CN112501503B - 一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法 - Google Patents

一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法 Download PDF

Info

Publication number
CN112501503B
CN112501503B CN202011198536.0A CN202011198536A CN112501503B CN 112501503 B CN112501503 B CN 112501503B CN 202011198536 A CN202011198536 A CN 202011198536A CN 112501503 B CN112501503 B CN 112501503B
Authority
CN
China
Prior art keywords
equal
strength
less
rolling
1180mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011198536.0A
Other languages
English (en)
Other versions
CN112501503A (zh
Inventor
陈宇
薛俊峰
刘炼伟
陈宪辉
张振卫
赵斌
杨迎春
楚斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rizhao Steel Holding Group Co Ltd
Original Assignee
Rizhao Steel Holding Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rizhao Steel Holding Group Co Ltd filed Critical Rizhao Steel Holding Group Co Ltd
Priority to CN202011198536.0A priority Critical patent/CN112501503B/zh
Publication of CN112501503A publication Critical patent/CN112501503A/zh
Application granted granted Critical
Publication of CN112501503B publication Critical patent/CN112501503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种抗拉强度1180MPa级高强度高塑性热轧带钢,属于热轧高强钢领域,化学成分以重量百分比计:C:0.15~0.24%,Si:1.3~2.0%,Mn:1.3~2.0%,Al:1.2~2.0%,P≤0.015%,S≤0.005%,Re:0.003~0.006%,Nb:0.02‑0.07%、Ti:0.02‑0.07%,Cr:0.03‑0.08%,余量为Fe及不可避免的杂质。与现有技术相比较,本发明用于商用车与载重车等零部件生产,有利于零件的高强减薄与塑性成形。

Description

一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法
技术领域
本发明涉及热轧高强钢领域,特别是一种适用于抗拉强度1180MPa级高强度高塑性热轧钢板及钢带的生产方法。
背景技术
近年来,随着国家对汽车领域节能与环保排放标准的不断提高,汽车行业对热轧钢板提出了强度更高、塑性更好、表面质量更优等综合特性要求,以达到高强减薄、节能减排、降低成本的目的。通常,抗拉强度在1180MPa以上的热轧高强钢,随强度增加、塑性也明显下降,不能满足高强减薄、塑性加工的要求。
各个钢铁企业为此进行了各种改良,例如中国发明《超高强带钢及其生产方法》(CN200510027399.3)组分为C:0.10~0.20%,Si<0.6%,Mn≤2.6%,Al:0.020~0.080%,Cr:0.35~0.90%,Nb:0.015~0.050%,Ti:0.015~0.050%,B:0.0005~0.0030%,余量为Fe和不可避免杂质;其包括如下步骤:a.按上述成分冶炼、铸造;b.热轧、酸洗以及冷轧;c.连续退火;d.平整、精整。以及中国发明《一种汽车用1180MPa级高塑性贝氏体复相钢板及其制备方法》(CN201911042660.5)组分包括C:0.03%~0.20%,Si:0.05%~1.50%,Mn:0.5%~2.5%,P≤0.05%,S≤0.05%,Nb:0.01%~0.04%,Ti:0.01%~0.04%,V:0.01%~0.15%,Al:0.015%~1.50%;制备步骤包括:转炉冶炼,中薄板坯连铸,热连轧,酸洗冷轧和连续退火。虽然上述技术所得材料可以实现高屈服、高抗拉、高延伸,但是该合金成分体系,需与之相匹配连续退火工艺步骤。
发明内容
本发明的技术任务是针对以上现有技术的不足,提供一种抗拉强度1180MPa级高强度高塑性热轧带钢的生产方法,用于商用车与载重车等零部件生产,有利于零件的高强减薄与塑性成形。
本发明解决其技术问题的技术方案是:一种抗拉强度1180MPa级高强度高塑性热轧带钢,其特征在于:化学成分以重量百分比计:C:0.15~0.24%,Si:1.3~2.0%,Mn:1.3~2.0%,Al:1.2~2.0%,P≤0.015%,S≤0.005%,Re:0.003~0.006%,Nb:0.02-0.07%、Ti:0.02-0.07%,Cr:0.03-0.08%,余量为Fe及不可避免的杂质。
上述Nb+Ti≤0.12%。
上述Al/Re≤480。
上述P/Re≤4.3。
与现有技术相比较,本发明具有以下突出的有益效果:
1、本发明从组织相变强化设计原理出发,采用超高强钢化学成分设计,主要通过C、Si、Mn、Al、Cr、Nb-Ti等元素进行固溶强化、细晶强化及析出强化;通过残余奥氏体相变进行组织强化并改善塑性;同时采用Re元素改善塑性,具有较大的强度优势;
2、本发明采用超快冷却及低温卷取,获得有利于强度增加及塑性改善的组织结构与超细晶粒度,可以获得一定数量的残余奥氏体,而钢中残余奥氏体在外力作用下,转变为马氏体,可以显著提高强度;因残余奥氏体吸收外界应力,可以缓解钢中裂纹萌生而获得良好的塑性塑性优势明显;
3、F2-F7精轧机架间采用润滑轧制,可以降低轧制负荷,有利于薄规格超高强钢的板型控制,表面质量优;
4、本发明采用超快速冷细晶强化,控轧控冷工艺,工艺步骤简单,便于组织生产,可以降低成本,其生产工艺适应性和可重复性好;推广应用潜力大,经济效益明显。
5、力学性能指标:屈服强度ReL≥950MPa、抗拉强度Rm≥1180MPa、断后伸长率A≥13%,与创新前材料相比,强度更高、塑性明显增加。
具体实施方式
下面结合具体实施方式对本发明进一步说明。
本发明用于生产一种抗拉强度1180MPa级高强度高塑性热轧带钢,该带钢的化学成分以重量百分比计包含有:C:0.15~0.24%,Si:1.3~2.0%,Mn:1.3~2.0%,Al:1.2~2.0%,P≤0.015%,S≤0.005%,Re:0.003~0.006%,Nb:0.02-0.07%、Ti:0.02-0.07%,Cr:0.03-0.08%,余量为Fe及不可避免的杂质。
其元素及含量的原理如下:
C:可显著提高强度,具有间隙固溶强化作用;也可以增加奥氏体稳定性,获得残余奥氏体。但C含量不宜过高,以保证成形性能与焊接性能。本发明的C含量不超过0.24%。
Si:可通过固溶强化提高强度,也能够抑制锰和磷偏聚,还可提高奥氏体中碳含量,有利于获得残余奥氏体,但Si含量太高会影响钢的塑性。但本发明中硅含量在1.3-2.0%。
Mn:可以通过固溶强化提高强度;可以降低钢的相变温度,细化晶粒;还可以增加奥氏体稳定性,有利于获得残余奥氏体。但Mn含量过高会增加成本,同时增加钢中带状组织。本发明中Mn含量在1.3~2.0%。
P:在钢中容易形成偏析,容易产生高温裂纹,也容易增加低温裂纹敏感性,降低材料的塑性。本发明中P含量在0.015%以下。
S:在钢中生成硫化物夹杂,严重影响钢的力学性能。本发明要求S含量在0.005%以下。
Al:铝元素在高温下可以促进碳元素由铁素体向奥氏体中聚集、推迟奥氏体向铁素体转变,从而增加常温下残余奥氏体数量,残余奥氏体外力作用下,可以转变为马氏体。因马氏体强度高,可以增加材料的强度;因残余奥氏体转变为马氏体时可以吸收外界能量、可以减少裂纹萌生,从而增加材料塑性。现有技术中,Al含量一般控制在1%以内,原因是低碳钢中铝加入量过多时,会促进钢的石墨化,减少合金相中的碳溶浓度,影响强度。并且使钢的晶粒粗化,恶化钢的力学性能,且其晶体的解理极弱,影响钢的热加工性能、焊接性能和切削加工性能。本申请中加入Re,可以和磷形成熔点约1800℃的化合物,且该化合物主要位于奥氏体晶内,可以减少奥氏体晶界上铝磷共晶的数量,从而可减轻Al的有害作用,提高钢力学性能。因此本发明Al含量可以提高到1.3-2.0%。
Re:在钢中与磷等低熔点有害杂质元素形成熔点较高的化合物,也可以抑制这些夹杂在晶界上的偏析,从而提高材料的塑性。本发明Re含量在0.003-0.006%。确保Al/Re≤480,P/Re≤4.3,超出该范围则无法拮抗抑制相应的负面影响。
Nb、Ti:微合金化元素,具有显著的析出强化效果。本发明Nb+Ti≤0.12%。
Cr:强化元素,具有明显的固溶强化效果,本发明Cr含量在0.3-0.08%。
本发明中所述的抗拉强度1180MPa级高强度高塑性热轧带钢的生产方法包括:转炉冶炼、LF精炼、板坯连铸、板坯加热、高压水除鳞、润滑轧制、控制冷却、低温卷取,具体工艺步骤如下所述:
(1)冶炼工序:
铁水→转炉冶炼→LF精炼→连铸→板坯;
(2)加热工艺:
板坯采用冷坯装炉,加热温度在1130~1280℃,加热时间在170~220min。冷坯装炉可以增加残余奥氏体数量,而残余奥氏体在后续受到压应力和拉应力作用下,可以转变为马氏体。
优化方案中,采取三段加热+一段均热方式,其中三段加热温度分别为:830-1060℃、1110-1250℃、1220-1280℃,均热温度为1130~1280℃。
(3)轧制工艺:
粗轧为5道次可逆轧制,中间坯厚度为32~40mm;粗轧前高压水除鳞,压力30Pa。
精轧为7道次连续轧制,终轧温度为800~840℃;F2-F7精轧机架间采用润滑轧制:为避免润滑液产生的带钢轧制时自然咬入困难,在7个架轧机中,对1180MPa级的高强钢,第一个机架投入润滑液流量为最大流量的5%,其它机架的润滑流量为70-80%。而轧制油的皂化值,可选50(mgKOH·g-1)。
(4)冷却工艺:
采用全段超快冷却,冷却速率≥55℃/s。
(5)卷取工艺:
采用全段冷却,低温卷取,卷取温度为350~430℃。
为了更好地比较本申请配方和现有技术,进行了对比试验。
具体各个实施例和对比例中钢的化学成分(wt%),如下表所示:
分组 C Si Mn P S Al Re Nb Ti Cr
实施例1 0.24 1.8 1.5 0.013 0.003 1.4 0.003 0.020 0.070 0.048
实施例2 0.22 1.3 1.8 0.014 0.004 1.8 0.004 0.055 0.053 0.030
实施例3 0.17 1.7 2.0 0.012 0.005 1.2 0.003 0.046 0.055 0.080
实施例4 0.15 1.5 1.3 0.011 0.003 2.0 0.006 0.070 0.020 0.050
对比例1 0.21 1.5 1.7 0.014 0.004 1.8 0.002 0.058 0.053 0.049
对比例2 0.17 1.7 1.8 0.012 0.005 1.2 - 0.049 0.052 0.037
本发明各个实施例和对比例中钢的制造工艺参数,如下表所示:
Figure GDA0003414285440000061
本发明各个实施例和对比例中钢的拉伸性能测试结果,如下表所示(产品性能检测采用《金属材料室温拉伸试验方法GB/T228》国家标准):
Figure GDA0003414285440000062
从上表可以看出,实施例1~4采用本专利成分和工艺生产的低碳热轧板带,力学性能和表面质量优良(屈服强度Rel:965~980MPa,抗拉强度Rm:1195~1220MPa,断后伸长率A≥14.5%)。生产工序少,省去普通冷轧和退火工艺,能耗和成本低。
而对比例1的组分没有控制Al/Re比例,对比例2的组分没有加入Re,虽然在后期同样的控轧控冷,但是无法拮抗抑制高Al带来相应的负面影响,钢的晶粒粗化,力学性能恶化,且耐磨性差。
需要说明的是,本发明的特定实施方案已经对本发明进行了详细描述,对于本领域的技术人员来说,在不背离本发明的精神和范围的情况下对它进行的各种显而易见的改变都在本发明的保护范围之内。

Claims (2)

1.一种抗拉强度1180MPa级高强度高塑性热轧带钢,其特征在于:化学成分以重量百分比计:C:0.15~0.24%,Si:1.3~2.0%,Mn:1.3~2.0%,Al:1.2~2.0%,P≤0.015%,S≤0.005%,稀土RE:0.003~0.006%,Nb:0.02-0.07%、Ti:0.02-0.07%,Cr:0.03-0.08%,余量为Fe及不可避免的杂质;所述Al/稀土RE ≤480;所述P/稀土RE≤4.3;其生产方法包括:转炉冶炼、LF精炼、板坯连铸、板坯加热、高压水除鳞、粗轧、精轧、控制冷却、低温卷取;其中板坯加热工艺中板坯采用冷坯装炉,加热温度在1130~1280℃,加热时间在170~220min;所述的粗轧为5道次可逆轧制,中间坯厚度为32~40mm;粗轧前高压水除鳞;所述的精轧为7道次连续轧制,终轧温度为800~840℃;第一个机架投入润滑液流量为最大流量的5%,其它机架的润滑流量为70-80%;所述的控制冷却为冷却速率≥55℃/s;所述的低温卷取温度为350~430℃;所得带钢力学性能指标满足:屈服强度ReL≥950MPa、抗拉强度Rm≥1180MPa、断后伸长率A≥13%。
2.根据权利要求1所述的抗拉强度1180MPa级高强度高塑性热轧带钢,其特征在于:所述Nb+Ti≤0.12%。
CN202011198536.0A 2020-10-31 2020-10-31 一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法 Active CN112501503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011198536.0A CN112501503B (zh) 2020-10-31 2020-10-31 一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011198536.0A CN112501503B (zh) 2020-10-31 2020-10-31 一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法

Publications (2)

Publication Number Publication Date
CN112501503A CN112501503A (zh) 2021-03-16
CN112501503B true CN112501503B (zh) 2022-07-26

Family

ID=74956051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011198536.0A Active CN112501503B (zh) 2020-10-31 2020-10-31 一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法

Country Status (1)

Country Link
CN (1) CN112501503B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220081748A1 (en) * 2019-03-06 2022-03-17 Nippon Steel Corporation Hot-rolled steel sheet
JP7070794B2 (ja) * 2019-03-29 2022-05-18 日本製鉄株式会社 高強度熱間圧延鋼板
CN109898032A (zh) * 2019-04-30 2019-06-18 日照钢铁控股集团有限公司 一种屈服强度700MPa级高强耐候钢及其生产方法

Also Published As

Publication number Publication date
CN112501503A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN110079740B (zh) 一种高韧性热轧530MPa级汽车冷冲压桥壳钢板及其制造方法
CN101153371B (zh) 高强度冷成型热连轧钢板及其生产方法
CN109023069B (zh) NbC纳米颗粒强化X80塑性管用钢板及其制造方法
CN109943765B (zh) 一种800MPa级高屈强比冷轧双相钢及其制备方法
CN104046889B (zh) 一种导轨用冷轧连续退火带钢及其生产方法
CN112553532A (zh) 一种高韧性减量化船板海工钢及其制备方法
CN101338400A (zh) 一种高强度低温用低碳贝氏体钢及其生产工艺
CN109136756B (zh) NbC纳米颗粒强化X90塑性管用钢板及其制造方法
CN109023068B (zh) Vc纳米颗粒强化x90塑性管用钢板及其制造方法
KR20240099374A (ko) 내후성이 우수한 고강도 스틸 및 이의 제조방법
CN109957710B (zh) 一种含v大变形x80m管线钢板及其制造方法
CN108728728B (zh) 一种具有极低屈强比的高锰钢及其制造方法
CN112779401A (zh) 一种屈服强度550MPa级高扩孔热轧酸洗钢板
CN102418047B (zh) 一种非调质处理耐疲劳的钢板及其制造方法
CN110331344B (zh) 一种强度性能稳定的Rm≥600MPa汽车大梁钢及生产方法
CN112501515B (zh) 一种1300MPa级高强高塑低成本热轧钢
CN110616375A (zh) 含铌钒550MPa级厚规格耐候钢及其生产方法
CN112501503B (zh) 一种抗拉强度1180MPa级高塑性热轧带钢及其生产方法
CN113578963B (zh) 一种连铸连轧产线生产薄规格45钢的方法
CN113481429A (zh) 一种抗拉强度大于980MPa级高强发蓝捆带钢及其制造方法
CN114182182A (zh) 一种冰箱压缩机壳体用热轧酸洗钢板及其制造方法
CN111926261A (zh) 一种屈服强度550MPa级高强耐候钢及其生产方法
CN115074639A (zh) 一种抗拉强度600MPa级汽车大梁用热轧钢板
CN112501516A (zh) 一种1080MPa级高强度高塑性热轧钢生产方法
CN112481552A (zh) 1000MPa级冷轧薄板汽车用钢及超快冷生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A high plasticity hot-rolled strip steel with a tensile strength of 1180MPa and its production method

Effective date of registration: 20231215

Granted publication date: 20220726

Pledgee: Rizhao Bank Co.,Ltd.

Pledgor: RIZHAO STEEL HOLDING GROUP Co.,Ltd.

Registration number: Y2023980072204