CN112486172A - 道路边缘检测方法及机器人 - Google Patents

道路边缘检测方法及机器人 Download PDF

Info

Publication number
CN112486172A
CN112486172A CN202011380356.4A CN202011380356A CN112486172A CN 112486172 A CN112486172 A CN 112486172A CN 202011380356 A CN202011380356 A CN 202011380356A CN 112486172 A CN112486172 A CN 112486172A
Authority
CN
China
Prior art keywords
robot
map
road edge
measurement
static obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011380356.4A
Other languages
English (en)
Other versions
CN112486172B (zh
Inventor
黄寅
张涛
吴翔
郭璁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Pudu Technology Co Ltd
Original Assignee
Shenzhen Pudu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Pudu Technology Co Ltd filed Critical Shenzhen Pudu Technology Co Ltd
Priority to CN202011380356.4A priority Critical patent/CN112486172B/zh
Priority claimed from CN202011380356.4A external-priority patent/CN112486172B/zh
Publication of CN112486172A publication Critical patent/CN112486172A/zh
Priority to PCT/CN2021/134282 priority patent/WO2022111723A1/zh
Application granted granted Critical
Publication of CN112486172B publication Critical patent/CN112486172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供了一种道路边缘检测方法及机器人,道路边缘检测方法包括:获取深度数据、机器人位姿、拓扑地图;根据所述深度数据和所述机器人位姿建立静态障碍物地图;计算所述静态障碍物地图的灰度值;根据所述机器人位姿、所述拓扑地图和所述灰度值计算道路边缘。根据本发明提供的道路边缘检测方法及机器人,将深度数据、机器人位姿、拓扑地图以及静态障碍物地图进行融合,从而更准确地计算出道路边缘,降低机器人发生碰撞的可能性。

Description

道路边缘检测方法及机器人
技术领域
本发明涉及互联网技术领域,特别涉及一种道路边缘检测方法及机器人。
背景技术
移动机器人在特定的场景中移动,以自主执行配送、引导、巡查、消毒等任务。上述场景包括餐厅、酒店、写字楼、医院等等。在这些场景中,机器人需要建立地图并进行路径规划,在机器人行走的路径附近会存在很多障碍物,机器人在移动过程中需要躲避这些障碍物。现有技术中,机器人通过激光雷达探测行走道路的边缘,但这种方式存在较大误差,机器人容易与障碍物发生碰撞。
发明内容
本发明有鉴于上述的现有状况而完成的,其目的在于提供一种道路边缘检测方法及机器人,可准确识别道路边缘,避免碰撞。
为了实现上述目的,本发明实施方式提供如下技术方案:
本发明提供一种道路边缘检测方法,所述方法包括:
获取深度数据、机器人位姿、拓扑地图;
根据所述深度数据和所述机器人位姿建立静态障碍物地图;
计算所述静态障碍物地图的灰度值;
根据所述机器人位姿、所述拓扑地图和所述灰度值计算道路边缘。
在这种情况下,将深度数据、机器人位姿、拓扑地图以及静态障碍物地图进行融合,从而更准确地计算出道路边缘,降低机器人发生碰撞的可能性。
其中,所述根据所述深度数据和所述机器人位姿建立静态障碍物地图的步骤之后,包括:
对所述静态障碍物地图设置多个测量网格,所述测量网格的分辨率与所述静态障碍物地图的分辨率相同,将所述多个测量网格与所述静态障碍物地图进行位置对齐;
由所述机器人位姿将所述深度数据的深度点云从机器人坐标系转换到世界坐标系下,并向地面投影;
根据所述测量网格中是否具有所述深度点云,对所述测量网格进行标记;
所述测量网格内具有所述深度点云时,所述测量网格对应区域的所述静态障碍物地图的栅格值增加第一特征值,所述测量网格内不具有所述深度点云时,所述测量网格对应区域的所述静态障碍物地图的栅格值减少第二特征值。
由此,融合深度点云并结合测量网格,可将静态障碍物地图中有无深度点云的栅格更显著的进行量化区分。
其中,所述计算所述静态障碍物地图的灰度值,具体包括:
融合连续若干帧所述静态障碍物地图的所述栅格值增加所述第一特征值或者减少所述第二特征值后,计算得出所述灰度值。
在这种情况下,灰度值融合了连续多帧栅格值的变化情况,从而使得对于障碍物的识别更加准确。
其中,所述根据所述测量网格中是否具有所述深度点云,对所述测量网格进行标记,具体包括:
将具有所述深度点云的所述测量网格标记为1,将不具有所述深度点云的所述测量网格标记为0。
其中,所述根据所述机器人位姿、所述拓扑地图和所述灰度值计算道路边缘,具体包括:
根据所述机器人位姿在所述拓扑地图中找到所述机器人当前所在道路的拓扑路径;
沿着所述拓扑路径以特定的空间间隔进行采样;
以所述采样位置为起始点,沿着所述拓扑路径的法线方向查询所述灰度值;
当所述灰度值大于阈值时,记录对应的坐标位置;
将若干所述坐标位置拟合成直线。
在这种情况下,灰度值大于阈值时,对应的像素为峰值像素,则可认定为障碍物所在位置,根据障碍物的位置并结合拓扑路径可拟合出道路边缘,从而提升了道路边缘检测的准确性。
其中,所述将若干所述坐标位置拟合成直线,具体包括:
采用随机抽样一致算法拟合所述直线。
其中,所述采用随机抽样一致算法拟合所述直线,具体包括:
计算所述直线的置信度;
挑选所述拓扑地图两侧评分最高的所述直线作为所述道路边缘。
其中,所述计算所述直线的置信度,具体包括:
所述置信度的计算方法为:
Figure BDA0002808300560000031
其中,n为所述直线覆盖在所述静态障碍物地图中的像素数量,V为所述像素的像素值。
由此,可提升拟合计算的抗干扰能力,提升计算的准确性。
其中,所述深度数据通过深度相机获取。
本发明还提供一种机器人,应用如上所述的道路边缘检测方法。
根据本发明所提供的道路边缘检测方法及机器人,将深度数据、机器人位姿、拓扑地图以及静态障碍物地图进行融合,从而更准确地计算出道路边缘,降低机器人发生碰撞的可能性。
附图说明
图1示出了本发明所涉及的道路边缘检测方法的流程示意图;
图2示出了本发明所涉及的道路边缘检测方法的实施方式的流程示意图;
图3示出了本发明所涉及的道路边缘检测方法的实施方式的流程示意图。
具体实施方式
以下,参考附图,详细地说明本发明的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
如图1所示,本发明实施方式涉及一种道路边缘检测方法,包括:
101、获取深度数据、机器人位姿、拓扑地图;
102、根据所述深度数据和所述机器人位姿建立静态障碍物地图;
103、计算所述静态障碍物地图的灰度值;
104、根据所述机器人位姿、所述拓扑地图和所述灰度值计算道路边缘。
在这种情况下,将深度数据、机器人位姿、拓扑地图以及静态障碍物地图进行融合,从而更准确地计算出道路边缘,降低机器人发生碰撞的可能性。
在本实施方式中,深度数据可通过设置于机器人上的激光雷达,对机器人周围环境扫描获取。机器人位姿包括机器人的位置信息和朝向信息。通过激光雷达、IMU或者里程计等,可获取所述机器人位姿。拓扑地图为人为设置的机器人移动路径。
如图2所示,在本实施方式中,步骤102之后,包括:
1021、对所述静态障碍物地图设置多个测量网格,所述测量网格的分辨率与所述静态障碍物地图的分辨率相同,将所述多个测量网格与所述静态障碍物地图进行位置对齐;
1022、由所述机器人位姿将所述深度数据的深度点云从机器人坐标系转换到世界坐标系下,并向地面投影;
1023、根据所述测量网格中是否具有所述深度点云,对所述测量网格进行标记;
1024、所述测量网格内具有所述深度点云时,所述测量网格对应区域的所述静态障碍物地图的栅格值增加第一特征值,所述测量网格内不具有所述深度点云时,所述测量网格对应区域的所述静态障碍物地图的栅格值减少第二特征值。
由此,融合深度点云并结合测量网格,可将静态障碍物地图中有无深度点云的栅格更显著的进行量化区分。
在本实施方式中,步骤103具体包括:
融合连续若干帧所述静态障碍物地图的所述栅格值增加所述第一特征值或者减少所述第二特征值后,计算得出所述灰度值。
在这种情况下,灰度值融合了连续多帧栅格值的变化情况,从而使得对于障碍物的识别更加准确。
在本实施方式中,所述灰度值为各个像素的灰度值。
在本实施方式中,步骤1023具体包括:
将具有所述深度点云的所述测量网格标记为1,将不具有所述深度点云的所述测量网格标记为0。
如图3所示,在本实施方式中,步骤104具体包括:
1041、根据所述机器人位姿在所述拓扑地图中找到所述机器人当前所在道路的拓扑路径;
1042、沿着所述拓扑路径以特定的空间间隔进行采样;
1043、以所述采样位置为起始点,沿着所述拓扑路径的法线方向查询所述灰度值;
1044、当所述灰度值大于阈值时,记录对应的坐标位置;
1045、将若干所述坐标位置拟合成直线。
在这种情况下,灰度值大于阈值时,对应的像素为峰值像素,则可认定为障碍物所在位置,根据障碍物的位置并结合拓扑路径可拟合出道路边缘,从而提升了道路边缘检测的准确性。
在一些示例中,空间间隔可以等间距设置。
在本实施方式中,以特定的空间间隔进行采样,可减少计算量,提升计算效率。
在一些示例中,在一次采样中,采样点灰度值为[0,0,10,15,20,200,215,170,120,180,100,50],阈值可以是190,则记录200,215两个灰度值对应的坐标位置。
在本实施方式中,步骤1045具体包括:
采用随机抽样一致算法拟合所述直线。
在本实施方式中,所述采用随机抽样一致算法拟合所述直线,具体包括:
计算所述直线的置信度;
挑选所述拓扑地图两侧评分最高的所述直线作为所述道路边缘。
在本实施方式中,拓扑地图的两侧均拟合出若干直线。计算直线的置信度,筛选作为所述道路边缘的直线。
在本实施方式中,所述计算所述直线的置信度,具体包括:
所述置信度的计算方法为:
Figure BDA0002808300560000061
其中,n为所述直线覆盖在所述静态障碍物地图中的像素数量,V为所述像素的像素值。
由此,可提升拟合计算的抗干扰能力,提升计算的准确性。
在本实施方式中,所述深度数据通过深度相机获取。所述深度数据包括深度图。
在本实施方式中,所述拓扑地图包括若干拓扑路径。
在一些示例中,拓扑地图可以通过人工绘制。拓扑地图包括机器人能够通行的路径信息。拓扑路径可以为直线。
本发明实施方式还涉及一种机器人,应用如上所述的道路边缘检测方法。机器人可以包括深度相机。深度相机获取所述深度数据。机器人还可以包括激光雷达、IMU、里程计中的至少一种,用于获取所述机器人位姿。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同更换和改进等,均应包含在该技术方案的保护范围之内。

Claims (10)

1.一种道路边缘检测方法,其特征在于,所述方法包括:
获取深度数据、机器人位姿、拓扑地图;
根据所述深度数据和所述机器人位姿建立静态障碍物地图;
计算所述静态障碍物地图的灰度值;
根据所述机器人位姿、所述拓扑地图和所述灰度值计算道路边缘。
2.如权利要求1所述的道路边缘检测方法,其特征在于,所述根据所述深度数据和所述机器人位姿建立静态障碍物地图的步骤之后,包括:
对所述静态障碍物地图设置多个测量网格,所述测量网格的分辨率与所述静态障碍物地图的分辨率相同,将所述多个测量网格与所述静态障碍物地图进行位置对齐;
由所述机器人位姿将所述深度数据的深度点云从机器人坐标系转换到世界坐标系下,并向地面投影;
根据所述测量网格中是否具有所述深度点云,对所述测量网格进行标记;
所述测量网格内具有所述深度点云时,所述测量网格对应区域的所述静态障碍物地图的栅格值增加第一特征值,所述测量网格内不具有所述深度点云时,所述测量网格对应区域的所述静态障碍物地图的栅格值减少第二特征值。
3.如权利要求2所述的道路边缘检测方法,其特征在于,所述计算所述静态障碍物地图的灰度值,具体包括:
融合连续若干帧所述静态障碍物地图的所述栅格值增加所述第一特征值或者减少所述第二特征值后,计算得出所述灰度值。
4.如权利要求2所述的道路边缘检测方法,其特征在于,所述根据所述测量网格中是否具有所述深度点云,对所述测量网格进行标记,具体包括:
将具有所述深度点云的所述测量网格标记为1,将不具有所述深度点云的所述测量网格标记为0。
5.如权利要求1所述的道路边缘检测方法,其特征在于,所述根据所述机器人位姿、所述拓扑地图和所述灰度值计算道路边缘,具体包括:
根据所述机器人位姿在所述拓扑地图中找到所述机器人当前所在道路的拓扑路径;
沿着所述拓扑路径以特定的空间间隔进行采样;
以所述采样位置为起始点,沿着所述拓扑路径的法线方向查询所述灰度值;
当所述灰度值大于阈值时,记录对应的坐标位置;
将若干所述坐标位置拟合成直线。
6.如权利要求5所述的道路边缘检测方法,其特征在于,所述将若干所述坐标位置拟合成直线,具体包括:
采用随机抽样一致算法拟合所述直线。
7.如权利要求6所述的道路边缘检测方法,其特征在于,所述采用随机抽样一致算法拟合所述直线,具体包括:
计算所述直线的置信度;
挑选所述拓扑地图两侧评分最高的所述直线作为所述道路边缘。
8.如权利要求7所述的道路边缘检测方法,其特征在于,所述计算所述直线的置信度,具体包括:
所述置信度的计算方法为:
Figure FDA0002808300550000021
其中,n为所述直线覆盖在所述静态障碍物地图中的像素数量,V为所述像素的像素值。
9.如权利要求1所述的道路边缘检测方法,其特征在于,所述深度数据通过深度相机获取。
10.一种机器人,其特征在于,应用如权利要求1-9任一项所述的道路边缘检测方法。
CN202011380356.4A 2020-11-30 2020-11-30 道路边缘检测方法及机器人 Active CN112486172B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011380356.4A CN112486172B (zh) 2020-11-30 道路边缘检测方法及机器人
PCT/CN2021/134282 WO2022111723A1 (zh) 2020-11-30 2021-11-30 道路边缘检测方法及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011380356.4A CN112486172B (zh) 2020-11-30 道路边缘检测方法及机器人

Publications (2)

Publication Number Publication Date
CN112486172A true CN112486172A (zh) 2021-03-12
CN112486172B CN112486172B (zh) 2024-08-02

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022111723A1 (zh) * 2020-11-30 2022-06-02 深圳市普渡科技有限公司 道路边缘检测方法及机器人

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195969A (ja) * 2004-12-14 2006-07-27 Honda Motor Co Ltd 自律移動ロボットの移動経路生成装置
WO2016045615A1 (zh) * 2014-09-25 2016-03-31 科沃斯机器人有限公司 机器人静态路径规划方法
US20160271795A1 (en) * 2015-03-18 2016-09-22 Irobot Corporation Localization and Mapping Using Physical Features
CN109765901A (zh) * 2019-02-18 2019-05-17 华南理工大学 基于线激光与双目视觉的动态代价地图导航方法
CN109993780A (zh) * 2019-03-07 2019-07-09 深兰科技(上海)有限公司 一种三维高精度地图生成方法及装置
CN110147748A (zh) * 2019-05-10 2019-08-20 安徽工程大学 一种基于道路边缘检测的移动机器人障碍物识别方法
US20190310653A1 (en) * 2018-04-05 2019-10-10 Electronics And Telecommunications Research Institute Topological map generation apparatus for navigation of robot and method thereof
WO2020024234A1 (zh) * 2018-08-02 2020-02-06 深圳前海达闼云端智能科技有限公司 路径导航方法、相关装置及计算机可读存储介质
CN111161334A (zh) * 2019-12-31 2020-05-15 南通大学 一种基于深度学习的语义地图构建方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195969A (ja) * 2004-12-14 2006-07-27 Honda Motor Co Ltd 自律移動ロボットの移動経路生成装置
WO2016045615A1 (zh) * 2014-09-25 2016-03-31 科沃斯机器人有限公司 机器人静态路径规划方法
US20160271795A1 (en) * 2015-03-18 2016-09-22 Irobot Corporation Localization and Mapping Using Physical Features
US20190310653A1 (en) * 2018-04-05 2019-10-10 Electronics And Telecommunications Research Institute Topological map generation apparatus for navigation of robot and method thereof
WO2020024234A1 (zh) * 2018-08-02 2020-02-06 深圳前海达闼云端智能科技有限公司 路径导航方法、相关装置及计算机可读存储介质
CN109765901A (zh) * 2019-02-18 2019-05-17 华南理工大学 基于线激光与双目视觉的动态代价地图导航方法
CN109993780A (zh) * 2019-03-07 2019-07-09 深兰科技(上海)有限公司 一种三维高精度地图生成方法及装置
CN110147748A (zh) * 2019-05-10 2019-08-20 安徽工程大学 一种基于道路边缘检测的移动机器人障碍物识别方法
CN111161334A (zh) * 2019-12-31 2020-05-15 南通大学 一种基于深度学习的语义地图构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王炜;陈卫东;王勇;: "基于概率栅格地图的移动机器人可定位性估计", 机器人, no. 04, 15 July 2012 (2012-07-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022111723A1 (zh) * 2020-11-30 2022-06-02 深圳市普渡科技有限公司 道路边缘检测方法及机器人

Also Published As

Publication number Publication date
WO2022111723A1 (zh) 2022-06-02

Similar Documents

Publication Publication Date Title
CN111551958B (zh) 一种面向矿区无人驾驶的高精地图制作方法
US11385062B2 (en) Map creation method for mobile robot and path planning method based on the map
EP3371671B1 (en) Method, device and assembly for map generation
CN110068836B (zh) 一种智能驾驶电动清扫车的激光雷达路沿感知***
CN113074727A (zh) 基于蓝牙与slam的室内定位导航装置及其方法
CN111521195B (zh) 一种智能机器人
CN112346463B (zh) 一种基于速度采样的无人车路径规划方法
CN110082783B (zh) 一种悬崖检测的方法及装置
Konrad et al. Localization in digital maps for road course estimation using grid maps
CN112464812A (zh) 一种基于车辆的凹陷类障碍物检测方法
CN114413909A (zh) 一种室内移动机器人定位方法及***
CN111721279A (zh) 一种适用于输电巡检工作的末端路径导航方法
CN111207753A (zh) 一种多玻璃隔断环境下的同时定位与建图的方法
CN113327296A (zh) 基于深度加权的激光雷达与相机在线联合标定方法
CN116879870A (zh) 一种适用于低线束3d激光雷达的动态障碍物去除方法
CN110736456A (zh) 稀疏环境下基于特征提取的二维激光实时定位方法
CN114721001A (zh) 一种基于多传感器融合的移动机器人定位方法
CN113376638A (zh) 一种无人物流小车环境感知方法及***
CN111553342B (zh) 一种视觉定位方法、装置、计算机设备和存储介质
CN111780744A (zh) 移动机器人混合导航方法、设备及存储装置
WO2022111723A1 (zh) 道路边缘检测方法及机器人
CN115930946A (zh) 室内外交变环境下动态障碍物多特征描述的方法
CN108253968B (zh) 基于三维激光的绕障方法
CN112486172B (zh) 道路边缘检测方法及机器人
CN111239761B (zh) 一种用于室内实时建立二维地图的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant