CN112557383B - 一种基于MnO2复合酶模拟物的铜离子比色检测方法 - Google Patents

一种基于MnO2复合酶模拟物的铜离子比色检测方法 Download PDF

Info

Publication number
CN112557383B
CN112557383B CN202011432395.4A CN202011432395A CN112557383B CN 112557383 B CN112557383 B CN 112557383B CN 202011432395 A CN202011432395 A CN 202011432395A CN 112557383 B CN112557383 B CN 112557383B
Authority
CN
China
Prior art keywords
solution
mno
pani
tmb
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011432395.4A
Other languages
English (en)
Other versions
CN112557383A (zh
Inventor
刘冰倩
苏永欢
蔡杰
高荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN202011432395.4A priority Critical patent/CN112557383B/zh
Publication of CN112557383A publication Critical patent/CN112557383A/zh
Application granted granted Critical
Publication of CN112557383B publication Critical patent/CN112557383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/775Indicator and selective membrane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明一种基于MnO2复合酶模拟物的铜离子比色检测方法及应用,包括以下步骤:配置不同浓度的铜离子和L‑cys溶液;合成MB和MB/Au/PANI/MnO2复合材料;配制NaAC‑HAC缓冲液;配制TMB溶液;条件优化;对铜离子比色检测。本发明提供的基于MnO2复合酶模拟物的铜离子比色检测方法及应用,MB/Au/PANI/MnO2复合材料作为复合酶模拟物,具有强催化性,实现对铜离子的高灵敏、定量检测,提高目标物检测的选择性和稳定性,将复合酶模拟物换成掺杂MnO2的其他复合物可应用于新目标物的检测分析,通用性强,检测方法简单、便捷,成本低廉,原料易得、无毒,可应用于实际样品检测,适合工业推广。

Description

一种基于MnO2复合酶模拟物的铜离子比色检测方法
技术领域
本发明属于比色检测技术领域,具体涉及一种基于MnO2复合酶模拟物的铜离子比色检测方法及应用。
背景技术
目前,业内常用的现有技术是这样的:
铜是人体必需微量元素,在人体一系列基本生理过程和活动中起着重要的作用。铜参与多种生物酶的形成并保持酶的活性,使电子传递和氧化还原代谢生命活动正常进行。铜还参与红细胞生成,以维持正常的造血功能。此外,儿童抽搐与人体内铜含量密切相关。但是,过量的铜离子(Cu2+)也会导致一系列健康问题,包括缺血性心脏病、贫血、肾病、骨骼疾病、老年痴呆症、朊病毒、帕金森疾病等。更重要的是,在水中Cu2+含量过高会对水生生物有不利影响。世卫组织和美国环境保护署已将饮用水中Cu2+的最大允许限量设定为1.3ppm。中国国家标准表明,自来水中Cu2+的最大浓度限制为1 mg/L。因此,在适当范围内监测环境中Cu2+的浓度至关重要。目前检测Cu2+的传统方法通常使用原子吸收光谱法、原子荧光光谱法和电感耦合等离子体质谱法,但这些方法耗时长、样品制备复杂,需要配备专业操作人员。因此,无论是从生物角度还是从环境角度,都需要设计一种简单定量检测Cu2+的分析方法。比色化学传感器因其操作简单、直观、选择性高、响应时间短等优点,是一种替代性的设备,能够在水介质中通过显示颜色变化检测目标离子,可实现裸眼检测和现场检测。
辣根过氧化物酶(Horseradish Peroxidase,HRP)是一种非常常用的酶,对H2O2的分解具有高效的催化作用,被广泛应用于生物感应的标记,如酶联免疫吸附试验。2019年,研究人员以棉线作为固体吸附剂,提高了棉线上局部Cu2+浓度,利用抗坏血酸将Cu2+还原为Cu+,通过观察HRP催化氧化无色TMB(四甲基联苯胺,3,3’,5,5’-Tetramethylbenzidine)为蓝色氧化态(ox TMB)的颜色变化,得出Cu+具有抑制HRP催化氧化TMB的作用,从而实现定量检测Cu2+,检测限为0.15 nmol/L,与其他分析方法相比,提出了一种灵敏、轻便的在线预浓缩比色检测Cu2+的方法。然而。这个比色化学传感器以HRP作为酶催化反应,HRP具有易变性、成本高、制备复杂、反应孵育时间长等缺点,大大限制了其实际应用。因此,研究具有制备简单、性质稳定、环境耐受性强等优点的酶对于检测生物分子具有重要意义。
模拟酶,又被称为纳米酶,近年来,无机纳米材料作为一种仿生纳米酶的应用在研究领域引起了越来越大的兴趣。仿生纳米酶是一类化学合成的纳米材料,具有与某些天然酶相似的生物催化活性。纳米酶结构比天然酶简单、化学性质稳定,不仅具有酶的功能,还具有批量生产和成本低的优点。此外,纳米酶本质是一种纳米材料,具有较高的比表面积和特殊的理化性质,如光、电、磁等,纳米材料独特的生化特性不仅使纳米酶具有多种功能,而且使其能够进行多种设计和应用。在纳米材料中加入磁性纳米材料,如Fe3O4,利用外加磁场可以有效地将纳米材料从溶液中分离出来,并且很容易回收利用。然而,未修饰的Fe3O4不仅容易团聚和氧化,而且在酸性介质中不稳定,限制了其广泛的应用。聚苯胺(Polyaniline,PANI)是一种高效的Fe3O4纳米粒子保护剂,近年来,PANI因其反应条件稳定性好、无毒、成本低而被开发为催化载体。金Au是一种具有催化活性的金属,具有反应条件温和、操作简单、反应时间短、反应选择性高等特性。MnO2是一种由人工制作的纳米酶,具有较好稳定性,具有大小不均的多孔结构及特定晶体结构,这种构造有助于催化作用。磁珠(MagneticBeads,MB)是一种具有较高导磁率、廉价易用的抗干扰元件,此外还有比表面积大、稳定性好、低毒等特点。因此,将MB、Au、PANI、MnO2制备成复合物对于检测Cu2+具有重要意义。
半胱氨酸(L-Cysteine,L-Cys)可以生成谷胱甘肽,谷胱甘肽是最主要及最强的抗氧化剂。谷胱甘肽是属于含有巯基的、小分子肽类物质,半胱氨酸上的巯基为其活性基团,L-Cys与Cu2+可形成不溶性的硫醇盐(mercaptide)。在L-Cys与Cu2+反应后,溶液在催化材料存在下发生显色。
比色检测是以有色化合物的显色反应为基础,通过比较(目视比色法)或测量(紫外可见光谱法)有色物质溶液颜色深度来确定待测组分含量的方法。比色检测成本低、操作简便、检测时长短、肉眼快速定性检测,适用于快速检测。比色检测是一种广泛使用的检测方法之一,ELISE中复合材料及TMB存在下与待测物的含量呈相关性,酶催化底物生成有色产物,有色产物的量与待测物的量直接相关,可通过颜色深浅进行定性或定量分析。由于酶催化效率高,比色检测灵敏度高,因此,利用比色检测具有重要意义。
综上所述,现有技术存在的问题是:
(1)用于检测Cu2+方法,如吸收光谱法、电化学法、离子色谱法,这些方法成本高、耗时长、需要精密仪器设备及专业操作技术人员。
(2)目前,用于Cu2+检测的简易型分析研究较少,且Cu2+在生物基质中的检测具有一定难度,难以实现低浓度目标物高灵敏度检测。
发明内容
为解决现有技术中存在的技术问题,本发明的目的在于提供一种基于MnO2复合酶模拟物的铜离子比色检测方法及应用,铜离子的检测范围为1.0×102-1.0×107 nM,检测限为0.65 nM。
为实现上述目的,达到上述技术效果,本发明采用的技术方案为:
一种基于MnO2复合酶模拟物的铜离子比色检测方法,包括以下步骤:
S101:配置不同浓度铜离子和L-Cys溶液(配置102-107 nmol/L的Cu2+及L-Cys溶液)
S102:合成磁珠MB和MB/Au/PANI/MnO2复合材料
S103:配制NaAC-HAC缓冲液
S104:配制TMB溶液
S105:条件优化
S106:对铜离子进行比色检测。
进一步的,步骤S101中,称取CuSO4·5H2O,配置成硫酸铜溶液,随后稀释若干次,得100 nmol/L Cu2+,所配溶液置于4℃保存。
进一步的,步骤S101中,称取L-Cys,配成10 mL、400 μmol/L溶液,所配溶液置于4℃保存。
进一步的,步骤S102中,MB的合成步骤包括:
HCl溶液中通氮气20-25 min,称取FeCl2·4H2O和FeCl3·6H2O置于圆底烧瓶中,加入以上通氮气的HCl溶液,充分搅拌至完全溶解,混合液中通氮气除氧20-25 min ,重复通入数次,然后快速加入NaOH溶液,在氮气保护下剧烈搅拌2-2.1 h,用二次水冲洗数次至中性,一部分置于4 ℃保存待用,另一部分自然晾干待用。
进一步的,步骤S102中,MB/Au/PANI/MnO2复合材料的合成步骤包括:
水洗后的磁珠MB加入PVP溶液中,振荡摇匀,加入氯金酸,超声5-6min,备用,记为溶液A;
苯胺与HCL溶液混合搅拌均匀,记为溶液B;
将溶液A与溶液B混合,同时加入过硫酸铵,振匀,静置2-2.1 h,磁性分离、清洗、烘干,再分散于水中,超声均匀,加入KMnO4溶液,振匀,磁性分离、清洗,即得所需MB/Au/PANI/MnO2复合材料。
进一步的,步骤S103中,NaAC-HAC缓冲液的配制步骤包括:
称取乙酸钠,稀释定容至100 mL,用乙酸调pH至4,得NaAC-HAC缓冲液。
进一步的,步骤S104中,TMB溶液要现配现用,TMB溶液的制备步骤包括:
A液:TMB溶于DMSO,搅拌均匀,备用;
B液:柠檬酸加入NaHPO4搅拌均匀,定容至100 mL;
随后将制备好的A液全部加入10 mL B液中,超声均匀,得所需TMB溶液。
进一步的,步骤S105中,对MB/PANI/Au/MnO2复合材料与TMB反应体积的优化、L-Cys与MB/PANI/Au/MnO2复合材料反应体积的优化、Cu2+与L-Cys反应时间的优化、L-Cys与MB/PANI/Au/MnO2复合材料反应时间的优化、MB/PANI/Au/MnO2复合材料与TMB反应时间优化、缓冲液pH的优化。
进一步的,步骤S106中,取NaAC-HAC缓冲液,加入L-Cys溶液与Cu2+反应,随后加入MB/PANI/Au/MnO2复合材料,再加入TMB溶液反应后进行比色检测,测定吸光度。
本发明公开了一种基于MnO2复合酶模拟物的铜离子比色检测方法在检测除铜离子的目标物中的应用,将MB/PAMAM/MnO2复合材料替换成掺杂MnO2的其他复合物。
与现有技术相比,本发明的有益效果为:
MnO2复合酶模拟物,即MB/Au/PANI/MnO2 复合材料,具有强催化性,可催化TMB氧化成蓝色阳离子自由基氧化四甲基联苯胺(oxidized TMB,ox TMB),L-Cys可有效抑制阳离子自由基的生成,使其还原为无色TMB分子,L-Cys与Cu2+可形成不溶性硫醇盐,通过比色分析,实现Cu2+的定量检测,提高了Cu2+检测灵敏度、目标物检测的选择性和稳定性;
相比于HRP,MnO2具有较好化学稳定性、操作简易、成本低、易修饰等特点,可避免使用高成本且不稳定、难操作的生物酶;通过利用MB/Au/PANI/MnO2复合材料,不仅可用于Cu2+定量检测,还可将MB/Au/PANI/MnO2复合材料换成掺杂MnO2的其他复合物并应用于新目标物的检测分析,通用性强,灵敏度高;
纳米酶催化氧化TMB与比色分析方法相结合,构建Cu2+为检测对象的比色分析新方法,提高了分析灵敏度,与传统的Cu2+检测方法相比,其避免了设备昂贵、预处理复杂、操作规程繁琐、毒性大等缺点,检测方法简便、高效、成本低且稳定,原料易得、无毒,可应用于实际样品检测,适合工业化推广使用。
附图说明
图1为本发明的工作原理流程图;
图2为本发明的原理示意图;
图3为本发明在波长652nm下的TMB与MB/Au/PANI/MnO2复合材料反应的不同体积对Cu2+的影响曲线图;
图4为本发明在波长652nm下的TMB与MB/Au/PANI/MnO2复合材料的反应时间对Cu2+的影响曲线图;
图5为本发明Cu2+检测的选择性实验结果图;
图6为本发明的不同Cu2+浓度的标准工作曲线图;
图7为本发明的不同Cu2+浓度的UV-vis响应曲线图。
具体实施方式
下面对本发明的实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例1
如图1-7所示,一种基于MnO2复合酶模拟物的铜离子比色检测方法,以铜离子Cu2+检测为例,作用机理为:
MB/PANI/MnO2复合材料作为复合酶模拟物,可以催化TMB氧化成蓝色阳离子自由基,L-Cys可以有效抑制阳离子自由基的生成,使其还原成无色TMB分子,L-Cys与Cu2+可形成不溶性的硫醇盐。在L-Cys与不同浓度的Cu2+反应后,溶液在MB/PANI/MnO2复合材料及TMB的存在条件下变为蓝色,且在652nm波长下的吸光度值随铜离子浓度变化而变化,从而达到检测铜离子的目的,利用这个特点,可以建立一种简便、成本低、快速、高效且稳定的检测新方法。
本发明还公开了一种基于MnO2复合酶模拟物的铜离子比色检测方法在检测除铜离子的目标物中的应用,将MB/PAMAM/MnO2复合材料替换成掺杂MnO2的其他复合物即可进行其他目标物的检测分析。
研究不同浓度的Cu2+对检测的影响及MB和MB/Au/PANI/MnO2复合材料的合成:
(1)配置102-107 nmol/L的Cu2+及L-Cys溶液
称0.0025 g CuSO4·5H2O配成1 mL、107 nmol/L的硫酸铜溶液。取100 μL、107 nmol/L硫酸铜溶液,稀释10倍得106 nmol/L Cu2+;再取100 μL、106 nmol/L稀释10倍得105nmol/L Cu2+;依照此法配制104 nmol/L Cu2+、103 nmol/L Cu2+、100 nmol/L Cu2+
称0.00048g的L-cys配成10 mL、400 μmol/L溶液,所配溶液均置于4℃保存。
(2)磁珠MB和MB/Au/PANI/MnO2复合材料的合成
MB的合成步骤包括:
取30 mL、1.2 mmol/L HCl通氮气20 min,称取0.29815 g FeCl2·4H2O、0.81087 gFeCl3·6H2O置于容器中,加入以上通氮气的30 mL、1.2 mmol/L HCl溶液,充分搅拌至完全溶解,混合液通氮气20 min,重复通入三次,然后快速加入30 mL、1.25 mol/L NaOH,在氮气保护下剧烈搅拌2 h,用二次水冲洗三次至中性,一部分置于4 ℃保存待用,另一部分自然晾干待用。
MB/Au/PANI/MnO2复合材料的合成步骤包括:
水洗后的MB取1ml加入PVP溶液中(0.1 g PVP+10 ml水),置于恒温振荡器震荡1h,滴加2 mL质量分数1%的HAuCl4,超声5 min,备用,记为溶液A;
将0.3 mL苯胺与10 mL 1 mol/L HCl搅拌混合均匀,记为溶液B;
溶液A与溶液B混合,加入0.18 g过硫酸铵振荡1 h,静止2 h后进行磁性分离,用乙醇清洗沉淀物1~2次,在50~60℃下烘干;
取烘干产物5 mg分散于5 mL水中,超声,加入5 mg KMnO4,振荡1 h后进行磁性分离,水洗沉淀物1~2次,装入2 mL的离心管中,即得MB/Au/PANI/MnO2复合材料,随后将合成的MB/Au/PANI/MnO2复合材料稀释四倍,得实验用MB/Au/PANI/MnO2复合材料,每次取实验用MB/Au/PANI/MnO2复合材料时均需混匀25 s。
(3)缓冲溶液制备
称取乙酸钠(NaAC)8.3 g,稀释定容至100 mL,用1.75 mol/L乙酸(HAC)调pH至4,得0.6 mol/L、pH=4的NaAC-HAC缓冲液。
实施例2
TMB溶液的制备步骤包括:
TMB溶液要现配现用。
A液:0.0143 g TMB溶于100 μL DMSO,搅拌均匀,备用;
B液:24.3 mL、0.1 mol/L 柠檬酸加入5.7 mL、0.2 mol/L NaH2PO4搅拌均匀,定容至100 mL;
随后将制备好的A液全部加入10 mL B液中,超声均匀,得实验用6 mmol/L TMB溶液,4℃避光保存。
实施例3
Cu2+的比色检测:
S101:称0.0025 g CuSO4·5H2O配成1 mL、107 nmol/L的硫酸铜溶液。取100 μL、107 nmol/L的硫酸铜溶液,稀释10倍得106 nmol/L Cu2+;取100 μL、106 nmol/L稀释10倍得105 nmol/L Cu2+;依照此法配制104 nmol/L Cu2+、103 nmol/L Cu2+、102 nmol/L Cu2+
称0.00048g的L-cys配成10 mL、400 μmol/L溶液,所配溶液均置于4℃保存。
S102:MB的合成步骤包括:
取30 mL、1.2 mmol/L HCl通氮气20 min,称取0.29815 g FeCl2·4H2O、0.81087 gFeCl3·6H2O置于容器中,加入以上通氮气的30 mL、1.2 mmol/L HCl溶液,充分搅拌至完全溶解,混合液通氮气20 min,重复通入三次,然后快速加入30 mL、1.25 mol/L NaOH,在氮气保护下剧烈搅拌2 h,用二次水冲洗三次至中性,一部分置于4 ℃保存待用,另一部分自然晾干待用。
MB/Au/PANI/MnO2复合材料的合成步骤包括:
水洗后的MB取1ml加入PVP溶液中(0.1 g PVP+10 ml水),振荡摇床1 h,加入2 ml1 %氯金酸,超声5min,备用,记为溶液A;
0.3 ml 苯胺+10 ml、1 M HCL,混合搅拌均匀,记为溶液B;
溶液A与溶液B混合,同时加入过硫酸铵0.18 g,振荡1 h,静置2 h,磁性分离,用乙醇清洗1~2次,在50~60 ℃的温度下烘干、称量,取5 mg上述制品分散于5 ml水中,超声均匀,加入5 mg KMnO4,振荡1 h,磁性分离,水洗1~2次,即得所需MB/Au/PANI/MnO2复合材料。
S103:NaAC-HAC缓冲液的配制步骤包括:
称取乙酸钠(NaAC)8.3 g,稀释定容至100 mL,用1.75 mol/L乙酸(HAC)调pH至4,得0.6 mol/L、pH=4的NaAC-HAC缓冲液。
S104:TMB溶液的制备步骤包括:
TMB溶液要现配现用。
A液:0.0143 g TMB溶于100 μL DMSO,搅拌均匀,备用;
B液:24.3 mL、0.1 mol/L 柠檬酸加入5.7 mL、0.2 mol/L NaH2PO4搅拌均匀,定容至100 mL;
随后将制备好的A液全部加入10 mL B液中,超声均匀,得实验用6 mmol/L TMB溶液,4℃避光保存。
S105:条件优化:
MB/PANI/Au/MnO2复合材料与TMB反应体积的优化、L-Cys与MB/PANI/Au/MnO2反应体积的优化、Cu2+与L-Cys反应时间的优化、L-Cys与MB/PANI/Au/MnO2复合材料反应时间的优化、MB/PANI/Au/MnO2复合材料与TMB反应时间优化、缓冲液pH的优化。
图3为本发明在波长652nm下的TMB与MB/Au/PANI/MnO2复合材料反应的不同体积对Cu2+的影响曲线图,结果显示,吸光度信号大小与TMB与MB/Au/PANI/MnO2复合材料反应的体积线性相关,相关系数为0.9817,体积越大,信号值越大。
图4为本发明在波长652nm下的TMB与MB/Au/PANI/MnO2复合材料的反应时间对Cu2+的影响曲线图,结果显示,吸光度信号基本不受反应时间影响。
S106:对Cu2+进行选择性检测:
最佳优化条件下,取线性范围内一浓度(1mM)的铜离子和其10倍量的其他离子(镁离子、铁离子、锌离子、钠离子、钙离子、镉离子、钾离子、锰离子)用本体系反应(L-Cys、MB/PANI/MnO2材料与TMB),检测其吸光度值,紫外扫描波长范围为200~800 nm。
图5所示的结果显示,在镁离子、铁离子、锌离子、钠离子、钙离子、镉离子、钾离子、锰离子的干扰下,本发明的检测方法对铜离子具有良好的选择性。
图6为不同Cu2+浓度的标准工作曲线图,图7为不同Cu2+浓度的UV-vis响应曲线图,吸光度信号大小随铜离子浓度增大而增大。
本发明未具体描述的部分采用现有技术即可,在此不做赘述。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (1)

1.一种基于MnO2复合酶模拟物的铜离子比色检测方法,其特征在于,包括以下步骤:
S101:配置102-107 nmol/L的Cu2+及L-Cys溶液;
S102:合成磁珠和MB/Au/PANI/MnO2复合材料;
S103:配制NaAC-HAC缓冲液;
S104:配制TMB溶液;
S105:条件优化;
S106:对铜离子进行比色检测;
步骤S101中,称取CuSO4·5H2O,配置成硫酸铜溶液,随后稀释若干次,得100 nmol/LCu2+,所配溶液置于4℃保存;
步骤S101中,称取L-Cys,配成10 mL、400 μmol/L溶液,所配溶液置于4℃保存;
步骤S102中,磁珠的合成步骤包括:
HCl溶液中通氮气20-25 min,称取FeCl2·4H2O和FeCl3·6H2O置于圆底烧瓶中,加入以上通氮气的HCl溶液,充分搅拌至完全溶解,混合液中通氮气除氧20-25 min ,重复通入数次,然后快速加入NaOH溶液,在氮气保护下剧烈搅拌2-2.1 h,用二次水冲洗数次至中性,一部分置于4 ℃保存待用,另一部分自然晾干待用;
步骤S102中,MB/Au/PANI/MnO2复合材料的合成步骤包括:
水洗后的MB加入PVP溶液中,振荡摇匀,加入氯金酸,超声5-6min,备用,记为溶液A;
苯胺与HCL溶液混合搅拌均匀,记为溶液B;
将溶液A与溶液B混合,同时加入过硫酸铵,振匀,静置2-2.1 h,磁性分离、清洗、烘干,再分散于水中,超声均匀,加入KMnO4溶液,振匀,磁性分离、清洗,即得所需MB/Au/PANI/MnO2复合材料;
步骤S103中,NaAC-HAC缓冲液的配制步骤包括:
称取乙酸钠,稀释定容至100 mL,用乙酸调pH至4,得NaAC-HAC缓冲液;
步骤S104中,TMB溶液要现配现用,TMB溶液的制备步骤包括:
A液:TMB溶于DMSO,搅拌均匀,备用;
B液:柠檬酸加入NaHPO4搅拌均匀,定容至100 mL;
随后将制备好的A液全部加入10 mL B液中,超声均匀,得所需TMB溶液;
步骤S105中,对MB/PANI/Au/MnO2复合材料与TMB反应体积的优化、L-Cys与MB/PANI/Au/MnO2复合材料反应体积的优化、Cu2+与L-Cys反应时间的优化、L-Cys与MB/PANI/Au/MnO2复合材料反应时间的优化、MB/PANI/Au/MnO2复合材料与TMB反应时间优化、缓冲液pH的优化;
步骤S106中,取NaAC-HAC缓冲液,加入L-Cys溶液与Cu2+反应,随后加入MB/PANI/Au/MnO2复合材料,再加入TMB溶液反应后进行比色检测,测定吸光度;
MB/PANI/Au/MnO2复合材料复合材料具有强催化性,催化TMB氧化成蓝色阳离子自由基氧化四甲基联苯胺,L-Cys有效抑制阳离子自由基的生成,使其还原为无色TMB分子,L-Cys与Cu2+形成不溶性硫醇盐,通过比色分析,实现Cu2+的定量检测,铜离子的检测范围为1.0×102-1.0×107 nM,检测限为0.65 nM。
CN202011432395.4A 2020-12-10 2020-12-10 一种基于MnO2复合酶模拟物的铜离子比色检测方法 Active CN112557383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011432395.4A CN112557383B (zh) 2020-12-10 2020-12-10 一种基于MnO2复合酶模拟物的铜离子比色检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011432395.4A CN112557383B (zh) 2020-12-10 2020-12-10 一种基于MnO2复合酶模拟物的铜离子比色检测方法

Publications (2)

Publication Number Publication Date
CN112557383A CN112557383A (zh) 2021-03-26
CN112557383B true CN112557383B (zh) 2024-01-26

Family

ID=75060049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011432395.4A Active CN112557383B (zh) 2020-12-10 2020-12-10 一种基于MnO2复合酶模拟物的铜离子比色检测方法

Country Status (1)

Country Link
CN (1) CN112557383B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457741B (zh) * 2021-06-03 2023-04-11 四川农业大学 多酶活性的三层FeOx@ZnMnFeOy@Fe-Mn双金属有机凝胶的制备方法及应用
CN114295606B (zh) * 2021-11-10 2023-06-09 扬州大学 一种用于海洋铜离子检测的微流控生物逻辑门

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049008A (ja) * 2002-07-16 2004-02-19 Dai Ichi Pure Chem Co Ltd ホモシステインの定量方法及び定量用試薬
CN102706866A (zh) * 2012-05-18 2012-10-03 中国科学院宁波材料技术与工程研究所 一种快速检测多种单一金属离子的检测试剂及其制备和应用
CN103558215A (zh) * 2013-11-06 2014-02-05 中国科学院广州生物医药与健康研究院 一种基于点击化学和g四聚体的铜离子检测试剂盒以及检测方法
CN104849271A (zh) * 2015-05-26 2015-08-19 中国科学院烟台海岸带研究所 一种基于花菁的探针用于检测痕量二价铜离子的方法
CN104971778A (zh) * 2015-06-30 2015-10-14 天津大学 一种四氧化三铁-聚苯胺-金纳米复合材料的制备方法及其应用
CN106582848A (zh) * 2016-12-08 2017-04-26 曲阜师范大学 一种基于血红素介导金矿化途径的双催化功能模拟酶的制备方法及应用
WO2020037269A2 (en) * 2018-08-17 2020-02-20 The Regents Of The University Of California Composite matrix for analyte biosensors
CN110907249A (zh) * 2019-12-13 2020-03-24 青岛农业大学 一种基于复合纳米酶***的葡萄糖检测方法
WO2020228291A1 (zh) * 2019-05-14 2020-11-19 大连理工大学 一种提高辣根过氧化物酶稳定性的固定化酶方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049008A (ja) * 2002-07-16 2004-02-19 Dai Ichi Pure Chem Co Ltd ホモシステインの定量方法及び定量用試薬
CN102706866A (zh) * 2012-05-18 2012-10-03 中国科学院宁波材料技术与工程研究所 一种快速检测多种单一金属离子的检测试剂及其制备和应用
CN103558215A (zh) * 2013-11-06 2014-02-05 中国科学院广州生物医药与健康研究院 一种基于点击化学和g四聚体的铜离子检测试剂盒以及检测方法
CN104849271A (zh) * 2015-05-26 2015-08-19 中国科学院烟台海岸带研究所 一种基于花菁的探针用于检测痕量二价铜离子的方法
CN104971778A (zh) * 2015-06-30 2015-10-14 天津大学 一种四氧化三铁-聚苯胺-金纳米复合材料的制备方法及其应用
CN106582848A (zh) * 2016-12-08 2017-04-26 曲阜师范大学 一种基于血红素介导金矿化途径的双催化功能模拟酶的制备方法及应用
WO2020037269A2 (en) * 2018-08-17 2020-02-20 The Regents Of The University Of California Composite matrix for analyte biosensors
WO2020228291A1 (zh) * 2019-05-14 2020-11-19 大连理工大学 一种提高辣根过氧化物酶稳定性的固定化酶方法及应用
CN110907249A (zh) * 2019-12-13 2020-03-24 青岛农业大学 一种基于复合纳米酶***的葡萄糖检测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Maoqiang Chi等.Fabrication of oxidase-like polyaniline-MnO2 hybrid nanowires and their sensitive colorimetric detection of sulfite and ascorbic acid.《Talanta》.2018,第第191卷卷第172、175-177页. *
Na Pan等.Highly sensitive colorimetric detection of copper ions based on regulating the peroxidase-like activity of Au@Pt nanohybrids.《Analytical Methods》.2016,第7532-7534页. *
Wei Song等.Self-assembly directed synthesis of Au nanorices induced by polyaniline and their enhanced peroxidase-like catalytic properties.《Journal of Materials Chemistry C》.2017,第7465-7466页. *
基于对铂纳米粒子过氧化物模拟酶活性的抑制检测碘离子;路丽霞;王洋;蔺晓晓;李欣瑶;辛梦娜;;分析化学(第01期);第103-108页 *
李小琴等.基于碳量子点光活性模拟酶性能灵敏检测焦磷酸根离子.《分析测试学报》.2017,第第36卷卷(第第6期期),第794-799页. *

Also Published As

Publication number Publication date
CN112557383A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
Chang et al. BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+
Thomas et al. Calcein as a fluorescent probe for ferric iron: application to iron nutrition in plant cells
Davis et al. Electrochemical detection of nitrate and nitrite at a copper modified electrode
Fu et al. New fluorescent sensor for Cu 2+ and S 2− in 100% aqueous solution based on displacement approach
Afkhami et al. Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite
Wang et al. A highly structured hollow ZnO@ Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food
High et al. Determining copper ions in water using electrochemiluminescence
Zhang et al. Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction
Bastos et al. Adsorptive stripping voltammetric behaviour of UO2 (II) complexed with the Schiff base N, N′-ethylenebis (salicylidenimine) in aqueous 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium
CN112557383B (zh) 一种基于MnO2复合酶模拟物的铜离子比色检测方法
Salmon et al. The FeL model of iron acquisition: Nondissociative reduction of ferric complexes in the marine environment
Yüce et al. A voltammetric Rhodotorula mucilaginosa modified microbial biosensor for Cu (II) determination
Zhao et al. A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles
Rahmani et al. A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au–Ag bimetallic nanoclusters
Dai et al. One-pot synthesis of bovine serum albumin protected gold/silver bimetallic nanoclusters for ratiometric and visual detection of mercury
Zhou et al. Rapid measurement of microbial extracellular respiration ability using a high-throughput colorimetric assay
Dong et al. Polymerizing dopamine onto Q-graphene scaffolds towards the fluorescent nanocomposites with high aqueous stability and enhanced fluorescence for the fluorescence analysis and imaging of copper ions
CN110441365A (zh) 一种铁基尖晶石用于重金属离子电化学传感器的检测方法
Li et al. Fabricating a nano-bionic sensor for rapid detection of H2S during pork spoilage using Ru NPs modulated catalytic hydrogenation conversion
Alpat et al. Development of biosorption-based algal biosensor for Cu (II) using Tetraselmis chuii
CN107254307A (zh) 一种银纳米簇荧光囊泡及其制备方法与检测Fe3+的应用
Memon et al. An improved electrochemical sensor based on triton X-100 functionalized SnO2 nanoparticles for ultrasensitive determination of cadmium
Hu et al. A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework–reduced graphene oxide–CdTe quantum dot hybrids
CN115308169A (zh) 一种基于硫量子点和铜纳米簇的比率型荧光探针及其应用
Ayodhya Recent progress on detection of bivalent, trivalent, and hexavalent toxic heavy metal ions in water using metallic nanoparticles: A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant