CN112517026A - 活化过硫酸盐的非金属组合物及其制备方法和应用 - Google Patents

活化过硫酸盐的非金属组合物及其制备方法和应用 Download PDF

Info

Publication number
CN112517026A
CN112517026A CN202011512641.7A CN202011512641A CN112517026A CN 112517026 A CN112517026 A CN 112517026A CN 202011512641 A CN202011512641 A CN 202011512641A CN 112517026 A CN112517026 A CN 112517026A
Authority
CN
China
Prior art keywords
sulfur
ball milling
doped carbon
carbon material
persulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011512641.7A
Other languages
English (en)
Inventor
方国东
黄敏
王玉军
周东美
左静
秦丰林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Ditian High Tech Industrial Technology Research Institute Co ltd
Institute of Soil Science of CAS
Original Assignee
Nanjing Ditian High Tech Industrial Technology Research Institute Co ltd
Institute of Soil Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Ditian High Tech Industrial Technology Research Institute Co ltd, Institute of Soil Science of CAS filed Critical Nanjing Ditian High Tech Industrial Technology Research Institute Co ltd
Priority to CN202011512641.7A priority Critical patent/CN112517026A/zh
Publication of CN112517026A publication Critical patent/CN112517026A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

活化过硫酸盐的非金属组合物及其制备方法和应用,将活性炭、硫粉和球磨球加入到氧化锆球磨罐中,球磨结束后自然冷却至室温,过筛分离得到微纳尺寸的硫掺杂碳材料,所述微纳尺寸的硫掺杂碳材料的尺寸为200‑600 nm,孔容为0.023 cm3/g,平均孔径为1.62 nm,比表面积为12.19 m2/g。本发明制备出的硫掺杂碳材料组合物具有微纳米结构、催化性能优异,克服了传统金属依赖的Fenton反应过程中适用pH范围窄、Fe泥产量大和效率低等限制,在有机污染废水和土壤修复方面均具有广阔的应用前景。

Description

活化过硫酸盐的非金属组合物及其制备方法和应用
技术领域
本发明属于有机污染废水处理技术领域,具体涉及一种活化过硫酸盐的非金属组合物及其制备方法和应用。
技术背景
单过硫酸盐(PMS)可被金属氧化物、过渡金属等活化产生高活性的硫酸根自由基(SO4 •-,2.5-3.1 V)和羟基自由基(HO,2.8 V),在高效降解有机污染物方面具有突出优势,基于PMS的催化氧化技术得到了学界的广泛关注。然而,金属离子溶出、适用pH范围窄等限制,给实际应用带来诸多挑战。同时,非金属催化剂的环境友好性引起了广泛关注。由于比表面积大、不含金属等特性,碳基材料比如碳纳米管(CNTs)和还原氧化石墨烯(RGO)等活化过硫酸盐已有报道。在此基础上,修饰碳材料,如杂原子掺杂,可有效调控碳材料的结构和电子特性等,满足更多的需求。最近取得巨大进步的氮掺杂碳材料,其在催化领域有着优异的表现。杂原子掺杂碳材料催化剂的优异性能,吸引学者不断扩大掺杂谱,如硫(S)、磷(P)等杂原子。利用杂原子修饰碳材料,即将N、S等杂原子引入碳的骨架中。其中,N和C接近的原子半径,令N取代碳晶格中的碳原子相对容易,使得N被选择对碳材料进行掺杂,结果较为理想。和N不同,S比C原子的半径大很多,将S掺杂进入碳的骨架中较为困难,硫掺杂碳材料指示了碳材料领域的新兴方向,研究工作也相对较少。各种杂原子的掺杂方式对碳材料性能的影响同样引起了学者的研究兴趣。迄今,学者发展了多种方法,比如等离子体法、水热法和球磨法等。球磨法由于其高产品率、操作简单、绿色环保和易于规模化广受研究者青睐。球磨时,将杂原子和碳基材料进行球磨,高速运转的球磨球机械地将固体颗粒尺寸减小,产生表面缺陷,生成新的官能团,这些缺陷和官能团被认为是PMS的活化位点。
在能源危机和环境污染的当今社会,“能源”成为国家间竞争的热点。CNTs、RGO等制备工艺复杂、价格高昂等原因不适合大规模生产以及推广应用。因此,亟需开发环境友好、高效低廉的单过硫酸盐催化剂。
发明内容
解决的技术问题:本发明针对传统基于金属活化过硫酸盐处理有机污染物工艺操作复杂、造价高昂等技术瓶颈,活化过硫酸盐的非金属组合物及其制备方法和应用,选取活性炭和硫粉为原料,利用球磨工艺制备出了微纳尺寸硫掺杂碳材料(nSACx,其中x为初始硫投加含量,单位为mmol),其能够高效活化单过硫酸盐(PMS)降解废水中多种有机污染物,包括邻苯二甲酸二乙酯、磺胺甲氧嘧啶、双酚A和苯酚等污染物。球磨工艺简单环保、易于大规模生产应用;所选原材料为活性炭和硫粉,均价格低廉、储量丰富、环境友好;制备出的硫掺杂碳材料具有微纳米结构,可以提供更大的比表面积和更优异的催化性能;nSACx/PMS体系具有宽pH适用范围、高降解效率等优点,以上特点均为新兴碳材料引发新的思路和方向。
技术方案:活化过硫酸盐的非金属组合物的制备方法,步骤为:将活性炭、硫粉和球磨球加入到氧化锆球磨罐中,球磨结束后自然冷却至室温,过筛分离得到微纳尺寸的硫掺杂碳材料,所述微纳尺寸的硫掺杂碳材料的尺寸为200-600 nm,孔容为0.023 cm3/g,平均孔径为1.62 nm,比表面积为12.19 m2/g。
球磨时间:每球磨15 min,暂停15 min,循环96次,总计球磨24 h。
球磨球配比为:40 g的10 mm的小球、50 g的7 mm的小球、40 g的6 mm的小球、30 g的3 mm的小球。
球磨物料比为40:1,样品单次球磨质量4 g,转速为450 rpm。
上述方法制得的活化过硫酸盐的非金属组合物。
上述材料中含硫量为6.08 at%。
上述过硫酸盐的非金属组合物在处理有机污染物中的应用。
上述有机污染物为邻苯二甲酸二乙酯、双酚A、磺胺甲氧嘧啶和苯酚,污染物的浓度为100 µM。
上述应用步骤为:向有机污染物的废水中加入单过硫酸盐和硫掺杂碳材料,其浓度分别为0.5-5.0 mM和0.5-2.0 g/L,震荡反应4 h。
有益效果:(1)球磨工艺操作简单、绿色环保、产品率高、可大规模生产应用,克服了传统工艺操作复杂、造价高昂等缺陷。(2)选用活性炭和硫粉作为原材料,价格低廉、储量丰富、环境友好,在实际有机废水处理中大大降低了成本。(3)制备的硫掺杂碳纳米材料为非金属催化剂并且含硫量低,解决了金属催化剂有毒金属溶出等问题。(4)制备的硫掺杂碳材料具有微纳米结构,为活化单过硫酸盐提供了更大的接触面积和更多的活性位点,进而呈现出优异的催化性能,具有适用pH范围宽、可循环使用等优点。(5)本发明工艺操作简单、成本低廉并且产品具有高催化性能,对于邻苯二甲酸二乙酯、磺胺甲氧嘧啶、双酚A和苯酚类污染物都具有高效的降解活性。
附图说明
图1 硫掺杂碳材料的透射电镜图;
图2 硫掺杂碳材料不同硫掺杂含量对活化单过硫酸盐降解污染物的效果比较图;
图3硫掺杂碳材料活化单过硫酸盐降解邻苯二甲酸二乙酯的效果对比图;
图4 硫掺杂碳材料活化单过硫酸盐体系中硫掺杂碳材料剂量和单过硫酸盐浓度对污染物降解影响的比较图;
图5 硫掺杂碳材料活化单过硫酸盐对不同类型有机污染物的降解效果比较图;
图6硫掺杂碳材料活化单过硫酸盐循环实验降解有机污染物效果比较图。
具体实施方式
下面通过实施例对本发明作进一步说明,阐明本发明的突出特点和显著进步,仅在于说明本发明而绝不局限于以下实例。本实施方式是一种高效活化过硫酸盐的非金属组合物及其应用。
实施例1:一种高效活化过硫酸盐的非金属组合物及其应用按以下步骤完成:
一、球磨法制备微纳尺寸硫掺杂碳材料的方法如下:
步骤一:将活性炭、硫粉、球磨球按比例加入到125 mL的氧化锆球磨罐中;
步骤二:优化球磨参数,球磨结束后,自然冷却至室温,过筛分离得到样品。制备的硫掺杂碳材料的透射电镜如图1所示,为层状结构,具为微纳结构:200-600 nm。球磨时间:每球磨15 min,暂停15 min,循环96次,总计球磨24 h。球磨球配比为:40 g的10 mm的小球、50 g的7 mm的小球、40 g的6 mm的小球、30 g的3 mm的小球。球磨物料比为40:1,样品单次球磨质量4 g,转速为450 rpm。
二、反应物的预混合及其活化单过硫酸盐降解有机污染物的步骤
取含有不同类型有机污染物的废水,加入一定浓度的单过硫酸盐,得到污染物和单过硫酸盐的预混合液;单过硫酸盐的初始浓度为0.5-5.0 mM;预处理溶液中有机污染物的种类为邻苯二甲酸二乙酯、磺胺甲氧嘧啶、双酚A和苯酚,有机污染物浓度为100 µM。
三、催化降解实验的诱发
将微纳尺寸硫掺杂碳材料加入到污染物与单过硫酸盐的预混合液中,振荡反应4h,上述的微纳尺寸硫掺杂碳材料的投加量为0.5-2.0 g/L。
四、反应pH值的调节
本发明在宽pH范围(3-9)内均能实现有机污染物的高效降解,说明环境pH值对反应体系影响不大。在催化降解实验诱发前,使用硫酸(0.05 mM)和氢氧化钠溶液将反应体系的pH值调节到预定值。
五、有机污染物的提取测定
将微纳尺寸硫掺杂碳材料加入到有机污染物与单过硫酸盐的预混合液中后,开始反应,反应体系为10 mL。在固定时间间隔(10 / 20 / 30 / 60 / 120 / 240 min)加入0.1mL乙醇终止反应毁灭性取样,通过高速离心(3000 rpm / 5 min)得到上清液和固体,取1mL上清液过0.22 μM的水系滤膜后,用于高效液相色谱仪测定上清液中目标污染物的残余浓度;将剩余的上清液小心倒去后,剩余固体中加入10 mL的甲醇,超声30 min和振荡箱振荡提取1 h后,取样过0.22 μM的有机滤膜后,用于高效液相色谱仪测定吸附在固体中的目标污染物的浓度。通过计算测定得到的液相和固相中的目标污染物浓度的总和,计算污染物的降解率。
六、硫掺杂碳材料的回收和再利用
反应结束后,通过真空抽滤回收硫掺杂碳纳米材料,用乙酸乙酯(固体/乙酸乙酯=1:20,wt%)清洗反应后的固体,洗去反应过程中固体表面吸附的有机污染物及其降解的中间产物,收集清洗干燥后的硫掺杂碳材料。
实施例2:一种高效活化过硫酸盐的非金属组合物及其应用的效果比较
按照实施例1的步骤,制备出不同硫掺杂含量碳材料(nSAC2中硫掺杂含量为1.78at%、nSAC4中硫掺杂含量为3.41 at%、nSAC8中硫掺杂含量为6.08 at%、nSAC12中硫掺杂含量为8.69 at%),比较了不同硫掺杂含量碳材料对活化单过硫酸盐降解有机污染物的效果。反应体系中,硫掺杂碳材料、单过硫酸盐和有机污染物邻苯二甲酸二乙酯的浓度分别为1g/L、1 mM和100 µM。
结果如图2所示,单独活性炭经球磨得到的产品(bm AC)活化单过硫酸盐,对有机污染物只有21%的吸附去除率;当活性炭中硫掺杂含量从1.78 at%(nSAC2)增加到6.08 at%(nSAC8)时,有机污染物的降解效率从52%增加到90%;当掺杂硫含量进一步增加至8.69 at%(nSAC12)时,有机污染物的降解反而受到抑制,从90%降为86%。因此,最佳的硫掺杂含量为6.08 at%(nSAC8),所有硫掺杂碳材料中硫掺杂含量最佳为6.08 at%(nSAC8)。
实施例3:一种高效活化过硫酸盐的非金属组合物及其应用的催化性能
按照实施例1的步骤,比较了不同体系对有机污染物的降解去除效果,以邻苯二甲酸二乙酯为目标污染物。硫掺杂碳材料(nSAC8),单过硫酸盐(PMS)和邻苯二甲酸二乙酯(DEP)的浓度分别为1 g/L、1 mM和100 µM。设计以下处理:
(1)PMS/DEP;
(2)nSAC8/DEP;
(3)nSAC8/PMS/DEP;
结果如图3所示,单独PMS对DEP的降解效果可以忽略不计;单独nSAC8对DEP只有12%的吸附去除作用;但在nSAC8和PMS的共同作用下,4 h反应后90%的DEP被完全降解。这说明了本发明采用球磨法成功制备出了可以活化单过硫酸盐高效降解有机污染物的硫掺杂碳材料。
实施例4:硫掺杂碳材料剂量和单过硫酸盐浓度对体系降解有机污染物效果的比较
按照实施例1的步骤,探究了硫掺杂碳材料剂量和单过硫酸盐浓度对体系降解有机污染物效果的影响。在nSAC8/PMS/DEP体系中,nSAC8、PMS和DEP的浓度分别为1.0 g/L、1.0 mM和100 µM。nSAC8投加量的范围为0.5-2.0 g/L,PMS浓度的范围为0.5-5.0 mM。结果如图4所示,随着nSAC8投加量增加,DEP的降解速率增快;同时当PMS的浓度从0.5 mM增加到1.0 mM时,DEP的降解速率增加,但进一步增加PMS浓度到5.0 mM时,过量PMS抑制了DEP的降解。综合考虑降解速率和成本等因素,nSAC8最佳用量为1.0 g/L,PMS最佳浓度为1.0 mM。
实施例5:硫掺杂碳材料活化单过硫酸盐对不同类型有机污染物的降解效率比较
按照实施例1的步骤,比较了硫掺杂碳材料活化单过硫酸盐降解不同类型有机污染物的适用性。在nSAC8/PMS体系中,nSAC8和PMS的浓度分别为1.0 g/L和1.0 mM,有机污染物磺胺甲氧嘧啶(SMX)、双酚A(BPA)和苯酚的浓度为100 µM,结果如图5所示。
硫掺杂碳材料能够活化单过硫酸盐实现多种污染物的高效降解。4 h内,对磺胺甲氧嘧啶、双酚A和苯酚均能实现100%的去除率,说明本发明适用于多种有机污染物的降解。
实施例6:硫掺杂碳材料的稳定性
按照实施例1的步骤,考察了硫掺杂碳材料的稳定性,在nSAC8/PMS/DEP体系中,进行了4次催化循环实验,nSAC8、PMS和DEP的浓度分别为1 g/L、1 mM和100 µM。结果如图6所示。
可以看出,硫掺杂碳材料4次催化循环中对DEP均表现出较高的降解效果,4次催化循环后硫掺杂碳材料仍能催化PMS降解38%的DEP,说明了硫掺杂碳材料在活化单过硫酸盐方面具有稳定性,可进行多次回收利用。

Claims (9)

1.活化过硫酸盐的非金属组合物的制备方法,其特征在于步骤为:将活性炭、硫粉和球磨球加入到氧化锆球磨罐中,球磨结束后自然冷却至室温,过筛分离得到微纳尺寸的硫掺杂碳材料,所述微纳尺寸的硫掺杂碳材料的尺寸为200-600 nm,孔容为0.023 cm3/g,平均孔径为1.62 nm,比表面积为12.19 m2/g。
2.根据权利要求1所述活化过硫酸盐的非金属组合物的制备方法,其特征在于球磨时间:每球磨15 min,暂停15 min,循环96次,总计球磨24 h。
3.根据权利要求1所述活化过硫酸盐的非金属组合物的制备方法,其特征在于球磨球配比为:40 g的10 mm的小球、50 g的7 mm的小球、40 g的6 mm的小球、30 g的3 mm的小球。
4.根据权利要求1所述活化过硫酸盐的非金属组合物的制备方法,其特征在于球磨物料比为40:1,样品单次球磨质量4 g,转速为450 rpm。
5.权利要求1-4任一所述方法制得的活化过硫酸盐的非金属组合物。
6.权利要求5所述活化过硫酸盐的非金属组合物,其特征在于所述材料中含硫量为6.08 at%。
7.权利要求5所述过硫酸盐的非金属组合物在处理有机污染物中的应用。
8.根据权利要求7所述的应用,其特征在于所述有机污染物为邻苯二甲酸二乙酯、双酚A、磺胺甲氧嘧啶和苯酚,污染物的浓度为100 µM。
9.根据权利要求7所述的应用,其特征在于步骤为:向有机污染物的废水中加入单过硫酸盐和硫掺杂碳材料,其浓度分别为0.5-5.0 mM和0.5-2.0 g/L,震荡反应4 h。
CN202011512641.7A 2020-12-20 2020-12-20 活化过硫酸盐的非金属组合物及其制备方法和应用 Pending CN112517026A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011512641.7A CN112517026A (zh) 2020-12-20 2020-12-20 活化过硫酸盐的非金属组合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011512641.7A CN112517026A (zh) 2020-12-20 2020-12-20 活化过硫酸盐的非金属组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112517026A true CN112517026A (zh) 2021-03-19

Family

ID=75001757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011512641.7A Pending CN112517026A (zh) 2020-12-20 2020-12-20 活化过硫酸盐的非金属组合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112517026A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463649A (zh) * 2021-06-11 2022-12-13 华南师范大学 一种废塑料生物资源转化材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681796A (zh) * 2015-01-30 2015-06-03 浙江工业大学 一种超临界二氧化碳制备硫-碳复合材料的方法
CN109133319A (zh) * 2018-09-04 2019-01-04 中冶华天工程技术有限公司 处理焦化废水的方法
US20190015818A1 (en) * 2017-07-13 2019-01-17 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same
CN109650515A (zh) * 2019-01-30 2019-04-19 湖南大学 利用硫掺杂有序介孔碳材料活化过硫酸盐处理4-硝基苯酚的方法
CN109704307A (zh) * 2019-01-30 2019-05-03 河南工程学院 一种基于胖大海渣的硫掺杂多孔碳的制备及其应用
CN110482671A (zh) * 2019-08-21 2019-11-22 浙江工业大学 一种炭硫掺杂零价铁复合材料的制备方法及其应用
US20200259169A1 (en) * 2017-11-21 2020-08-13 Lg Chem, Ltd. Method for manufacture of sulfur-carbon composite
CN112062225A (zh) * 2020-08-04 2020-12-11 中国科学院山西煤炭化学研究所 一种掺硫活性炭粒子电极三维电活化过硫酸盐降解有机物的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681796A (zh) * 2015-01-30 2015-06-03 浙江工业大学 一种超临界二氧化碳制备硫-碳复合材料的方法
US20190015818A1 (en) * 2017-07-13 2019-01-17 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same
US20200259169A1 (en) * 2017-11-21 2020-08-13 Lg Chem, Ltd. Method for manufacture of sulfur-carbon composite
CN109133319A (zh) * 2018-09-04 2019-01-04 中冶华天工程技术有限公司 处理焦化废水的方法
CN109650515A (zh) * 2019-01-30 2019-04-19 湖南大学 利用硫掺杂有序介孔碳材料活化过硫酸盐处理4-硝基苯酚的方法
CN109704307A (zh) * 2019-01-30 2019-05-03 河南工程学院 一种基于胖大海渣的硫掺杂多孔碳的制备及其应用
CN110482671A (zh) * 2019-08-21 2019-11-22 浙江工业大学 一种炭硫掺杂零价铁复合材料的制备方法及其应用
CN112062225A (zh) * 2020-08-04 2020-12-11 中国科学院山西煤炭化学研究所 一种掺硫活性炭粒子电极三维电活化过硫酸盐降解有机物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG, GUODONG ET AL.: ""Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays"", 《JOURNAL OF HAZARDOUS MATERIALS》 *
LIN, KYA ET AL.: ""Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst"", 《CHEMICAL ENGINEERING JOURNAL》 *
李小娟等: ""杂原子掺杂碳材料活化过硫酸盐技术的研究进展"", 《化工进展》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463649A (zh) * 2021-06-11 2022-12-13 华南师范大学 一种废塑料生物资源转化材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Deng et al. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction
Zeng et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study
Wang et al. Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere
Liao et al. Efficient removal of uranium from wastewater using pig manure biochar: understanding adsorption and binding mechanisms
Tu et al. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst
Liang et al. Synthesis of a novel three-dimensional porous carbon material and its highly selective Cr (VI) removal in wastewater
CN102489284B (zh) 可磁性分离回收的石墨烯复合二氧化钛光催化剂及其制备方法
Wu et al. Promising Materials for Photocatalysis‐Self‐Fenton System: Properties, Modifications, and Applications
Li et al. Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels
CN112441659B (zh) 一种利用多级介孔生物炭材料激活过硫酸盐降解处理有机污染物的方法
Gao et al. In situ growth of 2D/3D Bi2MoO6/CeO2 heterostructures toward enhanced photodegradation and Cr (VI) reduction
CN108262002B (zh) 一种去除锑的Fe-Ti二元氧化物吸附剂的制备方法及应用
Huang et al. One-step carbothermal synthesis of robust CdS@ BPC photocatalysts in the presence of biomass porous carbons
Zhao et al. Facile synthesis of low-cost MnPO4 with hollow grape-like clusters for rapid removal uranium from wastewater
Liu et al. Highly efficient photodegradation of various organic pollutants in water: rational structural design of photocatalyst via thiol-ene click reaction
Sun et al. Modification of sludge-based biochar using air roasting-oxidation and its performance in adsorption of uranium (VI) from aqueous solutions
CN104587956A (zh) 一种以多层活性炭包覆氧化石墨烯复合粉体为载体的包裹型纳米零价铁的制备方法
CN105032375A (zh) 一种磁性石墨基重金属吸附材料的制备方法
CN112517026A (zh) 活化过硫酸盐的非金属组合物及其制备方法和应用
Wang et al. Ultrathin porous carbon nanosheet as an efficient adsorbent for the removal of bisphenol A: The overlooked role of topological defects
Yang Fixed bed adsorption of phosphate by lanthanum carbonate modified microfibrous composite
Lee et al. Electrospun Bi3+/TiO2 nanofibers for concurrent photocatalytic H2 and clean water production from glycerol under solar irradiation: A systematic study
Zhu et al. Ultrasonic-assisted synthesis of CdS/microcrystalline cellulose nanocomposites with enhanced visible-light-driven photocatalytic degradation of MB and the corresponding mechanism study
Wang et al. MIL-101 (Fe) based biomass as permeable reactive barrier applied to EK-PRB remediation of antimony contaminated soil
Panda et al. MXene-based materials for remediation of environmental pollutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210319