CN112491319B - 直流无刷电机矢量控制电流补偿算法及矢量控制模型 - Google Patents

直流无刷电机矢量控制电流补偿算法及矢量控制模型 Download PDF

Info

Publication number
CN112491319B
CN112491319B CN202011392574.XA CN202011392574A CN112491319B CN 112491319 B CN112491319 B CN 112491319B CN 202011392574 A CN202011392574 A CN 202011392574A CN 112491319 B CN112491319 B CN 112491319B
Authority
CN
China
Prior art keywords
brushless
motor
current
stator
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011392574.XA
Other languages
English (en)
Other versions
CN112491319A (zh
Inventor
王松
郑宇赛
王丽
俞军涛
宋玉美
李雪莲
王挺挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202011392574.XA priority Critical patent/CN112491319B/zh
Publication of CN112491319A publication Critical patent/CN112491319A/zh
Application granted granted Critical
Publication of CN112491319B publication Critical patent/CN112491319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种直流无刷电机矢量控制电流补偿算法及矢量控制模型,涉及直流无刷电机的控制领域,电流补偿算法为:Ide=Idt,Iqe=KcIqt
Figure DDA0002810662990000011
其中,Idt为直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为直流无刷电机在两相旋转坐标系q轴上的定子电流。控制模型为:
Figure DDA0002810662990000012
其中,
Figure DDA0002810662990000013
本发明实现方便、易于编程,硬件控制结构与传统的永磁同步电机矢量控制结构相同,不需要额外的硬件支持,易于在工厂企业推广,转速波动小。

Description

直流无刷电机矢量控制电流补偿算法及矢量控制模型
技术领域
本发明涉及直流无刷电机的控制领域,详细讲是一种实现方便、易于编程,硬件控制结构与传统的永磁同步电机矢量控制结构相同,不需要额外的硬件支持,易于在工厂企业推广,转速波动小的直流无刷电机矢量控制电流补偿算法及矢量控制模型。
背景技术
我们知道,直流无刷电机由于效率高等优点被广泛的使用,如家用电器,伺服器,电动汽车中等等。但是直流无刷电机中的转矩和转速振荡等缺点又限制了它在高精度场合中的推广。直流无刷电机的传统换相方式是2-2换相或者3-3换相,这种换相是离散的,不连续的。
文献T.Tarczewski,and L.M.Grzesiak,“Constrained State Feedback SpeedControl of PMSM Based on Model Predictive Approach,”IEEE Transactions onIndustrial Electronics,vol. 63,no.6,pp.3867-3875,2016.记载了正弦波永磁同步电机在矢量控制下的电机微分方程。
电机经典书籍文献B.K.Bose,“Modern Power Electronics and AC drives,”1987 对于2-2换相或者3-3换相进行了详细说明,并提出了当不考虑矢量控制时,直流无刷电机的经典动态模型为:
Figure 1
这种直流无刷电机模型虽然精确,但比较复杂,转速振荡大。换相的不连续性是直流无刷电机产生转矩和转速振荡的原因之一,因此有很多文献在改善换相上做努力,可以参考 IEEE数据库中的期刊文献Design of Speed Control and Reduction of TorqueRipple Factor in BLdc Motor Using Spider Based Controller。
由于直流无刷电机传统换相的缺点,技术人员尝试把矢量控制用到直流无刷电机上。矢量控制在电机控制中具有解耦特性。解耦特性指的是我们可以分别通过控制转矩电流和励磁电流来实现对电机电磁转矩和励磁的独立控制。同时,由于矢量控制可以提高电机的效率,促进节能减排以及可以降低电机模型的复杂程度和减小电机转矩和转速波动,所以在感应电机(异步电机)和正弦波永磁同步电机中广泛使用。文献A.V.Sant,andK.R.Rajagopal,“PM Synchronous Motor Speed Control Using Hybrid Fuzzy-PI WithNovel Switching Functions,” IEEE Transactions on Magnetics,vol.45,no.10,pp.4672-4675,2009.和文献K.D.Carey,N. Zimmerman,and C.Ababei,“Hybrid fieldoriented and direct torque control for sensorless BLDC motors used in aerialdrones,”IET Power Electronics,vol.12,no.3,pp.438-449,2019以及李克靖,徐婕,吴珏,宋锦,“基于STM32的无刷直流电机矢量控制***”,电子与封装.,2020 年09期,第29-34页中记载将矢量控制直接应用到直流无刷电机上,并记载了传统的直流无刷电机矢量控制模型为(与正弦波永磁同步电机在矢量控制下的电机微分方程相同):
Figure GDA0003743636240000012
文献A.G.d.Castro,W.C.A.Pereira,T.E.P.d.Almeida,C.M.R.d.Oliveira,J.R.B.d.A. Monteiro,and A.A.d.Oliveira,“Improved Finite Control-Set Model-Based Direct Power Control of BLDC Motor With Reduced Torque Ripple,”IEEETransactions on Industry Applications,vol. 54,no.5,pp.4476-4484,2018.在矢量控制的结构上对传统的直流无刷电机矢量控制模型进行了改进,其采用了一种基于有功功率和无功功率的方法,对直流无刷电机的机械方程在两相静止坐标系上进行建模。但是由于该方法需要采集直流无刷电机的反电动势,因此其结构比传统的结构更加复杂,成本高,不适于应用。
发明内容
本发明的目的是解决上述现有技术的不足,提供一种实现方便、易于编程,硬件控制结构与传统的永磁同步电机矢量控制结构相同,不需要额外的硬件支持,易于在工厂企业推广,转速波动小的直流无刷电机矢量控制电流补偿算法及矢量控制模型。
本发明解决上述现有技术的不足所采用的技术方案是:
一种直流无刷电机矢量控制电流补偿算法,其特征在于,直流无刷电机在两相旋转坐标系d轴上的等效定子电流 Ide=Idt,直流无刷电机在两相旋转坐标系q轴上的等效定子电流Iqe=KcIqt
Figure GDA0003743636240000021
其中,Idt为直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为直流无刷电机在两相旋转坐标系q轴上的定子电流。即,Idt为传统的直流无刷电机矢量控制方法中直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为传统的直流无刷电机矢量控制方法中直流无刷电机在两相旋转坐标系q轴上的定子电流。
一种直流无刷电机矢量控制模型,其特征在于该模型为:
Figure GDA0003743636240000022
其中,
Figure GDA0003743636240000023
上式中,Ide为本发明改进后的直流无刷电机在两相旋转坐标系d轴上的等效定子电流, Iqe为本发明改进后的直流无刷电机在两相旋转坐标系q轴上的等效定子电流,ωe为直流无刷电机的同步电角速度,Rs为直流无刷电机的定子电阻,L为直流无刷电机定子等效相电感,ψr为直流无刷电机的转子磁链,p为直流无刷电机的极对数,J为直流无数电机的转动惯量, Ud为直流无刷电机在两相旋转坐标系d轴上的定子电压,Uq为直流无刷电机在两相旋转坐标系q轴上的定子电压,TL为直流无刷电机负载转矩,Idt为传统直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为传统直流无刷电机在两相旋转坐标系q轴上的定子电流。
一种直流无刷电机矢量控制模型,其特征在于该模型为:
Figure GDA0003743636240000024
其中
Figure GDA0003743636240000031
Figure GDA0003743636240000032
上式中,Idt为传统直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为传统直流无刷电机在两相旋转坐标系q轴上的定子电流,ωe为直流无刷电机的同步电角速度,Rs为直流无刷电机的定子电阻,L为直流无刷电机定子等效相电感,ψr为直流无刷电机的转子磁链, p为直流无刷电机的极对数,J为直流无数电机的转动惯量,Ud为直流无刷电机在两相旋转坐标系d轴上的定子电压,Uq为直流无刷电机在两相旋转坐标系q轴上的定子电压,TL为直流无刷电机负载转矩,
Figure GDA0003743636240000033
本发明通过对传统的直流无刷电机矢量控制方法中获得的电流进行补偿后,使直流无刷电机可以在输出转矩与目标转矩差别较小的情况下,减小了转速振荡,更适于应用在机器人控制、电动汽车等对转速振荡要求较高的行业。本发明算法简单、实现方便、易于编程,硬件控制结构与传统的永磁同步电机矢量控制结构相同,不需要额外的硬件支持,易于在工厂企业推广。
附图说明
图1为四种不同电机模型对相同直流无刷电机进行控制,直流无刷电机输出电磁转矩图。
图2为图1中从0-0.0432s时间段的放大图,是各直流无刷电机起始区间的放大图。
图3为图1从0.4742-0.4939s时间段的放大图,是各直流无刷电机带载稳定时电磁转矩的放大图。
图4为三种基于不同模型的直流无刷电机控制方法中,各直流无刷电机的实际输出转速与给定转速间的误差图。
图5为三种基于不同模型的直流无刷电机控制方法中,各直流无刷电机的实际输出转速图。
具体实施方式
本发明的理论依据如下:
直流无刷电机的动态模型遵从以下的假设:铁损和磁饱和可以忽略;定子绕组是集中式的,对称的和Y型连接的。
另外,假设直流无刷电机的反电动势是关于转子位置的梯形波:
Figure GDA0003743636240000034
公式(1)表示的是A相反电动势,B相和C相反电动势可以类似的根据(1)式得出,不同的是相位偏移分别为
Figure GDA0003743636240000035
Figure GDA0003743636240000036
出自于M.P.Maharajan,and S.A.E.Xavier,“Design ofSpeed Control and Reduction of Torque Ripple Factor in BLdc Motor UsingSpider Based Controller,”IEEE Transactions on Power Electronics,vol.34,no.8,pp.7826-7837,2019。
理论上讲,直流无刷电机的定子电流是梯形波;因此A相定子电流应当符合公式(2):
Figure GDA0003743636240000041
B相和C相的定子电流可以根据公式(2)推出,它们之间的区别是相位偏移分别为
Figure GDA0003743636240000042
Figure GDA0003743636240000043
如果公式(2)中的梯形波Ta(θ)可以转换成正弦波Sa(t),那么矢量控制就可以应用到直流无刷电机中。首先,方波和正弦波可以看成两个独立的希尔伯特空间的子空间。然后,它们之间的可以通过L2范数[0,2π]等距同构建立联系:
Figure GDA0003743636240000044
Figure GDA0003743636240000045
把公式(2,3)带入到公式(4)中,Itrp和Isin之间的关系可以推出:
Figure GDA0003743636240000046
考虑直流无刷电机的反电动势和定子电流均为梯形波,根据直流无刷电机的经典机械方程和公式(5),我们可以得到公式(6):
Figure GDA0003743636240000047
公式(6)说明我们可以在传统直流无刷电机矢量控制上得到的Iqt上乘以一个补偿系数
Figure GDA0003743636240000048
就可以实现直流无刷电机的新型矢量控制。由于从梯形波变换到正弦波是在L2空间中执行的,因此它们之间的转换是可逆的。换言之,它们之间的变换是线性变换,这个变换保证了梯形波包含的功率与正弦波包含的功率是相同的。考虑到电机的电磁转矩是电磁功率对于电角度θ的导数,因此梯形波和正弦波在新型变换中所包含的功率和电磁转矩都是相同的,这也是本发明提出变换的意义所在。
综合上述公式的推导可知,一种直流无刷电机矢量控制中电流补偿算法,直流无刷电机在两相旋转坐标系d轴上的等效定子电流 Ide=Idt,直流无刷电机在两相旋转坐标系q轴上的等效定子电流Iqe=KcIqt
Figure GDA0003743636240000049
其中,Idt为直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为直流无刷电机在两相旋转坐标系q轴上的定子电流。即,Idt为传统的直流无刷电机矢量控制方法中直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为传统的直流无刷电机矢量控制方法中直流无刷电机在两相旋转坐标系q轴上的定子电流。
经典矢量控制中的Clarke和Park变换公式分别如下:
Figure GDA0003743636240000051
Figure GDA0003743636240000052
当把补偿系数
Figure GDA0003743636240000053
与公式(8)结合,补偿的Park变换为:
Figure GDA0003743636240000054
传统直流无刷电机在矢量控制下的电机微分方程为:
Figure GDA0003743636240000055
根据公式(9),直流无刷电机中的d-q轴等效电流为:
Figure GDA0003743636240000056
其中Id和Iq代表补偿前的直流无刷电机d-q轴电流。
本发明的公式(11)中的补偿方法是非常简单、实用和易实现的。
根据公式(10)和公式(11)得到本发明的直流无刷电机矢量控制模型:
Figure GDA0003743636240000057
而传统的直流无刷电机矢量控制模型为:
Figure GDA0003743636240000058
根据公式(11)和公式(13),公式(12)可以重新写成:
Figure GDA0003743636240000059
Figure GDA00037436362400000510
Figure GDA00037436362400000511
其中
Figure GDA00037436362400000512
Figure GDA0003743636240000061
当Kc=1时,公式(14)与公式(13)相同。考虑到直流无刷电机的反电动势和电流均为梯形波,而永磁同步电机的反电动势和电流均为正弦波,所以直接运用矢量控制到直流无刷电机上而得到与矢量控制应用到永磁同步电机上的电机方程相同的公式(13)显然是不精确的,而本发明提出的新直流无刷电机矢量控制电机方程(14)在电机方程(13)的基础上考虑了梯形波与正弦波之间的关系(从电机方程上体现为增加了Δ1和Δ2),所以,新的直流无刷电机矢量控制模型相较于传统的直流无刷电机矢量控制模型更加精确。
本发明提出的直流无刷电机矢量控制电流补偿算法具体应用在直流无刷电机矢量控制中的方法如下:
对于速度伺服来说,直流无刷电机矢量控制***为双闭环结构,包括一个转速环,一个励磁电流Ide环以及一个电磁转矩电流Iqe环;虽然一共有三个闭环,但是总体可分为转速环和电流环,所以这种控制结构也称作双闭环结构;双闭环结构中的控制器一般为PID控制器。
在上述直流无刷电机矢量控制***中,转速环的转速给定为外部给定,与实际需要相关,可人为改变;励磁电流环的励磁电流给定也为外部给定,正常情况下给定为0,如果需要弱磁,则可以给定为负值;电磁转矩电流环的Iqe给定接在转速环的输出上;PID控制器参数的调节为公知。
在上述直流无刷电机矢量控制***中的转速环的转速、电流环的电流除了上述的给定数值外,还需要反馈量;转速环的反馈需要转速传感器测量直流无刷电机转速,或者根据编码器得到为转子位置信息求导,得到直流无刷电机转速,或者对根据无感技术得到的位置信息求导,得到转速;两个电流环的反馈步骤为:首先使用电流传感器测量直流无刷电机定子三相电流Ia,Ib和Ic,然后对它们进行Clarke变换和Park变换得到Idt和Iqt,最后使用本发明提出的直流无刷电机矢量控制电流补偿算法计算得到本发明改进后的两相旋转坐标系d-q轴上的等效定子电流的Ide和Iqe
Figure GDA0003743636240000062
把Ide和Iqe分别反馈到励磁电流环和电磁转矩电流环进行反馈。
直流无刷电机矢量控制***中的双闭环中的三个控制器的输出介绍如下:转速环的输出接到电磁转矩电流环中,作为Iqe的给定值;励磁电流环的输出为Ud,电磁转矩电流环的输出为Uq。Ud和Uq经过坐标变换以及SVPWM处理后,发出PWM信号驱动逆变器得到三相电压信号 Ua,Ub和Uc,它们分别接入直流无刷电机的定子三相中,此过程为公知。
本发明提出的直流无刷电机矢量控制模型可应用在一些直流无刷电机控制器的设计中,比如预测控制器设计,需要用到直流无刷电机模型,而传统的直流无刷电机模型很难用到控制器的设计中,此时可以用本发明提出的直流无刷电机矢量控制模型进行控制器的设计。
本发明提出的直流无刷电机矢量控制模型可应用在直流无刷电机仿真中,作为直流无刷电机的数学模型,如果搭建传统模型不方便时,也可以用本发明提出的直流无刷电机矢量控制模型来模拟直流无刷电机,作为控制对象。
当使用矢量控制时,直流无刷电机的经典动态模型为:
Figure 2
(15)
其中,Ea,Eb,Ec是梯形波的反电动势,它们之间互有
Figure GDA0003743636240000064
的角度差。
比较公式(12)和公式(15),公式(12)更加的简洁和清晰,为了更好的比较它们及其它一些直流无刷电机建模的方法,我们下面在MATLAB/Simulink仿真中进行进一步的比较。
MATLAB/SIMULINK仿真分析
仿真中的直流无刷电机参数如下:
表1:直流无刷电机参数
Figure GDA0003743636240000071
为了避免闭环控制器对验证电机模型有效性的影响,我们采取开环验证不同的直流无刷电机模型。从这些模型中,我们不仅要考虑它们的精准性还要考虑复杂程度,然后从中选取最优的电机模型。
在0.3秒的时候,一个10N.M的负载加入到直流无刷电机上。
如图1-图3所示,标准直流无刷电机的电磁转矩Te1是根据公式(15)得到的,它用来模拟直流无刷电机的真实转矩。
文献A.G.d.Castro,W.C.A.Pereira,T.E.P.d.Almeida,C.M.R.d.Oliveira,J.R.B.d.A.Monteiro,and A.A.d.Oliveira,“Improved Finite Control-Set Model-Based Direct Power Control of BLDC Motor With Reduced Torque Ripple,”IEEETransactions on Industry Applications,vol.54,no.5,pp.4476-4484,2018.提出的一种基于有功功率P和无功功率Q的方法来对直流无刷电机进行建模和控制,由这种方法算出的直流无刷电机等效电磁转矩为Te2。
电磁转矩Te3是通过公式(13)计算出的,它是传统的直流无刷电机矢量控制模型得到的电磁转矩。
电磁转矩Te4是通过公式(12)计算出的,它是采用本发明提出的直流无刷电机矢量控制模型得到的电磁转矩。
Te1、Te2、Te3、Te4的对比图如图1-图3。
通过比较图1-图3中的Te3和Te1可以看到,它们之间的差距是比较大的,这就说明,直接针对直流无刷电机使用矢量控制得到的电机模型并不能精确的反映实际的直流无刷电机工作性能(动态时和带载时)。Te2和Te1之间的差别最小,但是考虑到需要额外增加传感器和***电路以及需要进行复杂的计算,这种方法在实际应用时会增加成本。Te4和Te1 之间的差别较小。
针对直流无刷电机的不同模型,具体的控制方式是不同的。以转速控制为例,针对传统直流无刷电机模型,基于2-2换相或3-3换相的转速电流双闭环控制是一种公知控制方式,记为C1;针对直接使用矢量控制到直流无刷电机得到的模型,控制方式与公知的永磁同步电机矢量控制双闭环控制结构相同,记为C2;针对本发明的直流无刷电机矢量控制模型,控制方法可参考前面叙述的“直流无刷电机矢量控制电流补偿算法具体应用在直流无刷电机矢量控制中的方法”,记为C3。
图4、图5是使用上述三种不同直流无刷电机转速控制时的效果比较图,获取的直流无刷电机的输出转速数据图和输出转速与给定转速间的误差数据图。
通过图4和图5可以看出使用C2控制方式时,此时电机的稳定转速与给定转速600rpm 有较大的误差,而使用基于本发明改进的C3方式和传统C1方式对直流无刷电机进行控制时,稳定转速与给定转速的误差均很小,但放大后可以看到,使用C3方式时,转速振荡明显比传统C1方式要小。
符号说明
Figure GDA0003743636240000081

Claims (3)

1.一种直流无刷电机矢量控制电流补偿算法,其特征在于,直流无刷电机在两相旋转坐标系d轴上的等效定子电流
Ide=Idt,直流无刷电机在两相旋转坐标系q轴上的等效定子电流Iqe=KcIqt
Figure FDA0003743636230000011
其中,Idt为直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为直流无刷电机在两相旋转坐标系q轴上的定子电流;
所述的直流无刷电机矢量控制电流补偿算法具体应用在直流无刷电机矢量控制中的方法如下:
直流无刷电机矢量控制***为双闭环结构,双闭环结构中的控制器为PID控制器;其中,转速环的转速给定为外部给定,励磁电流环的励磁电流给定也为外部给定,电磁转矩电流环的Iqe给定接在转速环的输出上;转速环的转速、励磁电流环的励磁电流除了上述的给定数值外,还需要反馈量;转速环的反馈需要转速传感器测量直流无刷电机转速,或者对根据编码器得到的转子位置信息求导,得到直流无刷电机转速,或者对根据无感技术得到的位置信息求导,得到转速;两个电流环的反馈步骤为:首先使用电流传感器测量直流无刷电机定子三相电流Ia,Ib和Ic,然后对它们进行Clarke变换和Park变换得到Idt和Iqt,最后使用所述的直流无刷电机矢量控制电流补偿算法计算得到改进后的两相旋转坐标系d-q轴上的等效定子电流的Ide和Iqe
Figure FDA0003743636230000012
把Ide和Iqe分别反馈到励磁电流环和电磁转矩电流环进行反馈;
直流无刷电机矢量控制***中的双闭环中的三个控制器的输出如下:转速环的输出接到电磁转矩电流环中,作为Iqe的给定值;励磁电流环的输出为Ud,电磁转矩电流环的输出为Uq;Ud和Uq经过坐标变换以及SVPWM处理后,发出PWM信号驱动逆变器得到三相电压信号Ua,Ub和Uc,它们分别接入直流无刷电机的定子三相中。
2.一种直流无刷电机矢量控制模型,其特征在于该模型为:
Figure FDA0003743636230000013
其中,
Figure FDA0003743636230000014
上式中,Ide为改进后的直流无刷电机在两相旋转坐标系d轴上的等效定子电流,Iqe为改进后的直流无刷电机在两相旋转坐标系q轴上的等效定子电流,ωe为直流无刷电机的同步电角速度,Rs为直流无刷电机的定子电阻,L为直流无刷电机定子等效相电感,ψr为直流无刷电机的转子磁链,p为直流无刷电机的极对数,J为直流无刷电机的转动惯量,Ud为直流无刷电机在两相旋转坐标系d轴上的定子电压,Uq为直流无刷电机在两相旋转坐标系q轴上的定子电压,TL为直流无刷电机负载转矩,Idt为直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为直流无刷电机在两相旋转坐标系q轴上的定子电流;所述的Idt和Iqt的获取方法为:使用电流传感器测量直流无刷电机定子三相电流Ia,Ib和Ic,然后对它们进行Clarke变换和Park变换得到Idt和Iqt
3.一种直流无刷电机矢量控制模型,其特征在于该模型为:
Figure FDA0003743636230000015
其中
Figure FDA0003743636230000021
Figure FDA0003743636230000022
Figure FDA0003743636230000023
上式中,Idt为直流无刷电机在两相旋转坐标系d轴上的定子电流,Iqt为直流无刷电机在两相旋转坐标系q轴上的定子电流,ωe为直流无刷电机的同步电角速度,Rs为直流无刷电机的定子电阻,L为直流无刷电机定子等效相电感,ψr为直流无刷电机的转子磁链,p为直流无刷电机的极对数,J为直流无刷电机的转动惯量,Ud为直流无刷电机在两相旋转坐标系d轴上的定子电压,Uq为直流无刷电机在两相旋转坐标系q轴上的定子电压,TL为直流无刷电机负载转矩;所述的Idt和Iqt的获取方法为:使用电流传感器测量直流无刷电机定子三相电流Ia,Ib和Ic,然后对它们进行Clarke变换和Park变换得到Idt和Iqt
CN202011392574.XA 2020-12-01 2020-12-01 直流无刷电机矢量控制电流补偿算法及矢量控制模型 Active CN112491319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011392574.XA CN112491319B (zh) 2020-12-01 2020-12-01 直流无刷电机矢量控制电流补偿算法及矢量控制模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011392574.XA CN112491319B (zh) 2020-12-01 2020-12-01 直流无刷电机矢量控制电流补偿算法及矢量控制模型

Publications (2)

Publication Number Publication Date
CN112491319A CN112491319A (zh) 2021-03-12
CN112491319B true CN112491319B (zh) 2022-09-09

Family

ID=74939704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011392574.XA Active CN112491319B (zh) 2020-12-01 2020-12-01 直流无刷电机矢量控制电流补偿算法及矢量控制模型

Country Status (1)

Country Link
CN (1) CN112491319B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462491B1 (en) * 1999-01-27 2002-10-08 Matsushita Electric Industrial Co., Ltd. Position sensorless motor control apparatus
JP5175887B2 (ja) * 2010-03-23 2013-04-03 株式会社東芝 モータ制御装置及び電気機器
CN103414427B (zh) * 2013-08-12 2015-07-01 南京工程学院 无刷直流电机控制方法
CN104767435B (zh) * 2015-04-27 2017-03-08 山东大学 基于中性点电压的无传感器无刷电机换相相位实时校正方法
CN107659230B (zh) * 2016-07-26 2021-01-15 广州极飞科技有限公司 电机矢量控制方法、装置和飞行器

Also Published As

Publication number Publication date
CN112491319A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Jung et al. Diminution of current-measurement error for vector-controlled AC motor drives
CN110022106B (zh) 一种基于高频信号注入的永磁同步电机无位置传感器控制方法
CN101615876B (zh) 一种隐极式永磁同步电机的调速控制***和方法
WO2010116815A1 (ja) 交流モータの制御装置及び交流モータ駆動システム
Shi et al. Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor
Kumar et al. An enhanced linear active disturbance rejection controller for high performance PMBLDCM drive considering iron loss
Li et al. Robust predictive current control with parallel compensation terms against multi-parameter mismatches for PMSMs
CN101557193B (zh) 非正弦反电动势表面式交流永磁电机矢量控制方法
Dalala et al. Enhanced vector tracking observer for rotor position estimation for PMSM drives with low resolution Hall-Effect position sensors
Ji et al. Sensorless control of linear vernier permanent-magnet motor based on improved mover flux observer
Huang et al. An iterative estimation algorithm of prepositioning focusing on the detent force in the permanent magnet linear synchronous motor system
Yan et al. Sensorless control of PMSMs based on parameter-optimized MRAS speed observer
CN112491319B (zh) 直流无刷电机矢量控制电流补偿算法及矢量控制模型
CN110620534A (zh) 非线性柔化与变结构滑模控制永磁同步电机转速稳定的方法
CN114157193B (zh) 一种寻优插值式同步电机转矩脉动抑制控制方法及***
Seki et al. Robust positioning control using α-β stationary frame current controller and disturbance torque hybrid observer
CN116365937A (zh) 一种高速永磁同步电机无位置传感器控制方法
Qian et al. Periodic torque ripples minimization in PMSM using learning variable structure control based on a torque observer
Liu et al. A new sliding mode control for permanent magnet synchronous motor drive system based on reaching law control
Shen et al. Seamless transition strategy for wide speed-range sensorless IPMSM drives with a virtual q-axis inductance
Li et al. A geometrical interpretation of current transient responses to predict current gradients for IPMSM model predictive control
Brock et al. Reducing Energy Losses for Fan Applications with V/f control of PMSMs
Chiricozzi et al. An integrated electromechanical actuator for high dynamic pump application
Zhang et al. Research on the Control Method of a Brushless DC Motor Based on Second-Order Active Disturbance Rejection Control
Mariano et al. Design and Implementation of an Electronic Speed Controller for Brushless DC Motors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant