcatt gagaaagcgc cacgcttccc 1620
gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg 1680
agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc 1740
tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc 1800
agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt 1860
cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc 1920
gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc aaaagtgctc 1980
atcattggaa aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc 2040
agttcgatgt aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc 2100
gtttctgggt gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca 2160
cggaaatgtt gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt 2220
tattgtctca tgagcggata catatttgaa tgtatttaga aaaataaaca aaagagtttg 2280
tagaaacgca aaaaggccat ccgtcaggat ggccttctgc ttaatttgat gcctggcagt 2340
ttatggcggg cgtcctgccc gccaccctcc gggccgttgc ttcgcaacgt tcaaatccgc 2400
tcccggcgga tttgtcctac tcaggagagc gttcaccgac aaacaacaga taaaacgaaa 2460
ggcccagtct ttcgactgag cctttcgttt tatttgatgc ctggcagttc cctactctcg 2520
catggggaga ccccacacta ccatcggcgc tacggcgttt cacttctgag ttcggcatgg 2580
ggtcaggtgg gaccaccgcg ctactgccgc caggcaaatt ctgttttatc agaccgcttc 2640
tgcgttctga tttaatctgt atcaggctga aaatcttctc tcatccgcca aaacagccaa 2700
gctgaattcg agct 2714
<210> 12
<211> 5258
<212> DNA
<213> Artificial sequence ()
<400> 12
cggtacccgg ggatcctcta gagtcgacct gcaggcatgc aagctttaat acgactcact 60
ataggggaat tgtgagcgga taacaattcc cctctagaaa taattttgtt taactttaag 120
aaggagatat aatgctgcgt gcgccgaaac gccgtcactc tgaaaacggt aaaccggaaa 180
ccgaagcggg tccgtctccg gcgccgatca aacgtgcgaa acgtatggtg cgcgcgtctc 240
agctggacct ggtttacccg ttcgattacg tggcggaccc ggttggcggc ctgaacccgc 300
cgttcctggg tggctctggc ccgctggttg accagggcgg ccagctgacc ctgaacgtta 360
ccgatccgat catcattaaa aaccgttccg ttgacctggc tcacgatccg tctctggatg 420
tgaacgcgca gggccagctg gcagtggctg ttgatccgga aggcgcgctg gatatcaccc 480
cggatggtct ggatgttaaa gtggatggcg ttaccgtgat ggttaacgac gattgggaac 540
tggcggttaa agttgacccg tccggtggcc tggattctac cgcgggcggt ctgggtgtgt 600
ctgttgatga caccctgctg gttgatcagg gtgaactggg tgttcacctg aaccagcagg 660
gcccgatcac ggcggattct agcggcatcg acctggaaat caacccgaac atgttcaccg 720
tgaacacctc caccggttcc ggtgtgctgg aactgaacct gaaagcccag ggcggtatcc 780
aggcggcttc tagcggtgtt ggtgttagcg ttgatgaatc tctgcagatt gttaacaaca 840
ccctggaagt taaaccagat ccgtctggtc cgctgaccgt tagcgcgaac ggtctcggcc 900
tgaaatatga caccaacacc ctggcggtga ccgcgggtgc actgaccgtg gttggcggtg 960
gtagcgtttc caccccgatc gccaccttcg tgtccggtag cccgtctctg aacacctaca 1020
acgcaaccac cgttaactct tccgctaacg cgttctcctg cgcgtactac ctgcagcagt 1080
ggaacatcca gggcctgctg gttacctctc tgtacctgaa actggactcc gcgaccatgg 1140
gtaaccgtcc gggtgacctg aactctgcca acgcgaaatg gttcaccttc tgggttagcg 1200
cctacctgca gcagtgcaac ccgtccggta tccaggcggg taccgttagc ccgagcaccg 1260
caaccctgac cgacttcgaa ccgatggcga accgtagcgt gaccagcccg tggacctact 1320
ctgcaaacgg ttactacgaa ccgtccatcg gcgaattcca ggttttctct ccggttgtta 1380
ccggcgcgtg gaacccaggt aacattggta tccgtgtgct gccggtgccg gtgagcgcga 1440
gcggtgaacg ttacaccctg ctgtgctaca gcctgcagtg caccaacgcg agcatcttca 1500
acccgaacaa ctctggtacc atgatcgttg gtccggtgct gtactcttgc ccggcggcga 1560
gcctgccgaa gcttgcggcc gcactcgagc accaccacca ccaccactga tgagatccgg 1620
ctgctaacaa agcccgaaag gaagctgagt tggctgctgc caccgctgag caataactag 1680
cataacccct tggggcctct aaacgggtct tgaggggttt tttggacacc atcgaatggt 1740
gcaaaacctt tcgcggtatg gcatgatagc gcccggaaga gagtcaattc agggtggtga 1800
atgtgaaacc agtaacgtta tacgatgtcg cagagtatgc cggtgtctct tatcagaccg 1860
tttcccgcgt ggtgaaccag gccagccacg tttctgcgaa aacgcgggaa aaagtggaag 1920
cggcgatggc ggagctgaat tacattccca accgcgtggc acaacaactg gcgggcaaac 1980
agtcgttgct gattggcgtt gccacctcca gtctggccct gcacgcgccg tcgcaaattg 2040
tcgcggcgat taaatctcgc gccgatcaac tgggtgccag cgtggtggtg tcgatggtag 2100
aacgaagcgg cgtcgaagcc tgtaaagcgg cggtgcacaa tcttctcgcg caacgcgtca 2160
gtgggctgat cattaactat ccgctggatg accaggatgc cattgctgtg gaagctgcct 2220
gcactaatgt tccggcgtta tttcttgatg tctctgacca gacacccatc aacagtatta 2280
ttttctccca tgaagacggt acgcgactgg gcgtggagca tctggtcgca ttgggtcacc 2340
agcaaatcgc gctgttagcg ggcccattaa gttctgtctc ggcgcgtctg cgtctggctg 2400
gctggcataa atatctcact cgcaatcaaa ttcagccgat agcggaacgg gaaggcgact 2460
ggagtgccat gtccggtttt caacaaacca tgcaaatgct gaatgagggc atcgttccca 2520
ctgcgatgct ggttgccaac gatcagatgg cgctgggcgc aatgcgcgcc attaccgagt 2580
ccgggctgcg cgttggtgcg gatatctcgg tagtgggata cgacgatacc gaagacagct 2640
catgttatat cccgccgtta accaccatca aacaggattt tcgcctgctg gggcaaacca 2700
cgtggaccgc ttgctgcaac tctctcaggg ccaggcggtg aagggcaatc agctgttgcc 2760
cgtctcactg gtgaaaagaa aaaccaccct ggcgccgggg atcagccccg gatgctttgg 2820
atacggtcta tgagctggca gcgtatttga ccgatccgga cacctgggat aatgtgtgga 2880
ttttgtcgga tcagcttgag taggacaaat ccgccgagct tcgacgagat tttcaggagc 2940
taaggaagct aaaatggaga aaaaaatcac tggatatacc accgttgata tatcccaatg 3000
gcatcgtaaa gaacattttg aggcatttca gtcagttgct caatgtacct ataaccagac 3060
cgttcagctg gatattacgg cctttttaaa gaccgtaaag aaaaataagc acaagtttta 3120
tccggccttt attcacattc ttgcccgcct gatgaatgct catccggagt tccgtatggc 3180
aatgaaagac ggtgagctgg tgatatggga tagtgttcac ccttgttaca ccgttttcca 3240
tgagcaaact gaaacgtttt catcgctctg gagtgaatac cacgacgatt tccggcagtt 3300
tctacacata tattcgcaag atgtggcgtg ttacggtgaa aacctggcct atttccctaa 3360
agggtttatt gagaatatgt ttttcgtctc agccaatccc tgggtgagtt tcaccagttt 3420
tgatttaaac gtggccaata tggacaactt cttcgccccc gttttcacca tgggcaaata 3480
ttatacgcaa ggcgacaagg tgctgatgcc gctggcgatt caggttcatc atgccgtctg 3540
tgatggcttc catgtcggca gaatgcttaa tgaattacaa cagtactgcg atgagtggca 3600
gggcggggcg taattttttt aaggcagtta ttggtgccct tcgaaatgac cgaccaagcg 3660
acgcccaacc tgccatcacg agatttcgat tccaccgccg ccttctatga aaggttgggc 3720
ttcggaatcg ttttccggga cgccaacaac aagacccatc atagtttgcc cccgcgacat 3780
tgaccataaa ttcatcgcac aaaatatcga acggggttta tgccgctttt agtgggtgcg 3840
aagaatagtc tgctcattac ccgcgaacac cgccgcattc agatcacgct tagtagcgtc 3900
cccatgagta ggcagaaccg cgtccaagtc cacatcatcc ataacgatca tgcacggggt 3960
ggaatccaca cccagacttg ccagcacctc attagcgaca cgttgcgcag cggccacgtc 4020
cttagcctta tccacgcaat cgagaacgta ctgcctaacc gcgaaatcag actgaatcag 4080
tttccaatca tcgggcttca ccaaagcaac agcaacgcgg gttgattcga cccgttccgg 4140
tgcttccaga ccggcgagct tgtacagttc ttcttccatt tcacgacgta catcagcgtc 4200
tatgtaatca atgcccaaag cacgcttagc cccacgtgac caggacgaac gcaggttttt 4260
agaaccaacc tcatactcac gccaccgagc caccaaaaca gcgtccatat cctcgccggc 4320
gtcgctttga tcggccaaca tatccaacat ctgaaacggc gtgtacgacc ccttagacgc 4380
ggttttagta gcggagccag tcagttcctg agacatgccc ttagcgaggt aggttgccat 4440
tttcgcagcg tctccacccc aggtagacac ctgatcaagt ttgaccccgt gctcacgcag 4500
tggcgcgtcc ataccggcct taaccacacc agcagaccag cgggaaaaca tggaatcctc 4560
aaacgccttg agttcatcgt cagacagtgg acgatccaag aacaacagca tgttgcggtg 4620
caagtgccaa ccgttcgccc aagagtctgt gacctcatag tcactatagg tgtgctccac 4680
cccgtaccgt gcacgttctt tcttccactg agatgttttc accatcgaag agtacgcagt 4740
cttaataccc gcttcaacct gcgcaaatga ctgtgagcgg ttgtgtcgaa cagtgcccac 4800
aaacatcatg agcgcgccac ccgccgccaa gtgattctta gtagcaatag ccagctcaat 4860
gcggcgttcg cccatgactt ccaattcagc cagaggtgac ccccagcgag agtgagagtt 4920
ttgcagaccc tcaaactgcg aagcaccgtt agacgaccag gacaccgcaa cagcttcgtc 4980
cctgcgccac ctatggcacc ccgccagagc cttactattg gtgatcttgt acatgacgtt 5040
ttgcctacgc cacgccctag cgcgagtgac cttagaaccc tcattgacct gcggttcctt 5100
agaggtgttc acttctattt cagtgttact cagtgttacc tagacccgat gttgtgcggg 5160
gttgcgcagt gcgagtttgt gcgggtgttg tgcccgttgt cttagctagt gctatggttg 5220
tcaattgaaa ccccttcggg ttatgtggcc cccgtgca 5258

Claims (6)

1. A method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli is characterized by comprising the following steps:
(1) carrying out amplification by taking the PET-21a-GX-1-Fiber2 plasmid as a template and Fiber-2-F and Fiber-2-R as primers to obtain a Fiber-2 target fragment;
(2) PXMJ19-C17 1786T-hexon (T7) plasmid is used as a template, PXMJ19-T7-his-F and PXMJ19-T7-his-R are used as primers for amplification, and a PXMJ19-C1786T-T7 vector fragment is obtained;
(3) carrying out homologous recombination on the Fiber-2 target fragment and the PXMJ19-C17 1786T-T7 vector fragment to obtain a recombinant plasmid PXMJ19-T7-his-Fiber 2;
(4) the recombinant plasmid PXMJ19-T7-his-Fiber2 is transformed into Shuffle T7-B competent cells for expressing the Fiber-2 protein;
the primer sequences are respectively as follows:
Fiber-2-F:AAGAAGGAGATATAATGCTGCGTGCGC;
Fiber-2-R:AGCCGGATCTCATCAGTGGTGGTGG;
PXMJ19-T7-his-F:CCACCACCACTGATGAGATCCGGCT;
PXMJ19-T7-his-R:CACGCAGCATTATATCTCCTTCTTA;
the nucleotide sequence of the PET-21a-GX-1-fiber2 plasmid is SEQ ID NO 6;
the nucleotide sequence of the PXMJ19-C17 1786T-hexon (T7) plasmid is SEQ ID NO. 7.
2. The method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli as claimed in claim 1, wherein: the nucleotide sequence of the Fiber-2 target fragment obtained in the step (1) is SEQ ID NO: 8.
3. The method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli as claimed in claim 1, wherein: the nucleotide sequence of the PXMJ19-C17 1786T-T7 vector fragment obtained in the step (2) is SEQ ID NO: 9.
4. The method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli as claimed in claim 1, wherein: the homologous recombination conditions in the step (3) are as follows:
adding the Fiber-2 target fragment and the PXMJ19-C17 1786T-T7 vector fragment into the reaction solution according to the volume ratio of 1:2, shaking up, incubating in a water bath kettle at 37 ℃ for 30min, and then cooling at 4 ℃ or on ice to obtain the recombinant product.
5. The method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli as claimed in claim 1, wherein: the step of transforming the recombinant plasmid PXMJ19-T7-his-fiber2 into Shuffle T7-B competent cells in the step (4) is as follows: adding the recombinant plasmid PXMJ19-T7-his-fiber2 into the Shuffle T7-B competent cells, uniformly mixing, standing on ice for 30min, performing water bath heat shock at 42 ℃ for 45sec, immediately placing on ice for cooling for 2-3min, adding an SOC culture medium, and shaking the cells at 37 ℃ and the rotation speed of 200-; preheating LB solid culture medium containing chloramphenicol resistance in a 37 ℃ incubator, centrifuging to remove supernatant, re-suspending the thallus with the rest culture medium, uniformly coating on a flat culture medium containing chloramphenicol resistance with a sterile coating rod, and performing inverted culture in the 37 ℃ incubator for 12-16 h.
6. The method for efficiently expressing avian adenovirus Fiber-2 protein in Escherichia coli according to claim 5, wherein the step of expressing the Fiber-2 protein in step (4) is as follows:
and (3) selecting a single colony after transformation culture, inoculating the single colony into an LB solid culture medium with chloramphenicol resistance, carrying out shake culture on the bacteria at 30 ℃, and 200rpm until the bacteria reach an exponential phase, adding IPTG (isopropyl thiogalactoside) with the final concentration of 1mM, and carrying out induction for 15h at 16 ℃ in a shaking table.
CN202011391371.9A 2020-12-02 2020-12-02 Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli Pending CN112608932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011391371.9A CN112608932A (en) 2020-12-02 2020-12-02 Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011391371.9A CN112608932A (en) 2020-12-02 2020-12-02 Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli

Publications (1)

Publication Number Publication Date
CN112608932A true CN112608932A (en) 2021-04-06

Family

ID=75228552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011391371.9A Pending CN112608932A (en) 2020-12-02 2020-12-02 Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli

Country Status (1)

Country Link
CN (1) CN112608932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817764A (en) * 2021-10-28 2021-12-21 华南农业大学 Preparation and application of group I4 avian adenovirus Fiber-2 protein

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966252A (en) * 2013-01-28 2014-08-06 北大工学院绍兴技术研究院 Application of cellulose binding domain in secretory expression system of corynebacteria
CN103966151A (en) * 2013-01-29 2014-08-06 上海凯圣生物科技有限公司 Construction method and applications of genetic engineering bacterium for producing L-arginine
CN107475296A (en) * 2017-06-20 2017-12-15 广东温氏食品集团股份有限公司 A kind of recombinant Borrel virus transfer vector for expressing the type adenovirus fiber2 genes of chicken 4 and its construction method and application
US20200024625A1 (en) * 2017-03-21 2020-01-23 Wuhan Grand Hoyo Co., Ltd. Corynebacterium Constitutive Expression Vector Promoter Screened On The Basis Of Transcriptome Sequencing, Screening Method Thereof, And Applications Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966252A (en) * 2013-01-28 2014-08-06 北大工学院绍兴技术研究院 Application of cellulose binding domain in secretory expression system of corynebacteria
CN103966151A (en) * 2013-01-29 2014-08-06 上海凯圣生物科技有限公司 Construction method and applications of genetic engineering bacterium for producing L-arginine
US20200024625A1 (en) * 2017-03-21 2020-01-23 Wuhan Grand Hoyo Co., Ltd. Corynebacterium Constitutive Expression Vector Promoter Screened On The Basis Of Transcriptome Sequencing, Screening Method Thereof, And Applications Thereof
CN107475296A (en) * 2017-06-20 2017-12-15 广东温氏食品集团股份有限公司 A kind of recombinant Borrel virus transfer vector for expressing the type adenovirus fiber2 genes of chicken 4 and its construction method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PARK H S等: "Molecular analysis of the hexon,penton base,and fiber-2 genes of Korean fowl adenovirus serotype 4 isolates from hydropericardium syndrome-affected chickens", 《VIRUS GENES》, vol. 53, no. 1, 31 December 2017 (2017-12-31), pages 111 - 116, XP036153345, DOI: 10.1007/s11262-016-1393-z *
曹洁等: "禽腺病毒血清4型纤突蛋白1(Fiber 1)多克隆抗体的制备", 《畜牧与兽医》, no. 10, 29 September 2020 (2020-09-29), pages 97 - 102 *
赵志敬等: "应用纤维素结合域标签构建谷氨酸棒状杆菌表达***", 《生物工程学报》, no. 05, 10 April 2013 (2013-04-10), pages 691 - 694 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817764A (en) * 2021-10-28 2021-12-21 华南农业大学 Preparation and application of group I4 avian adenovirus Fiber-2 protein

Similar Documents

Publication Publication Date Title
KR102622910B1 (en) Pd-1 homing endonuclease variants, compositions, and methods of use
CN107250363B (en) Compositions and methods for efficient gene editing in E.coli
CN110923183A (en) Construction method of lanosterol-producing escherichia coli strain
CN113755418A (en) Recombinant engineering bacterium for displaying carbonic anhydrase on surface as well as construction method and application thereof
CN102719471B (en) Integrative plasmid pOPHI and resistance screening marker-free self-luminescent mycobacterium
CN112608932A (en) Method for efficiently expressing avian adenovirus Fiber-2 protein in escherichia coli
CN101328486A (en) Recombinant plasmid for acetone-butanol clostridium gene disruption
CN106011133B (en) A kind of small DNA molecular amount reference substance, reference substance plasmid and preparation method thereof
CN110241099B (en) Truncated variant of CRISPR nuclease SpCas9 of streptococcus pyogenes and application thereof
CN116083398B (en) Isolated Cas13 proteins and uses thereof
CN114085918B (en) RPA-CRISPR/Cas12a-FQ system and application thereof in environmental water body biological detection
CN112538104B (en) Method for constructing fusion-promoting plasmid to optimize expression and purification of avian adenovirus Fiber-2 protein
PT91520A (en) PROCESS FOR THE PREPARATION OF PROTEINS BY EXPRESSION OF HOMOLOGICAL AND HETEROLOGICAL PROTEINS FUNCTIONAL FROM THE EXTERNAL MEMBRANE OF E. COLI AND OTHER GRAM-NEGATIVE BACTERIA
CN110016481A (en) A kind of pX335-xCas9n carrier and its construction method and application
CN108949690B (en) A method of prepare can real-time detection mescenchymal stem cell bone differentiation cell model
CN114292800A (en) Recombinant cell for recombinant expression of IGF-1 gene and recombinant expression method
CN113755512B (en) Method for preparing tandem repeat protein and application thereof
CN110964680B (en) Engineering strain and method for preparing farnesene by using cellulose
CN110964681B (en) Engineering strain and method for preparing farnesene by using cellulose
CN110964679B (en) Engineering strain and method for preparing farnesene by using cellulose
KR102527339B1 (en) Preparing method of formic acid using carbon monoxide dehydrogenase and formate dehydrogenase
CN114480407B (en) Clec126 gene in caenorhabditis elegans genome and application thereof
CN113234746B (en) Method for pesticide induced protein interaction and induced gene expression
JP2002153288A (en) Compound for introducing material into intracellular specific site
RU2781083C2 (en) Options, compositions, and methods for use of homing-endonuclease pd-1

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination