CN112393750B - 光学参数感测暨调制*** - Google Patents

光学参数感测暨调制*** Download PDF

Info

Publication number
CN112393750B
CN112393750B CN201910761954.7A CN201910761954A CN112393750B CN 112393750 B CN112393750 B CN 112393750B CN 201910761954 A CN201910761954 A CN 201910761954A CN 112393750 B CN112393750 B CN 112393750B
Authority
CN
China
Prior art keywords
optical fiber
fiber
core
core optical
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910761954.7A
Other languages
English (en)
Other versions
CN112393750A (zh
Inventor
陈南光
田振
张丽强
闫栋
王大琴
王明红
白成林
王文军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaocheng University
Original Assignee
Liaocheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaocheng University filed Critical Liaocheng University
Priority to CN201910761954.7A priority Critical patent/CN112393750B/zh
Priority to PCT/CN2020/097179 priority patent/WO2021031679A1/zh
Publication of CN112393750A publication Critical patent/CN112393750A/zh
Application granted granted Critical
Publication of CN112393750B publication Critical patent/CN112393750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种光学参数感测暨调制***,其包含一多芯光纤以及分别连接于该多芯光纤两端的一光源以及一光谱分析仪,该光源输出光至该多芯光纤,使该光谱分析仪测得光通过该多芯光纤于各波长的穿透损失响应;本发明的多芯光纤产生叠加模态干涉,进而可以制作可调制的滤波器或折射率感测器等应用。

Description

光学参数感测暨调制***
技术领域
本发明涉及一种使用多芯光纤的光学感测***。
背景技术
色散是光纤滤波器和激光器的所需要解决的主要问题之一,一般可组合具有不同色散特性的材料调整光纤的波导色散,以形成特定的波导结构。目前使用光纤作为感测元件的设备,因为光纤特性的限制,致使其仅能针对待测物的特定特性予以分析。
发明内容
为了解决目前光纤量测设备的使用限制,本发明提出一种具有可调制、转动相关的多参数光学量测设备,其系一种光学参数感测暨调制***,其包含一多芯光纤以及分别连接于该多芯光纤两端的一光源以及一光谱分析仪,该光源输出一光至该多芯光纤,使该光谱分析仪测得该光通过该多芯光纤于各波长的穿透损失响应。
该多芯光纤的两端设于一转动驱动设备上,使该多芯光纤于该光源与该光谱分析仪操作过程可相对一待测物轴向转动。
由上述说明可知,本发明的多芯光纤包含周期性排列的掺锗光纤(high indexGecores)产生叠加模态干涉,配合转动与光导入与光谱量测,进而可以制作可调制的滤波器或折射率感测器等应用。
附图说明
图1为本发明较佳实施例的***示意图;
图2为本发明较佳实施例的穿透损失对波长的量测结果图;
图3为本发明较佳实施例的结构外观量测及折射率示意图;
图4为本发明较佳实施例的不同环境折射率的穿透损失图;
图5为本发明较佳实施例的折射率对偏移波长关系图;
图6为本发明较佳实施例转动关系下波长对穿透损失量测图;及
图7为本发明较佳实施例转动角度对波长与穿透损失量测图。
附图标记说明:
SLD光源
OSA光谱分析仪
D多芯光纤外径
具体实施方式
请参考图1,本发明光学感测***的较佳实施例,其包含一多芯光纤(multicorefibers,MCF),其该多芯光纤一端连结一光源(SLD),另一端连接一光谱分析仪(OSA),该光源产生多波长的光输出至该多芯光纤。进一步地,该多芯光纤的两端可设有一转动驱动设备,例如马达,使该多芯光纤于该光源与该光谱分析仪操作过程可相对一待测物轴向转动。该光源可为激光光源(或称雷射光源)、多波长的LED光源等。
该多芯光纤可为一拉锥多芯光纤,系由包含一中心光纤以及六个等距环绕于该中心光纤的卫星光纤的一七芯弱耦合多芯光纤(weakly-coupled)于一拉锥制程后,所形成一强耦合多芯光纤,使该多芯光纤的局部表面产生渐逝场。
上述使多芯光纤的表面产生渐逝场的备制方式不限定,可以例如蚀刻制程、局部研磨等方式,让渐逝场得出现于表面。
上述通过该拉锥制程,原先为弱耦合的多芯光纤转换为该强耦合多芯光纤,使六角对称周期性分布的卫星纤维与中心光纤产生六角对称叠加模态(hexagonallysymmetricsupermodes),进而产生该渐逝场。
以下以拉锥型态的多芯光纤,说明本实施例的制备步骤与功效。
请参考图3,上述弱耦合多芯光纤,本实施例采用中心光纤、卫星光纤的直径(d1)为5.62μm,两两光纤距离决定于尽量避免功率耦合(cross power coupling),本实施例的光纤距离(d2,d3)为29.4μm,其中d2为中心光纤与卫星光纤的距离,d3为两两卫星光纤之间的距离。
为了量测目的,本实施例耦接于一单模光纤(singlemode fiber,SMF),使由单模光纤导入的激光光源仅于中心光纤传输,六个卫星光纤则处于一黑状态(dark status)。该拉锥制程系以氢气焰对多芯光纤中段部位予以加热并由该多芯光纤两端朝相反方向施力拉伸,卫星光纤逐渐进入拉锥细化的中心光纤的有效模式(effective mode),产生强耦合(strongly-coupled)的多芯光纤,并产生两个叠加模式(supermode)以及叠加模干涉(suprmode interference)。上述叠加模干涉的强化与多芯纤维外径(D,图1)成反比关系,通过光谱分析仪(optical spectrum analyzer,OSA)可测得该多芯纤维外径越小时会产生数个传输损失峰(transmission dips)。本实施例多芯纤维外径D达到35μm时,渐逝场可产生于该多芯纤维的拉锥后腰部位置,且更为转动相关(rotational dependent),示意图如图3(b)所示。图3(b)的圆形为光纤物理位置示意,包围于圆形部位的表示信号强度(intensity patterns)示意。以影像撷取装置CCD以1000X倍率拍摄具有外径D=30μm的多芯光纤影像可得图3(b)。当多芯光纤周围液体(ambient liquids)的折射率n大于1.35时,共振波长朝长波长方向移动。
请参考图3(c)-(d),其显示该多芯光纤于不同径向轴A、B的折射率变化示意图。本实施例的卫星光纤扮演类似W-index型态的色散补偿光纤(dispersioncompensationfiber,可参考相关技术论文如(F.J.L.Auguste,and J.M.Blondy,"Designofdispersion-compensating fibers based on a dual-concentric-corephotoniccrystal fiber,"Opt.Lett.29,2725-2727(2004).;B.J.Mangan,J.Arriaga,T.A.Birks,J.C.Knight,and P.St.J.Russell,"Fundamental-mode cutoff in aphotonic crystalfiber with a depressed-index core,"Opt.Lett.26,1469-1471(2001).),使长波长的有效折射率更为发散而达到更高的色散补偿。共振波长随波长更长、更宽的渐逝场而移动更快,此现象在周围液体的折射率更大时更为明显。
本实施例的多芯光纤的纤维直径为5.62μm,包覆层(cladding)外径为124.5μm,模场(mode field)直径为6μm,第二模截止波长(cut off wavelength)为1342nm,数值孔径(numerical aperture)为0.2。本实施例的光纤折射率与包覆层折射率于波长1550nm下的折射率为1.4578~1.4607及1.444。
请配合参考图1~3,使用多个超亮激光(multiple super luminescent diodes(SLD))波长介于1250~1650nm为光源导入中心光纤,通过上述的拉锥制程,该多芯光纤产生强耦合并产生两个叠加模式于本实施例轴对称的SMF-MCF-SMF构造中。图1(a)显示在腰部外径为60.2μm的拉锥多芯纤维中,1000X的显微影像显示明显的六角对称模态,该凸显是叠加模态是多芯光纤中每股光纤的LP模态的整合结果。本实施例所使用的CCD可以侦测光源SLD的波长低于1350nm的信号,本实施例取拉锥区段外的额外长度30cm多芯光纤予以围绕形成一直径R1为3cm的一线圈,用以去除可能产生的高阶被激发传输模态(excitedhighorder core modes),显微照相结果如图1(a)所示;而如果将该线圈直径改为1.5cm时,其显微照相则如图1(b)所示。
请参考图1(c)及图2,为了量测不同拉锥型态的多芯光纤对波长的穿透损失,将拉锥的多芯光纤与单模光纤结合后连接光源(SLD),另一端则连接光谱分析仪(OSA),同时为了比较不同外径的多芯光纤的光学特性,将该多芯光纤与一轴向局部包覆环氧树酯(EPOXY)的塑胶管体接触并形成可以相对转动型态,使该多芯光纤可以因为转动关系改变与环氧树酯的接触关系,届此验证角度、环境折射率对多芯光纤的光学特性产生实质影响,详细描述于下。其中,包覆环氧树酯的塑胶管即为上述的待测物的范例。
请参考图2,显示不同直径的多芯光纤所对应的穿透损失,图中显示该光源于1350~1450nm的损失是水分子吸收的损失。在拉锥过程中,穿透损失于多芯光纤外径D接近65μm时产生相对较小的震荡,其系因为叠加模式所产生的干涉。在外径越细化的过程,例如D为55μm,不论多芯光纤所处环境为空气或者浸润于液体(n=1.393)内,穿透损失的波长响应近似,这代表本实施例在纤维外径于55μm仍然没有出现渐逝场(evanescent field)。当该多芯光纤的外径达到35μm,则开始出现渐逝场。
本实施例的多芯光纤于接触不同折射率的环境可产生不同的光学响应。本实施例备置去离子水与甘油混合调制不同折射率的溶液,用于涵浸该多芯光纤,其光学响应的结果如图4所示。单模光纤(NA=0.13)与多芯光纤(NA=0.2)接合造成的***损失(insertionloss)大约1.5dB。在不同的溶液中,损失响应峰(resonant dips)随溶液折射率增加而由长波长方向移动。最佳的损失比(extinctions ratio)为47.4dB,出现于1625.82nm。本实施例的红移现象(red-shift)系因为环境折射率n会增加两个叠加模态的Δn。而且,如图5可知,波长位移与环境折射率的改变关系属于非线性,响应峰于相对较大的波长的红移速度较快,这代表用于本实施例用于干涉移(fiber interferometers)、光栅(small period longperiod gratings)可以具有比现有产品更灵敏的调节效能,本实施例的调节灵敏性可达391.99nm/RIU。
本实施例的波长位移因折射率由1~1.452改变而由1449.89nm移至1627.07nm,达成这样高的调节灵敏性系因为长波长的叠加模态比短波长区段叠加模态相对较为展开。非线性的调节灵敏性可以实际应用于感应多种参数的数据量测,例如接触该拉锥多芯光纤的折射率、温度等。
上述的中心光纤、其一卫星光纤可以分别输入一相干光(coherent),如此本实施例的感测结果可用于干涉仪的用途。
此外,上述转动相关渐逝场分布(rotational dependent evanescentfielddistribution)特性也是本实施例独有的特征,在拉锥光纤中,卫星纤维以角度60°的转动周期性分布于中心纤维外,进而产生六角对称叠加模态以及造成渐逝场分布与角度产生关连。如图1所示,本实施例取拉锥多芯纤维外径与长度分别为30.2μm及7.3mm,所述环氧树酯层的厚度、长度与折射率分为66μm、7mm及1.512@650nm。塑胶管直径R2是3mm;拉锥的多芯光纤于量测光学响应时同时转动,届此可取得转动相关的渐逝场功率耦合状况(rotationaldependent evanescent power coupling),其结果显示于图6,由该图可知,响应峰的波长位置确实与转动角度有关。波长介于1470nm(A点)~1558nm(B点)之间的传输损失与响应波长的位移状况则显示于图7。由此可知,拉锥的多芯光纤在长波长方面相对较于色散,而以不同角度接触折射率大的环氧树酯可以具有不同的响应。由此可知,本实施例的多芯光纤可以用于多种参数感测。举例而言,可在光纤产生渐逝场的对应位置,增加例如一高分子聚合物、一双折射物质、一光子晶体物质、一等离子体物质、一光吸收物物质、一光非线性物质、一生物物质、一金属物质、一光增益物质、一液晶、一光二维材料、一色散材料、一电磁敏感物质、一半导体材料、一热敏物质、一声光物质等,达成上述所述的感测多参数目的的效果。或者,也可以在产生渐逝场对应位置表面刻蚀结构,选自一光子晶体结构、一周期结构、一啁啾结构、一分布反馈式结构、一法珀腔结构等,达成用于不同的感测用途的目的。
进一步地,通过改变该多芯光纤的有效折射率,即可将本实施例用于可于可调谐滤波器。
综合上述,本实施例的多芯光纤包含周期性排列的掺锗光纤(high indexGecores)产生叠加模态干涉,进而可以制作可调制的滤波器或折射率感测器等应用。
上述仅为本发明的较佳实施例而已,并非用以限定本发明主张的权利范围,凡其它未脱离本发明所揭示的精神所完成的等效改变或修饰,均应包括在本发明的主张范围内。

Claims (3)

1.一种光学参数感测暨调制***,其特征在于,包含一多芯光纤以及分别连接于该多芯光纤两端的一光源以及一光谱分析仪,该光源输出光至该多芯光纤,使该光谱分析仪测得光通过该多芯光纤于各波长的穿透损失响应,该多芯光纤包含一中心光纤以及多个环绕于该中心光纤的卫星光纤,于一拉锥制程后形成强耦合状态并露出渐逝场,单模光纤导入的激光光源仅于中心光纤传输,6个卫星光纤处于黑状态,多芯光纤的两端设于一转动驱动设备上,使多芯光纤于光源与光谱分析仪操作过程可相对一待测物轴向转动,拉锥制程中使用氢气焰对多芯光纤中段部位加热并使多芯光纤两端朝相反的方向施力拉伸,卫星光纤逐渐进入拉锥细化的中心光纤的有效模式,产生强耦合的多芯光纤,并产生两个叠加模式以及叠加模干涉,多芯光纤在接触不同折射率的环境可以产生不同的光学响应,当多芯光纤外径达到35μm时,渐逝场产生于多芯光纤的拉锥后腰部位置,且更为转动相关,卫星光纤以角度60°的转动周期性分布于中心光纤外,产生六角对称叠加模态以及造成渐逝场分布与角度产生关连,响应峰的波长位置与转动角度有关。
2.如权利要求1所述光学参数感测暨调制***,其特征在于经研磨、蚀刻方法漏出渐逝场。
3.如权利要求1所述光学参数感测暨调制***,其特征在于多芯光纤渐逝场表面刻蚀结构,选自一光子晶体结构、一周期结构、一啁啾结构、一分布反馈式结构或一法珀腔结构。
CN201910761954.7A 2019-08-19 2019-08-19 光学参数感测暨调制*** Active CN112393750B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910761954.7A CN112393750B (zh) 2019-08-19 2019-08-19 光学参数感测暨调制***
PCT/CN2020/097179 WO2021031679A1 (zh) 2019-08-19 2020-06-19 光学参数感测及调制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910761954.7A CN112393750B (zh) 2019-08-19 2019-08-19 光学参数感测暨调制***

Publications (2)

Publication Number Publication Date
CN112393750A CN112393750A (zh) 2021-02-23
CN112393750B true CN112393750B (zh) 2023-06-09

Family

ID=74603216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910761954.7A Active CN112393750B (zh) 2019-08-19 2019-08-19 光学参数感测暨调制***

Country Status (2)

Country Link
CN (1) CN112393750B (zh)
WO (1) WO2021031679A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779155A (zh) * 2019-11-11 2021-05-11 聊城大学 光纤表面电场筛选装置
CN113029214B (zh) * 2021-04-16 2022-05-06 中山大学 基于多环芯光纤的散斑传感***及散斑识别方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
CN102261965B (zh) * 2011-04-28 2013-01-30 浙江师范大学 基于双芯光纤的温度传感方法及装置
CN103901532A (zh) * 2012-12-26 2014-07-02 西安金和光学科技有限公司 多芯光纤、采用该多芯光纤的传感装置及其运行方法
CN105277135B (zh) * 2015-09-22 2018-04-03 东北大学 一种具有温度不敏感特性的高灵敏度光纤曲率传感结构
CN109752788A (zh) * 2017-11-03 2019-05-14 桂林电子科技大学 混合集成Mach-Zehnder干涉式光纤微流芯片

Also Published As

Publication number Publication date
WO2021031679A1 (zh) 2021-02-25
CN112393750A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Wu et al. All single-mode fiber Mach–Zehnder interferometer based on two peanut-shape structures
Zhang et al. Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber
Huang et al. Ultra-compact strain-and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG
Bai et al. Strain sensor based on fiber ring cavity laser with photonic crystal fiber in-line Mach–Zehnder interferometer
Sun et al. All-fiber Mach–Zehnder interferometer for liquid level measurement
Deng et al. Graphene oxide-film-coated splitting ratio-adjustable Mach-Zehnder interferometer for relative humidity sensing
Theodosiou et al. All-in-fiber cladding interferometric and Bragg grating components made via plane-by-plane femtosecond laser inscription
CN112393750B (zh) 光学参数感测暨调制***
Zhu et al. Highly sensitive directional torsion sensor based on a helical panda fiber taper
Daud et al. Fibre Bragg grating and no-core fibre sensors
Shen et al. Compact vector twist sensor using a small period long period fiber grating inscribed with femtosecond laser
Bao et al. Investigation of long period grating imprinted on a plastic optical fiber for liquid level sensing
Zhu et al. Self-assembled highly sensitive hybrid structure sensor for vector curvature and temperature measurement
Mohammed et al. All fiber chemical liquids refractive index sensor based on multimode interference
Guo et al. Intensity-modulated directional torsion sensor based on a helical fiber taper
Yao et al. 7-core fiber-based high-resolution omnidirectional vector bending sensor enabled by microwave photonics filter
Estudillo-Ayala et al. Long period fiber grating produced by arc discharges
Cibula et al. In-line Fabry–Perot refractive index sensor
Kim et al. Temperature-Insensitive Refractometer Based on a Wave-Shaped Fiber Modal Interferometer Using No-Core Fiber
Liu et al. High-sensitivity temperature sensor based on photosensitive polymer-filled silica capillary tube
Yu et al. Simultaneous measurement of one dimensional bending and temperature based on Mach-Zehnder interferometer
Feng et al. Strong cladding mode excitation in ultrathin fiber inscribed Bragg grating with ultraviolet photosensitivity
Torres-Peiro et al. Sensor applications based on the cutoff properties of liquid-filled Ge-doped microstructured fibers
Zhu et al. The measurement of sucrose concentration by two-tapered all-fiber Mach–Zehnder interferometer employing different coupling structures and manufacture processes
Shih et al. Measurement of the index of refraction of an liquid by a cladding depleted fiber Bragg grating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant