CN112391300A - 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用 - Google Patents

水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用 Download PDF

Info

Publication number
CN112391300A
CN112391300A CN202011213885.5A CN202011213885A CN112391300A CN 112391300 A CN112391300 A CN 112391300A CN 202011213885 A CN202011213885 A CN 202011213885A CN 112391300 A CN112391300 A CN 112391300A
Authority
CN
China
Prior art keywords
leu
ala
hydroxylase
eriodictyol
flavone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011213885.5A
Other languages
English (en)
Other versions
CN112391300B (zh
Inventor
周景文
陈坚
高松
曾伟主
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011213885.5A priority Critical patent/CN112391300B/zh
Publication of CN112391300A publication Critical patent/CN112391300A/zh
Application granted granted Critical
Publication of CN112391300B publication Critical patent/CN112391300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13021Flavonoid 3'-monooxygenase (1.14.13.21)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了水飞蓟来源的黄酮3β‑羟化酶及其辅酶的应用,属于基因和代谢工程领域。本发明从水飞蓟中得到并验证了具有黄酮3’‑羟化酶功能的SmF3′H和SmCPR,其具有催化柚皮素合成圣草酚的能力。本发明所使用的SmF3′H和SmCPR,较常用的GhF3′H和CrCPR,在相同培养条件下可使转化柚皮素生成圣草酚的产量提升17.0%。在此基础上,利用不同强度的启动子调控SmF3′H和SmCPR,进一步提升了圣草酚的产量,圣草酚的产量可在250mL摇瓶中达到805.6mg/L,较已报道的最高产量200mg/L,增产302.8%。水飞蓟来源的黄酮3β‑羟化酶及其辅酶良好的转化柚皮素合成圣草酚的性能,使其具备广阔的应用前景。

Description

水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用
技术领域
本发明涉及水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用,属于基因和代谢工程领域。
背景技术
圣草酚是一种广泛存在于蔬菜、水果及中药中的天然二氢黄酮类化合物,具有抗氧化、抗炎、抗肿瘤及神经保护等多种药理活性,常用于治疗气喘、过敏性鼻炎、风湿等疾病,具备非常高的药用价值,同时其还是黄杉素、花青素、水飞蓟及大风子素等的前体物质,具备广泛的应用价值。目前,圣草酚主要还是通过直接从植物中提取得到,但是在提取的过程中,需要消耗大量能量来维持高温、并添加大量化学试剂、生产效率低,因而对生态环境造成了很大影响。
目前也有报道利用生物法提取,尤其是利用微生物转化的方法,虽然较于植物法提取会更加安全环保,但是同时也存在着产量低、转化效率不高的问题。目前主要的微生物转化法是利用黄酮3β-羟化酶F3′H在辅酶CPR的共同作用下催化柚皮素得到。已有相关研究报道F3′H催化柚皮素获得圣草酚的最高产量仅200mg/L(Amor,I.L.,et al.,Biotransformation of naringenin to eriodictyol by Saccharomyces cerevisieafunctionally expressing flavonoid 3'hydroxylase.Nat Prod Commun,2010.5(12):p.1893–1898.)。在大肠杆菌中合成圣草酚的产量最高仅107mg/L(Zhu,S.,et al.,Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli.ApplEnviron Microbiol,2014.80(10):p.3072–3080.)。这是由于F3′H和CPR需要锚定在内质网上才可以高效传递电子(图1),因此大部分的F3′H和CPR在原核微生物中表达活性很低甚至没有活性。
因此,仍然缺乏高效生产的F3′H和CPR,使得圣草酚的产量受到了极大的限制,无法很好地将微生物法应用于工业化生产。
发明内容
对于特定的代谢途径中涉及到的基因,每个基因的表达水平经常不处在最佳水平、可以使用不同强度的启动子起始表达途径中的每个基因,并进行组合,随后筛选高产菌株,对高产菌株进行测序,即可以获得最佳启动子组合的基因型。因此,寻找高效的F3′H/CPR,并通过更换启动子调节F3′H/CPR的表达水平,获得最佳表达比例的基因型及其高产圣草酚菌株具有十分重要的意义。
为了获得高效的F3′H/CPR,本发明提供了一对来源于水飞蓟(Silybum marianum)的高活性F3′H及其辅酶CPR。
本发明提供了表达黄酮3β-羟化酶和/或黄酮3β-羟化酶辅酶的微生物细胞,所述黄酮3β-羟化酶的氨基酸序列如SEQ ID NO.2所示;所述黄酮3β-羟化酶辅酶的氨基酸序列如SEQ ID NO.4所示。
在本发明的一种实施方式中,编码所述黄酮3β-羟化酶的核苷酸序列如SEQ IDNO.1所示。
在本发明的一种实施方式中,编码所述黄酮3β-羟化酶辅酶的核苷酸序列如SEQID NO.3所示。
在本发明的一种实施方式中,利用启动子PINO1、PSED1、PTPI1、PMET6、PFAS2、PGAL1、PLEU2、PZWF1、PARO7和PGLN1启动黄酮3β-羟化酶的表达。
在本发明的一种实施方式中,启动子PINO1、PSED1、PTPI1、PMET6、PFAS2、PGAL1、PLEU2、PZWF1、PARO7和PGLN1的核苷酸序列如SEQ ID NO.5-SEQ ID NO.14所示。
在本发明的一种实施方式中,利用启动子PTDH1、PPGK1、PTDH3、PERG20、PADH6、PGAL10、PADE2、PPMA1、PADE6和PFAD1启动黄酮3β-羟化酶的辅酶的表达。
在本发明的一种实施方式中,启动子PTDH1、PPGK1、PTDH3、PERG20、PADH6、PGAL10、PADE2、PPMA1、PADE6和PFAD1的核苷酸序列如SEQ ID NO.15-SEQ ID NO.24所示。
在本发明的一种实施方式中,利用启动子PINO1启动黄酮3β-羟化酶的表达,利用启动子PTDH1启动黄酮3β-羟化酶的辅酶的表达。
在本发明的一种实施方式中,利用启动子PSED1启动黄酮3β-羟化酶的表达,利用启动子PTDH1启动黄酮3β-羟化酶的辅酶的表达。
在本发明的一种实施方式中,所述微生物细胞以原核或真核生物为宿主。
在本发明的一种实施方式中,所述微生物细胞为酿酒酵母菌株C800。
本发明提供了所述微生物细胞在生产圣草酚中的应用,所述应用是以柚皮素为底物。
在本发明的一种实施方式中,在反应体系中加入所述微生物细胞。
本发明提供了一种全细胞催化生产圣草酚的方法,所述方法是在反应体系中加入所述微生物细胞。
在本发明的一种实施方式中,将在25-35℃,200-250rpm培养16-18h,获得种子培养基以1-5mL/100mL的量加入反应体系中。
本发明提供了一种全细胞催化生产圣草酚的方法在生产圣草酚或以圣草酚为原料的产品中的应用。
本发明的有益效果:本发明从水飞蓟中得到了具有黄酮3’-羟化酶功能的SmF3′H和SmCPR,本发明所使用的SmF3′H和SmCPR,较常用的GhF3′H和CrCPR,在相同培养条件下可使转化柚皮素生成圣草酚的产量提升17.0%。在此基础上,利用不同强度的启动子调控SmF3′H和SmCPR,进一步提升了圣草酚的产量,圣草酚的产量可在250mL摇瓶中达到805.6mg/L,较已报道的最高产量200mg/L,增产302.8%。高产圣草酚菌株的获得对于推动高产圣草酚在工业中的应用具有重要意义。
附图说明
图1为柚皮素经过SmF3′H/SmCPR催化产圣草酚示意图。
图2为启动子优化SmF3′H/SmCPR示意图。
图3为水飞蓟来源SmF3′H/SmCPR功能鉴定及催化能力验证图。
图4为启动子优化后产量最高的10株菌株产量、对应的启动子基因型和启动子表达强度图。
具体实施方式
YNB培养基:0.72g/L酵母氮源基础培养基、20g/L葡萄糖、50mg/L亮氨酸、50mg/L色氨酸、50mg/L组氨酸。
YPD培养基:10g/L酵母粉、20g/L蛋白胨、20g/L葡萄糖。
固体培养基中添加2g/L的琼脂粉。
酿酒酵母C800:构建见文献Gao,S.,et al.,Promoter-library-based pathwayoptimization for efficient(2S)-naringenin production from p-coumaric acid inSaccharomyces cerevisiae.J Agric Food Chem,2020.68(25):p.6884-6891。
实施例1:扩增和鉴定SmF3′H和SmCPR
根据试剂盒说明书从水飞蓟花蕊中提取总RNA、逆转录获得cDNA。使用引物,从cDNA中分别扩增Contig37917(SmF3′H,利用引物SmF3′H-F和SmF3′H-R)和Contig668(SmCPR,利用引物SmCPR-F和SmCP-R),得到PCR产物,然后将得到的PCR产物克隆到pMD19T-simple中,分别得到pMD-T-SmCPR和pMD-T-SmF3′H。
因原始质粒pY26-TEF-GPD存在PmlI酶切位点,因此使用引物mut-F和mut-R环化扩增原始质粒pY26-TEF-GPF,再经过自连接获得caaggtttataa,在质粒pY26-TEF-GPD-mut引入新的酶切位点PmlI,构建得到pY26-TEF-GPD-mut用于后续构建质粒。
对已报道的基因GhF3′H(GenBank ID:ABA64468.1)和CrCPR(GenBank ID:KM111538.1)进行化学合成,分别连接至T载体上进行保存,分别为pUC57-GhF3′H和pUC57-CrCPR。使用BamHI和PmlI内切酶分别酶切pMD-T-SmF3′H和pY26-TEF-GPD-mut,将酶切后的片段分别回收并进行连接获得pY26-GR。使用NotI和PacI内切酶分别酶切pMD-T-SmCPR和pY26-GR,将酶切后的片段进行回收并进行连接获得pY26-THGR。同理使用BamHI和BspDI内切酶酶切pUC57-GhF3′H和pY26-TEF-GPD,将酶切后的片段进行回收并连接获得pY26-GR2。使用NotI和PacI内切酶分别酶切pUC57-CrCPR和pY26-GR2,将酶切后的片段进行回收并连接后获得pY26-THGR2。
将上述构建得到的质粒载体pY26-GR、pY26-THGR、转入pY26-GR2和pY26-THGR2分别大肠杆菌JM109中,在37℃培养至长出单克隆,挑取单克隆测序,测序验证正确的即为阳性转化子,从阳性转化子中提取质粒。将提取的质粒pY26-GR、pY26-THGR、pY26-GR2和pY26-THGR2分别通过乙酸锂转化法转化到酿酒酵母菌株C800中,依次获得菌株C800GR、C800THGR、C800GR2和C800THGR2。
扩增引物见表1,本发明中涉及的菌株及质粒见表2。
表1所用引物序列
Figure BDA0002759675000000031
表2本发明中涉及的菌株及质粒
Figure BDA0002759675000000032
Figure BDA0002759675000000041
实施例2:SmF3′H和SmCPR催化功能的验证
Contig37917(SmF3′H)和Contig668(SmCPR)及菌株C800GR、C800GR2、C800THGR和C800THGR2在250mL摇瓶中发酵条件:挑取单菌落接种在含有20mL YNB液体培养基的250mL摇瓶中,30℃,220rpm培养16-18h,获得种子培养基。将种子培养基以2mL/100mL转接到含有20mL新鲜YNB液体培养基的250mL摇瓶中,培养基中含有250mg·L-1柚皮素,30℃,220rpm培养72小时后检测圣草酚的产量。
菌株Contig37917、Contig668、C800GR、C800GR2、C800THGR、C800THGR2发酵液,使用甲醇稀释一倍后,震荡30s混匀,13500rpm离心5min后过滤使用高效液相检测圣草酚的产量。250mL摇瓶检测:将100μL发酵培养基与900μL甲醇混合涡旋振荡30s,13500rpm离心5min后过滤。过滤上清液并准备进行HPLC分析。
样品使用安捷伦高效液相检测(Agilent 1100,US),C18反相色谱柱(4.6mm×250mm,Thermo),柱温25℃。流动相为甲醇:水(41:59)并添加3‰的磷酸。流速1mL/min,进样量10μL,检测波长为290nm。
经过验证,来源于水飞蓟的Contig37917和Contig668被鉴定为具有催化柚皮素合成圣草酚的能力,且催化能力较常用的GhF3′H/CrCPR催化能力更强。相同250mL摇瓶培养条件下,常用的GhF3′H/CrCPR可以合成49.5mg/L的圣草酚,而水飞蓟来源的SmF3′H/SmCPR可以合成57.9mg/L,增产17.0%。由此说明Contig37917(SmF3′H)和Contig668(SmCPR)具备良好的生产圣草酚的功能。
实施例3:启动子优化SmF3′H和SmCPR表达水平文库的构建
从已报道的启动子库(Gao,S.,et al.,Promoter-library-based pathwayoptimization for efficient(2S)-naringenin production from p-coumaric acid inSaccharomyces cerevisiae.J Agric Food Chem,2020.68(25):p.6884-6891.)中选择了20个梯度启动子用于SmF3′H和SmCPR表达水平的优化。将20个启动子分为A、B两组。启动子组A包含PINO1、PSED1、PTPI1、PMET6、PFAS2、PGAL1、PLEU2、PZWF1、PARO7和PGLN1(其序列依次对应SEQ IDNO.5-SEQ ID NO.14),用于融合和起始转录SmF3′H。启动子组B包含PTDH1、PPGK1、PTDH3、PERG20、PADH6、PGAL10、PADE2、PPMA1、PADE6和PFAD1(其序列依次对应SEQ ID NO.15-SEQ ID NO.24),用于融合和起始转录SmCPR。
分别使用引物PXXX-homo-F和PXXX-homo-R从质粒pMD19T-XXX(质粒pMD19T-XXX为将上述启动子连接至pMD19T载体上,XXX代表启动子的名称,具体构建方法参见Gao,S.,etal.,Promoter-library-based pathway optimization for efficient(2S)-naringeninproduction from p-coumaric acid in Saccharomyces cerevisiae.J Agric FoodChem,2020.68(25):p.6884-6891.)、使用引物pY26-THGR-homo-F和pY26-THGR-homo-R从质粒pY26-THGR上扩增载体骨架(包含SmCPR的表达框),分别扩增启动子序列和载体骨架(如表3,其中XXX代表启动子的名称)。分别纯化载体骨架、启动子组A和B的PCR产物,然后将三种产物混合至50μL(启动子组A:启动子组B:载体骨架=2:2:1,mol/mol/mol,总计约2-3μg),将混合的体系通过醋酸锂高效转化法(具体转化方法参见文献:Gietz,R.D.andR.A.Woods,Transformation of yeast by lithium acetate/single-stranded carrierDNA/polyethylene glycol method.Methods Enzymol,2002.350:p.87–96.)转化到酿酒酵母菌株C800中,所有片段将在酿酒酵母体内完成组装。将转化体系涂布在YNB琼脂平板上,将琼脂板在30℃下孵育3-4天,即可获得启动子随机组装文库。
表3所用引物序列
Figure BDA0002759675000000051
Figure BDA0002759675000000061
Figure BDA0002759675000000071
实施例4:启动子优化菌株的筛选
从随机组装文库中随机挑取2 000个单菌落,使用48深孔板进行培养:使用自动挑菌落仪器QPix 420自动将平板上的菌落接种到48深孔板中。每个孔中添加1.5mL YNB液体培基,培养基中含有终浓度为250mg·L-1的柚皮素。将深孔板转移到孔板摇床上,30℃,220rpm培养48小时。将深孔板置于桌面上2小时以沉淀细胞,上清液可用于高通量筛选。
高通量检测方法:随机组装库中的菌株在48深孔板中发酵后,使用配备了酶标仪的自动工作站,自动取100μL的发酵上清液转移到96浅孔酶标板孔内,再加入100μL的4MKOH。大约5min后,混合物会变成紫色,紫色的深浅与圣草酚的浓度呈正比,可以通过目测直接筛选高产菌株。将变色的酶标板自动转移到酶标仪中在550nm下检测混合物的吸光值,选择吸光值高的菌株进入摇瓶复筛。
检测方法:48深孔板发酵液,使用甲醇稀释一倍后,震荡30s混匀,13500rpm离心5min后过滤使用高效液相检测圣草酚的产量。250mL摇瓶检测:将100μL发酵培养基与900μL甲醇混合涡旋振荡30s,13500rpm离心5min后过滤。过滤上清液并准备进行HPLC分析。
样品使用安捷伦高效液相检测(Agilent 1100,US),C18反相色谱柱(4.6mm×250mm,Thermo),柱温25℃。流动相为甲醇:水(41:59)并添加3‰的磷酸。流速1mL/min,进样量10μL,检测波长为290nm。
通过启动子优化,选择了10株产量最高的菌株,在48深孔板水平积累圣草酚产量由低到高分别为29.2mg/L、29.9mg/L、30.7mg/L、30.8mg/L、31.9mg/L、33.0mg/L、35.5mg/L、36.6mg/L、46.2mg/L、51.8mg/L。随后对10株菌的基因型进行的测序,其基因型和对应的启动子表达强度在图4中列出。而出发菌株没有检测到圣草酚的生成。
选择10个圣草酚产量最高的菌株进行复筛和测序,250mL摇瓶复筛:挑取单菌落接种在含有20mL YNB液体培养基的250mL摇瓶中,30℃,220rpm培养16-18h,获得种子培养基;将种子培养基以2mL/100mL转接到装有20mL新鲜YPD液体培养基的250mL摇瓶中,30℃、220rpm培养72小时后检测圣草酚的产量。在第0h,12h,24h和36h时,分别将375mg·L-1柚皮素加入YPD培养基中,发酵结束后测圣草酚含量。
产量最高的两株菌株在250mL摇瓶水平进行复筛的结果显示,分别可以积累720.4mg/L和805.6mg/L的圣草酚,较已报道的最高产量增产260.2%和302.8%,菌株中的质粒分别为pY26-P04和pY26-P05,pY26-P05对应的基因型为pY26-PINO1-SmF3′H-PTDH1-SmCPR,pY26-P04对应的基因型为pY26-PSED1-SmF3′H-PTDH1-SmCPR。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
SEQUENCE LISTING
<110> 江南大学
<120> 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用
<130> BAA201245A
<160> 24
<170> PatentIn version 3.3
<210> 1
<211> 1557
<212> DNA
<213> Silybum marianum
<400> 1
atgactatcc tacccctgct actctacgcc tccataactg gtttactaat ctatgtattg 60
cttaacctac gcaccacccc tcgttctaac cacctcccac tcccacccgg cccaacccca 120
tggccaatca tcggaaactt acctcatctt ggaagaatac cgcaccatgc gctggcggcc 180
atggctacaa agtacggccc gttgatgcat ctccggctcg gcgtcgttga cgtggtggtg 240
gcggcgtctg cgtcggtggc ggcacagttt ttgaaggttc atgacgccaa tttcgcgagt 300
aggccgccga actccggcgc gaaacacatc gcgtataatt atcaggatct ggtgtttgca 360
ccttatggtc agaaatggcg gatgcttagg aagatttgct ccgtgcatct gttctctaac 420
aaagcactcg atgatttccg tcacgttcgt caggaggagg tggcgattct ggtgcgcgct 480
ttggccggag ccggtcgatc tacggcggcg gcgttaggtc aactacttaa cgtttgcacc 540
acaaacgcgt tggcacgagt gatgttaggt cggagagtgt tcgtggacgg aagtgaaggc 600
aatcgagacg cggatgaatt caaggatatg gtggttgaag tgatggtatt ggccggagaa 660
ttcaacatcg gcgacttcat tccggcgctt gattggctgg atctgcaaag cgtgacgaag 720
aagatgaaga aactccatct ccgattcgat tcgtttctta acaaaatcct ggaagaccat 780
agaaatggag gtgacgtcac ttcgggtaac gtggatttgc tgagcacgtt gatttcgctc 840
aaggatgacg ccgatggaga gggcgggaag ctttcagata tcgaaatcaa agctttgctt 900
ctgaatttat tcactgcggg aacagacaca tcatctagta cggtggaatg ggcaatggct 960
gaactcattc gccatccgca attattgaag caagcccaag aagaattgga cactgttgtt 1020
ggtaaagacc ggcttgtatc cgaattggac ctgagtagac taacattcct cgaagccatt 1080
gtgaaggaaa ccttcaggct ccacccatcg accccactct ctttgccacg gattgcatca 1140
gagagctgtg aagtcgatgg gtattacatt cctaagggaa ccacacttct tgttaacgtg 1200
tgggccattg cccgagaccc aaaaatgtgg accgacccgc ttgaattccg acccacccgg 1260
ttcttgccgg gaggtgaaaa gccgaatgct aatgtaaagg gaaatgattt tgaaataata 1320
ccgtttgggg ctggtcgaag gatttgtgcg ggtatgagcc tagggttacg gatggttcag 1380
ttgctcactg cgactctggt tcatgccttt gattggaaat tggctaacgg gttagaccca 1440
gagaagctca atatggaaga agcttatggg ttgacccttc aaagggctgc acccttgatg 1500
gtgcacccaa ccccacggtt agctccccat ttgtatgaaa gcagtcaagg tttataa 1557
<210> 2
<211> 518
<212> PRT
<213> Silybum marianum
<400> 2
Met Thr Ile Leu Pro Leu Leu Leu Tyr Ala Ser Ile Thr Gly Leu Leu
1 5 10 15
Ile Tyr Val Leu Leu Asn Leu Arg Thr Thr Pro Arg Ser Asn His Leu
20 25 30
Pro Leu Pro Pro Gly Pro Thr Pro Trp Pro Ile Ile Gly Asn Leu Pro
35 40 45
His Leu Gly Arg Ile Pro His His Ala Leu Ala Ala Met Ala Thr Lys
50 55 60
Tyr Gly Pro Leu Met His Leu Arg Leu Gly Val Val Asp Val Val Val
65 70 75 80
Ala Ala Ser Ala Ser Val Ala Ala Gln Phe Leu Lys Val His Asp Ala
85 90 95
Asn Phe Ala Ser Arg Pro Pro Asn Ser Gly Ala Lys His Ile Ala Tyr
100 105 110
Asn Tyr Gln Asp Leu Val Phe Ala Pro Tyr Gly Gln Lys Trp Arg Met
115 120 125
Leu Arg Lys Ile Cys Ser Val His Leu Phe Ser Asn Lys Ala Leu Asp
130 135 140
Asp Phe Arg His Val Arg Gln Glu Glu Val Ala Ile Leu Val Arg Ala
145 150 155 160
Leu Ala Gly Ala Gly Arg Ser Thr Ala Ala Ala Leu Gly Gln Leu Leu
165 170 175
Asn Val Cys Thr Thr Asn Ala Leu Ala Arg Val Met Leu Gly Arg Arg
180 185 190
Val Phe Val Asp Gly Ser Glu Gly Asn Arg Asp Ala Asp Glu Phe Lys
195 200 205
Asp Met Val Val Glu Val Met Val Leu Ala Gly Glu Phe Asn Ile Gly
210 215 220
Asp Phe Ile Pro Ala Leu Asp Trp Leu Asp Leu Gln Ser Val Thr Lys
225 230 235 240
Lys Met Lys Lys Leu His Leu Arg Phe Asp Ser Phe Leu Asn Lys Ile
245 250 255
Leu Glu Asp His Arg Asn Gly Gly Asp Val Thr Ser Gly Asn Val Asp
260 265 270
Leu Leu Ser Thr Leu Ile Ser Leu Lys Asp Asp Ala Asp Gly Glu Gly
275 280 285
Gly Lys Leu Ser Asp Ile Glu Ile Lys Ala Leu Leu Leu Asn Leu Phe
290 295 300
Thr Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu Trp Ala Met Ala
305 310 315 320
Glu Leu Ile Arg His Pro Gln Leu Leu Lys Gln Ala Gln Glu Glu Leu
325 330 335
Asp Thr Val Val Gly Lys Asp Arg Leu Val Ser Glu Leu Asp Leu Ser
340 345 350
Arg Leu Thr Phe Leu Glu Ala Ile Val Lys Glu Thr Phe Arg Leu His
355 360 365
Pro Ser Thr Pro Leu Ser Leu Pro Arg Ile Ala Ser Glu Ser Cys Glu
370 375 380
Val Asp Gly Tyr Tyr Ile Pro Lys Gly Thr Thr Leu Leu Val Asn Val
385 390 395 400
Trp Ala Ile Ala Arg Asp Pro Lys Met Trp Thr Asp Pro Leu Glu Phe
405 410 415
Arg Pro Thr Arg Phe Leu Pro Gly Gly Glu Lys Pro Asn Ala Asn Val
420 425 430
Lys Gly Asn Asp Phe Glu Ile Ile Pro Phe Gly Ala Gly Arg Arg Ile
435 440 445
Cys Ala Gly Met Ser Leu Gly Leu Arg Met Val Gln Leu Leu Thr Ala
450 455 460
Thr Leu Val His Ala Phe Asp Trp Lys Leu Ala Asn Gly Leu Asp Pro
465 470 475 480
Glu Lys Leu Asn Met Glu Glu Ala Tyr Gly Leu Thr Leu Gln Arg Ala
485 490 495
Ala Pro Leu Met Val His Pro Thr Pro Arg Leu Ala Pro His Leu Tyr
500 505 510
Glu Ser Ser Gln Gly Leu
515
<210> 3
<211> 2133
<212> DNA
<213> Silybum marianum
<400> 3
atgcaatcgg actcgtctct ggaaacgtcg tcgtttgatt tgattaccgc agctcttaag 60
gagaaagtta ttgatacagc aaacgcatct gatagtggag attcaacgat gcctccggct 120
ttggcgatga ttttggaaaa ccgtgagctg tttatgatgc tgactacaac agtggctctt 180
ttgcttggat ttattgtcgt ttcgttctgg aagagatctt ctgagaagaa gtcggctaag 240
gatttggagc taccgaagat cgttgtgcct aagagacagc aggaacagga ggttgatgac 300
ggtaagaaga aggttacgat tctttttgga acgcagaccg gaacggcgga aggtttcgct 360
aaggcactgt tggaagaagc taaagcgcga tatgaaaagg cgacctttaa agtagtcgat 420
ttggatgatt atgctgttga tgatgatgag tacgaagaga aactaaagaa ggagtcattt 480
gctttcttct tcttggctac atatggagat ggtgagccaa ctgataatgc tgccagattt 540
tataaatggt ttacagaggg aggtgagaaa ggagtttggc ttgaaaagct tcaatatgga 600
gtatttggcc ttggcaatag acaatacgag catttcaaca agattgcaaa agaggttgac 660
gatggtctcg cagagcaggg tgcaaagcgc cttgttccag ttggccttgg agatgatgat 720
caatccattg aagatgattt tactgcatgg aaagagttag tgtggcctga gttggatgaa 780
ttgcttcgtg acgaggatga caaaggcgtt gctactcctt acacagctgc tattccggaa 840
taccgagttg tgtttcatga gaaacatgat acatctgctg aagatcaaat tcagacaaat 900
ggtcatgctg ttcatgatgc tcaacatcca tgcagatcca atgtggctgt taaaaaggag 960
ctccataccc ctgaatctga tcgctcttgc acgcatctgg aatttgacat ctcacacact 1020
ggactatcat acgaaactgg ggaccatgtt ggtgtctact gtgagaactt aagtgaagtt 1080
gtggaggagg ctgagaggtt aataggttta ccatcggata cttatttctc agttcacacg 1140
gataacgaag atggaacacc acttggtgga gcttccttac tacctccttt ccctccatgc 1200
actttaagaa aagcattggc taattacgca gatgtattga cttctcccaa aaagtcggcc 1260
ttgattgctc tagctgctca tgcttctgat cctactgaag ctgaacgact aaaatttctt 1320
gcatctcctg ctgggaagga tgaatattct caatggatta ttgcaagcca aagaagcctg 1380
cttgaggtca tggaagcttt cccatcggct aagcctccac ttggggtttt ctttgcagct 1440
attgctccac gcttacagcc tcgatactac tctatttctt cctccccgaa gatggcacct 1500
agcaggattc atgttacttg tgcattagtt tatgagaaaa cacctgcagg ccgtctccat 1560
aaaggaatct gttcaacctg gatgaagaat gctgtgccta tgacggaaag tcaggattgc 1620
agctgggcac ctattttcgt tagaacgtct aacttcagac ttcccactga tcctaaagtt 1680
cctgttatca tgattggccc tggaaccgga ttggctccgt tcagaggttt tcttcaagaa 1740
agattagctc tgaaggaagc cggaactgaa ctgggatcat ccattttatt cttcggatgt 1800
agaaatcgca aagtggattt catatatgag aatgaactga aagactttgt tgagaatggt 1860
gctgtttccg agcttattgt tgccttctcc cgtgaaggcc ccaataagga atatgtgcaa 1920
cataaaatga gcgatagggc ttcggatcta tggaacttgc tttcggaggg agcatattta 1980
tacgtttgtg gtgatgccaa aggcatggct aaagatgtac accggaccct tcacacaatt 2040
gtgcaagaac agggatctct agactcgtca aaggcagagc tgtatgtgaa gaatctacaa 2100
atgtcaggaa gatacctccg tgatgtttgg tag 2133
<210> 4
<211> 710
<212> PRT
<213> Silybum marianum
<400> 4
Met Gln Ser Asp Ser Ser Leu Glu Thr Ser Ser Phe Asp Leu Ile Thr
1 5 10 15
Ala Ala Leu Lys Glu Lys Val Ile Asp Thr Ala Asn Ala Ser Asp Ser
20 25 30
Gly Asp Ser Thr Met Pro Pro Ala Leu Ala Met Ile Leu Glu Asn Arg
35 40 45
Glu Leu Phe Met Met Leu Thr Thr Thr Val Ala Leu Leu Leu Gly Phe
50 55 60
Ile Val Val Ser Phe Trp Lys Arg Ser Ser Glu Lys Lys Ser Ala Lys
65 70 75 80
Asp Leu Glu Leu Pro Lys Ile Val Val Pro Lys Arg Gln Gln Glu Gln
85 90 95
Glu Val Asp Asp Gly Lys Lys Lys Val Thr Ile Leu Phe Gly Thr Gln
100 105 110
Thr Gly Thr Ala Glu Gly Phe Ala Lys Ala Leu Leu Glu Glu Ala Lys
115 120 125
Ala Arg Tyr Glu Lys Ala Thr Phe Lys Val Val Asp Leu Asp Asp Tyr
130 135 140
Ala Val Asp Asp Asp Glu Tyr Glu Glu Lys Leu Lys Lys Glu Ser Phe
145 150 155 160
Ala Phe Phe Phe Leu Ala Thr Tyr Gly Asp Gly Glu Pro Thr Asp Asn
165 170 175
Ala Ala Arg Phe Tyr Lys Trp Phe Thr Glu Gly Gly Glu Lys Gly Val
180 185 190
Trp Leu Glu Lys Leu Gln Tyr Gly Val Phe Gly Leu Gly Asn Arg Gln
195 200 205
Tyr Glu His Phe Asn Lys Ile Ala Lys Glu Val Asp Asp Gly Leu Ala
210 215 220
Glu Gln Gly Ala Lys Arg Leu Val Pro Val Gly Leu Gly Asp Asp Asp
225 230 235 240
Gln Ser Ile Glu Asp Asp Phe Thr Ala Trp Lys Glu Leu Val Trp Pro
245 250 255
Glu Leu Asp Glu Leu Leu Arg Asp Glu Asp Asp Lys Gly Val Ala Thr
260 265 270
Pro Tyr Thr Ala Ala Ile Pro Glu Tyr Arg Val Val Phe His Glu Lys
275 280 285
His Asp Thr Ser Ala Glu Asp Gln Ile Gln Thr Asn Gly His Ala Val
290 295 300
His Asp Ala Gln His Pro Cys Arg Ser Asn Val Ala Val Lys Lys Glu
305 310 315 320
Leu His Thr Pro Glu Ser Asp Arg Ser Cys Thr His Leu Glu Phe Asp
325 330 335
Ile Ser His Thr Gly Leu Ser Tyr Glu Thr Gly Asp His Val Gly Val
340 345 350
Tyr Cys Glu Asn Leu Ser Glu Val Val Glu Glu Ala Glu Arg Leu Ile
355 360 365
Gly Leu Pro Ser Asp Thr Tyr Phe Ser Val His Thr Asp Asn Glu Asp
370 375 380
Gly Thr Pro Leu Gly Gly Ala Ser Leu Leu Pro Pro Phe Pro Pro Cys
385 390 395 400
Thr Leu Arg Lys Ala Leu Ala Asn Tyr Ala Asp Val Leu Thr Ser Pro
405 410 415
Lys Lys Ser Ala Leu Ile Ala Leu Ala Ala His Ala Ser Asp Pro Thr
420 425 430
Glu Ala Glu Arg Leu Lys Phe Leu Ala Ser Pro Ala Gly Lys Asp Glu
435 440 445
Tyr Ser Gln Trp Ile Ile Ala Ser Gln Arg Ser Leu Leu Glu Val Met
450 455 460
Glu Ala Phe Pro Ser Ala Lys Pro Pro Leu Gly Val Phe Phe Ala Ala
465 470 475 480
Ile Ala Pro Arg Leu Gln Pro Arg Tyr Tyr Ser Ile Ser Ser Ser Pro
485 490 495
Lys Met Ala Pro Ser Arg Ile His Val Thr Cys Ala Leu Val Tyr Glu
500 505 510
Lys Thr Pro Ala Gly Arg Leu His Lys Gly Ile Cys Ser Thr Trp Met
515 520 525
Lys Asn Ala Val Pro Met Thr Glu Ser Gln Asp Cys Ser Trp Ala Pro
530 535 540
Ile Phe Val Arg Thr Ser Asn Phe Arg Leu Pro Thr Asp Pro Lys Val
545 550 555 560
Pro Val Ile Met Ile Gly Pro Gly Thr Gly Leu Ala Pro Phe Arg Gly
565 570 575
Phe Leu Gln Glu Arg Leu Ala Leu Lys Glu Ala Gly Thr Glu Leu Gly
580 585 590
Ser Ser Ile Leu Phe Phe Gly Cys Arg Asn Arg Lys Val Asp Phe Ile
595 600 605
Tyr Glu Asn Glu Leu Lys Asp Phe Val Glu Asn Gly Ala Val Ser Glu
610 615 620
Leu Ile Val Ala Phe Ser Arg Glu Gly Pro Asn Lys Glu Tyr Val Gln
625 630 635 640
His Lys Met Ser Asp Arg Ala Ser Asp Leu Trp Asn Leu Leu Ser Glu
645 650 655
Gly Ala Tyr Leu Tyr Val Cys Gly Asp Ala Lys Gly Met Ala Lys Asp
660 665 670
Val His Arg Thr Leu His Thr Ile Val Gln Glu Gln Gly Ser Leu Asp
675 680 685
Ser Ser Lys Ala Glu Leu Tyr Val Lys Asn Leu Gln Met Ser Gly Arg
690 695 700
Tyr Leu Arg Asp Val Trp
705 710
<210> 5
<211> 510
<212> DNA
<213> 人工序列
<400> 5
gaagacgatg aggccggtgc cgatgtgccc ttgatggaca acaaacaaca gctctcttcc 60
ggccgtactt agtgatcgga acgagctctt tatcaccgta gttctaaata acacatagag 120
taaattattg cctttttctt cgttcctttt gttcttcacg tcctttttat gaaatacgtg 180
ccggtgttcc ggggttggat gcggaatcga aagtgttgaa tgtgaaatat gcggaggcca 240
agtatgcgct tcggcggcta aatgcggcat gtgaaaagta ttgtctattt tatcttcatc 300
cttctttccc agaatattga acttatttaa ttcacatgga gcagagaaag cgcacctctg 360
cgttggcggc aatgttaatt tgagacgtat ataaattgga gctttcgtca cctttttttg 420
gcttgttctg ttgtcgggtt cctaatgtta gttttatcct tgatttattc tgtttcattc 480
cctttttttt ccagtgaaaa agaagtaaca 510
<210> 6
<211> 550
<212> DNA
<213> 人工序列
<400> 6
ctaccttcca tacaccactg attgctccac gtcatgcggc cttctttcga ggacaaaaag 60
gcatatatcg ctaaaattag ccatcagaac cgttattgtt attatatttt cattacgaaa 120
gaggagaggg cccagcgcgc cagagcacac acggtcattg attactttat ttggctaaag 180
atccatccct tctcgatgtc atctctttcc attcttgtgt atttttgatt gaaaatgatt 240
ttttgtccac taatttctaa aaataagaca aaaagccttt aagcagtttt tcatccattt 300
tactacggta aaatgaatta gtacggtatg gctcccagtc gcattatttt tagattggcc 360
gtaggggctg gggtagaact agagtaagga acattgctct gccctctttt gaactgtcat 420
ataaatacct gacctatttt attctccatt atcgtattat ctcacctctc tttttctatt 480
ctcttgtaat tattgattta tagtcgtaac tacaaagaca agcaaaataa aatacgttcg 540
ctctattaag 550
<210> 7
<211> 623
<212> DNA
<213> 人工序列
<400> 7
acccaaatgg actgattgtg agggagacct aactacatag tgtttaaaga ttacggatat 60
ttaacttact tagaataatg ccattttttt gagttataat aatcctacgt tagtgtgagc 120
gggatttaaa ctgtgaggac cttaatacat tcagacactt ctgcggtatc accctactta 180
ttcccttcga gattatatct aggaacccat caggttggtg gaagattacc cgttctaaga 240
cttttcagct tcctctattg atgttacacc tggacacccc ttttctggca tccagttttt 300
aatcttcagt ggcatgtgag attctccgaa attaattaaa gcaatcacac aattctctcg 360
gataccacct cggttgaaac tgacaggtgg tttgttacgc atgctaatgc aaaggagcct 420
atataccttt ggctcggctg ctgtaacagg gaatataaag ggcagcataa tttaggagtt 480
tagtgaactt gcaacattta ctattttccc ttcttacgta aatatttttc tttttaattc 540
taaatcaatc tttttcaatt ttttgtttgt attcttttct tgcttaaatc tataactaca 600
aaaaacacat acataaacta aaa 623
<210> 8
<211> 580
<212> DNA
<213> 人工序列
<400> 8
catgaaccag ggtcccgcac tccgggtaaa ggaccatcac gccacatcac gtgcacatta 60
ctagtaaaag ccacaggaaa tatttcacgt gacttacaaa cagagtcgta cgtcaggacc 120
ggagtcaggt gaaaaaatgt gggccggtaa agggaaaaaa ccagaaacgg gactactatc 180
gaactcgttt agtcgcgaac gtgcaaaagg ccaatatttt tcgctagagt catcgcagtc 240
atggcagctc tttcgctcta tctcccggtc gcaaaactgt ggtagtcata gctcgttctg 300
ctcaattgag aactgtgaat gtgaatatgg aacaaatgcg atagatgcac taatttaagg 360
gaagctagct agttttccca actgcgaaag aaaaaaagga aagaaaaaaa aattctatat 420
aagtgataga tatttccatc tttactagca ttagtttctc ttttacgtat tcaatatttt 480
tgttaaactc ttcctttatc ataaaaaagc aagcatctaa gagcattgac aacactctaa 540
gaaacaaaat accaatataa tttcaaagta catatcaaaa 580
<210> 9
<211> 543
<212> DNA
<213> 人工序列
<400> 9
gttgtcgttg ttgtcccagc cgttgtcaaa acgcgttaat tccaactatt ttctatattt 60
ctattctatc cgaactcccc ttttgtatat caatatatct taatactttc gcctattctt 120
tactatattt cctaaatttt ctctggtctg caggccaaaa acaacaactt actactgaat 180
catggacgtg tatttagttt agccaagcaa tatttaaata tcactcttcc taaaaataca 240
ttgggcatta cccgcaaact aacccatcgc ttagcaaaat ccaaccattt tttttttatc 300
tcccgcgttt tcacatgcta cctcattcgc ctcgtaacgt tacgaccgaa atctcactaa 360
ggcacggttt gttgggcagt ttacagatgt tggataacca gttgtttcta aacggttatg 420
cctcatatat aacttgttaa ctgaaggtta cacaagacca catcaccact gtcgtgcttt 480
tctaataacc gctatattag acgtttaaag ggctacagca acaccaattg aaataccatc 540
att 543
<210> 10
<211> 668
<212> DNA
<213> 人工序列
<400> 10
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat ggacgcaaag aagtttaata 60
atcatattac atggcattac caccatatac atatccatat ctaatcttac ttatatgttg 120
tggaaatgta aagagcccca ttatcttagc ctaaaaaaac cttctctttg gaactttcag 180
taatacgctt aactgctcat tgctatattg aagtacggat tagaagccgc cgagcgggcg 240
acagccctcc gacggaagac tctcctccgt gcgtcctcgt cttcaccggt cgcgttcctg 300
aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata aagattctac aatactagct 360
tttatggtta tgaagaggaa aaattggcag taacctggcc ccacaaacct tcaaattaac 420
gaatcaaatt aacaaccata ggatgataat gcgattagtt ttttagcctt atttctgggg 480
taattaatca gcgaagcgat gatttttgat ctattaacag atatataaat ggaaaagctg 540
cataaccact ttaactaata ctttcaacat tttcagtttg tattacttct tattcaaatg 600
tcataaaagt atcaacaaaa aattgttaat atacctctat actttaacgt caaggagaaa 660
aaactata 668
<210> 11
<211> 544
<212> DNA
<213> 人工序列
<400> 11
tcctgtactt ccttgttcat gtgtgttcaa aaacgttata tttataggat aattatactc 60
tatttctcaa caagtaattg gttgtttggc cgagcggtct aaggcgcctg attcaagaaa 120
tatcttgacc gcagttaact gtgggaatac tcaggtatcg taagatgcaa gagttcgaat 180
ctcttagcaa ccattatttt tttcctcaac ataacgagaa cacacagggg cgctatcgca 240
cagaatcaaa ttcgatgact ggaaattttt tgttaatttc agaggtcgcc tgacgcatat 300
acctttttca actgaaaaat tgggagaaaa aggaaaggtg agagcgccgg aaccggcttt 360
tcatatagaa tagagaagcg ttcatgacta aatgcttgca tcacaatact tgaagttgac 420
aatattattt aaggacctat tgttttttcc aataggtggt tagcaatcgt cttactttct 480
aacttttctt accttttaca tttcagcaat atatatatat atatttcaag gatataccat 540
tcta 544
<210> 12
<211> 600
<212> DNA
<213> 人工序列
<400> 12
gccgtcgaaa aggatctcgt ctctgttggg agcacctggt aagtaaggtg tagttttgca 60
cccgtgtaca taagcgtgaa atcaccacaa actgtgtgta tcaagtacat agtgacattt 120
aaataatagc aagaacaaca ataatagtag cgctactgga agcaccacgt aatagtggaa 180
aagaactgga aaaaccgcta taagatgcat actccggcgg tcttacgcgg agatacaagc 240
ttccaacggt gctaaaagcc cggtttcggc tcggccggag gaggaagaga gacgaaaaaa 300
aaaaaaatga ctaaaaaaaa aatggaatat tattaatgtg ggatttttgg ctcaaggtgt 360
ggtggcccct tttctaaggg tggcgaattc ttcaatgtac ggaaaactcg ccaaggctat 420
cccatatata agcaaactgt gggttcatct atataccgac acataacacc taaagtggct 480
tcctcctgcc cctctctccc ttttctccac tcacccctcc ttctccccct tccccctctc 540
caattggctg tatagacaga aagagtaaat ccaatagaat agaaaaccac ataaggcaag 600
<210> 13
<211> 520
<212> DNA
<213> 人工序列
<400> 13
tggattacat ttgattcagt catacacgaa ttatggtctt gatactgaca aattttccag 60
attgaggcgg ttcttatggt ttagaacttg gggactttac aagtcgaaag aggatttaga 120
tagagaagcc aagatcaatg aagaaatgat acgcaaactg aaagcagcta aatgaaatca 180
cctattgcgc cgctcgcgga atacaattac taaattttat atatattctt taaaaatgca 240
tctatacatt cgtttttcca cgtataccaa attcgaaaaa agttgttaaa ccatcgtttt 300
cacgtttttt aatttttttt tggttctctt tttttttttt tttcaatatc aacttttttt 360
caaacttcgt gttgcatttc ctttatcgta aattttcaat ggatctctat aatcttcgaa 420
gttcgaagaa aagaagaaaa aaagtattga aaagttgaaa catcgattcc gttttgctaa 480
caaatagcac tcagcatcct gcataaaatt ggtataagat 520
<210> 14
<211> 553
<212> DNA
<213> 人工序列
<400> 14
ggtccgcaca gacgatgcca gacggtgttt tatcgaaaat ttttttcgca tcatagtgcc 60
atttgtggtc attattattc cccaaatatg cgaaaatagt acactatttt tggcaggaga 120
gtaggctgat atgccgcatt gatgtcctgt gtagcgaaac acaaacaaaa aaagaaaaag 180
taggatgaaa aaaagaaaag taatatgaaa aaagagtgaa aaattaattc atttgttagt 240
gtaagcggtc aggtgtaagt agtaggcttg ataatgaatt aaagatgact ccgacgcata 300
ttgtttgcca tgtttttatt ttagtttgta gatttctttt tttgtaatat ataagggagt 360
gattctatat atcgaattct caggcttggt tggttcgtag gttgttctgt ctttgttttc 420
gttaggtaag aacatcacac aaagataact atagaatcac atacatattt gtgagaaatt 480
aacttcattt catttataga agaagttcaa ccgaaacaaa aattaaacat aatataatat 540
aatataatca aaa 553
<210> 15
<211> 530
<212> DNA
<213> 人工序列
<400> 15
gaaaccacac cgtggggcct tgttgcgcta ggaataggat atgcgacgaa gacgcttctg 60
cttagtaacc acaccacatt ttcagggggt cgatctgctt gcttccttta ctgtcacgag 120
cggcccataa tcgcgctttt tttttaaaag gcgcgagaca gcaaacagga agctcgggtt 180
tcaaccttcg gagtggtcgc agatctggag actggatctt tacaatacag taaggcaagc 240
caccatctgc ttcttaggtg catgcgacgg tatccacgtg cagaacaaca tagtctgaag 300
aaggggggga ggagcatgtt cattctctgt agcagtaaga gcttggtgat aatgaccaaa 360
actggagtct cgaaatcata taaatagaca atatattttc acacaatgag atttgtagta 420
cagttctatt ctctctcttg cataaataag aaattcatca agaacttggt ttgatatttc 480
accaacacac acaaaaaaca gtacttcact aaatttacac acaaaacaaa 530
<210> 16
<211> 700
<212> DNA
<213> 人工序列
<400> 16
gtgagtaagg aaagagtgag gaactatcgc atacctgcat ttaaagatgc cgatttgggc 60
gcgaatcctt tattttggct tcaccctcat actattatca gggccagaaa aaggaagtgt 120
ttccctcctt cttgaattga tgttaccctc ataaagcacg tggcctctta tcgagaaaga 180
aattaccgtc gctcgtgatt tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc 240
tcgacttcct gtcttcctat tgattgcagc ttccaatttc gtcacacaac aaggtcctag 300
cgacggctca caggttttgt aacaagcaat cgaaggttct ggaatggcgg gaaagggttt 360
agtaccacat gctatgatgc ccactgtgat ctccagagca aagttcgttc gatcgtactg 420
ttactctctc tctttcaaac agaattgtcc gaatcgtgtg acaacaacag cctgttctca 480
cacactcttt tcttctaacc aagggggtgg tttagtttag tagaacctcg tgaaacttac 540
atttacatat atataaactt gcataaattg gtcaatgcaa gaaatacata tttggtcttt 600
tctaattcgt agtttttcaa gttcttagat gctttctttt tctctttttt acagatcatc 660
aaggaagtaa ttatctactt tttacaacaa atataaaaca 700
<210> 17
<211> 698
<212> DNA
<213> 人工序列
<400> 17
ataaaaaaca cgctttttca gttcgagttt atcattatca atactgccat ttcaaagaat 60
acgtaaataa ttaatagtag tgattttcct aactttattt agtcaaaaaa ttagcctttt 120
aattctgctg taacccgtac atgcccaaaa tagggggcgg gttacacaga atatataaca 180
tcgtaggtgt ctgggtgaac agtttattcc tggcatccac taaatataat ggagcccgct 240
ttttaagctg gcatccagaa aaaaaaagaa tcccagcacc aaaatattgt tttcttcacc 300
aaccatcagt tcataggtcc attctcttag cgcaactaca gagaacaggg gcacaaacag 360
gcaaaaaacg ggcacaacct caatggagtg atgcaacctg cctggagtaa atgatgacac 420
aaggcaattg acccacgcat gtatctatct cattttctta caccttctat taccttctgc 480
tctctctgat ttggaaaaag ctgaaaaaaa aggttgaaac cagttccctg aaattattcc 540
cctacttgac taataagtat ataaagacgg taggtattga ttgtaattct gtaaatctat 600
ttcttaaact tcttaaattc tacttttata gttagtcttt tttttagttt taaaacacca 660
agaacttagt ttcgaataaa cacacataaa caaacaaa 698
<210> 18
<211> 530
<212> DNA
<213> 人工序列
<400> 18
gaaaccacac cgtggggcct tgttgcgcta ggaataggat atgcgacgaa gacgcttctg 60
cttagtaacc acaccacatt ttcagggggt cgatctgctt gcttccttta ctgtcacgag 120
cggcccataa tcgcgctttt tttttaaaag gcgcgagaca gcaaacagga agctcgggtt 180
tcaaccttcg gagtggtcgc agatctggag actggatctt tacaatacag taaggcaagc 240
caccatctgc ttcttaggtg catgcgacgg tatccacgtg cagaacaaca tagtctgaag 300
aaggggggga ggagcatgtt cattctctgt agcagtaaga gcttggtgat aatgaccaaa 360
actggagtct cgaaatcata taaatagaca atatattttc acacaatgag atttgtagta 420
cagttctatt ctctctcttg cataaataag aaattcatca agaacttggt ttgatatttc 480
accaacacac acaaaaaaca gtacttcact aaatttacac acaaaacaaa 530
<210> 19
<211> 807
<212> DNA
<213> 人工序列
<400> 19
acgcacgtag gcgcatactt ctatcatacg tagaaaagcg tttcccagag gttatgatgt 60
tggaaaaata gcttcattga acattttagc attagtggga agaattcctc atgttactta 120
tgagggagtt aattttcctt agggatttta ggaatttcta tacggaggta gcgatcgacc 180
ttagaacttt tatttagttt gtacatatac ctcacctgag ttttgctttt ttctctggga 240
gcctaaacca tttaaaatga tatataatag ataataaatc caggataaaa tgtggctaat 300
tgatcttttt tcattttcaa cttggtaatg acgtactgga tactttcgac gctctttttt 360
agtccccgat ccccgtcttc caggaccttg acgtggaatt ccgatcacag ccactctcgt 420
cacggctccg ttaaaatgaa tggttttccg ttacatttac tggtcttttt atctttttac 480
agtaaatggg tgatatactg tgacacaatt tgtgtctcta ctgtgtgaac ttccattgct 540
gactaaagat tccccgctcc gcttatatgt ccggtccgtc cttgaccgaa gatcacattg 600
ccaatttttc acatctggaa gcgatacgac aatataggag aaaaagaaaa gtgaaaggca 660
aaaaagcacc aacagttctc gaggtgaagt gccgtcaatc ttctgtataa attcggccaa 720
ttcaatctaa tttaatagat ttgcgacaga ctttcacatc cacattcgag gaagaaattc 780
aacacaacaa caagaaaagc caaaatc 807
<210> 20
<211> 668
<212> DNA
<213> 人工序列
<400> 20
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 60
ttttatgaca tttgaataag aagtaataca aactgaaaat gttgaaagta ttagttaaag 120
tggttatgca gcttttccat ttatatatct gttaatagat caaaaatcat cgcttcgctg 180
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tatcatccta tggttgttaa 240
tttgattcgt taatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 300
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 360
ctgcgtttca ggaacgcgac cggtgaagac gaggacgcac ggaggagagt cttccgtcgg 420
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 480
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 540
catttccaca acatataagt aagattagat atggatatgt atatggtggt aatgccatgt 600
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 660
caatataa 668
<210> 21
<211> 689
<212> DNA
<213> 人工序列
<400> 21
ctagtaacgc cgtatcgtga ttaacgtatt acataagtta caggattcat gcttatgggt 60
tagctatttc gcccaatgtg tccatctgac attactattt tgcattttaa tttaattaga 120
acttgactag cgcactacca gtatatcatc tcatttccgt aaataccaaa tgtattatat 180
attgaaagct tttgaccagg ttattataaa agaaacttca tgctcgaaaa agatcatttc 240
gaaaagttgc ctagtttcat gaaattttaa agcagtttat ataaatttta ccttttgatg 300
cggaattgac tttttcttga ataatacata acttttctta aaagaatcaa agacagataa 360
aatttaagag atattaaata ttagtgagaa gccgagaatt ttgtaacacc aacataacac 420
tgacatcttt aacaactttt aattatgata catttcttac gtcatgattg attattacag 480
ctatgctgac aaatgactct tgttgcatgg ctacgaaccg ggtaatacta agtgattgac 540
tcttgctgac cttttattaa gaactaaatg gacaatatta tggagcattt catgtataaa 600
ttggtgcgta aaatcgttgg atctctcttc taagtacatc ctactataac aatcaagaaa 660
aacaagaaaa tcggacaaaa caatcaagt 689
<210> 22
<211> 545
<212> DNA
<213> 人工序列
<400> 22
ccctcgttca cagaaagtct gaagaagcta tagtagaact atgagctttt tttgtttctg 60
ttttcctttt tttttttttt acctctgtgg aaattgttac tctcacactc tttagttcgt 120
ttgtttgttt tgtttattcc aattatgacc ggtgacgaaa cgtggtcgat ggtgggtacc 180
gcttatgctc ccctccatta gtttcgatta tataaaaagg ccaaatattg tattattttc 240
aaatgtccta tcattatcgt ctaacatcta atttctctta aattttttct ctttctttcc 300
tataacacca atagtgaaaa tctttttttc ttctatatct acaaaaactt tttttttcta 360
tcaacctcgt tgataaattt tttctttaac aatcgttaat aattaattaa ttggaaaata 420
accatttttt ctctctttta tacacacatt caaaagaaag aaaaaaaata taccccagct 480
agttaaagaa aatcattgaa aagaataaga agataagaaa gatttaatta tcaaacaata 540
tcaat 545
<210> 23
<211> 508
<212> DNA
<213> 人工序列
<400> 23
ctgaacgtat cgagactcgg ttgtgtcgtt atgctagcaa tgtcctcaca ggctccattc 60
cttctttcgc tctattggat atcatcacag ctattctccc tggtgcaaaa tatcatatta 120
aattggattt atccttacca acgatggtga agctgacgca tagataggat atgtaattct 180
acatcagctt gtaaataaac aaaaatgact ttcaatatcc ttcaaccgtt cctgactctt 240
tcctgctgac ccgtttttcc aaatttctcg tcgaacttga aattgaaaaa aaaaaaaaaa 300
aattgaatga ggactcatta aacagatgat gccgtaataa atgcaatata tcttgctatt 360
taactctttc tttctttgaa aaccttgaca tacgtattta aataattggc tgtccctgcc 420
tcgaagtata tttctcttct acttttatct tagcgatatc cctaagagtt taatcctccc 480
aggtccataa caaaagaagt caagttca 508
<210> 24
<211> 520
<212> DNA
<213> 人工序列
<400> 24
cttgaagcag gagaacagct cagtgcagat gaggaagttt cgtccagcgc aaataaaata 60
gtgaatgtag gtgttttatg gaataaagac acgaataatg acttactaat tgttgaaaat 120
tatctcaaaa gcctcaaaaa aaatttaact agagacaggt agaaaattat tcaaaccttg 180
taaatagtgt tatatatatg tgttagactt aaaagcgcta ataaacgttc ctgctcgcat 240
ttaacttctg ttccaatttt cctatttttt agttagcttg ttcggcagat ttcaaattca 300
ttgagtccga ggaaacaaaa ggatgggaag agctcaaaat ttggagatgg gtttcatata 360
caacacgttg gttagcaaga acctaaggat ccgtctatag aaagaacctc gaaaaatctt 420
cgaaagattt tgttgactga gagtggaaaa aactgatatt actttctcgg tatagagggc 480
aacatttgca aaaagtaata aacaaatagg ggagcacaat 520

Claims (10)

1.表达黄酮3β-羟化酶和/或黄酮3β-羟化酶辅酶的微生物细胞,其特征在于,所述黄酮3β-羟化酶的氨基酸序列如SEQ ID NO.2所示;所述黄酮3β-羟化酶辅酶的氨基酸序列如SEQID NO.4所示。
2.根据权利要求1所述的微生物细胞,其特征在于,利用启动子PINO1、PSED1、PTPI1、PMET6、PFAS2、PGAL1、PLEU2、PZWF1、PARO7和PGLN1启动黄酮3β-羟化酶的表达。
3.根据权利要求1所述的微生物细胞,其特征在于,利用启动子PTDH1、PPGK1、PTDH3、PERG20、PADH6、PGAL10、PADE2、PPMA1、PADE6和PFAD1启动黄酮3β-羟化酶的辅酶的表达。
4.根据权利要求1所述的微生物细胞,其特征在于,所述微生物细胞以原核或真核生物为宿主。
5.权利要求1-4任一所述微生物细胞在生产圣草酚中的应用。
6.根据权利要求5所述的应用,其特征在于,在反应体系中加入权利要求1-4任一所述微生物细胞。
7.根据权利要求6所述的应用,其特征在于,以柚皮素为底物。
8.一种全细胞催化生产圣草酚的方法,其特征在于,在反应体系中加入权利要求1-4任一所述微生物细胞。
9.根据权利要求8所述的方法,其特征在于,将在25-35℃,200-250rpm培养16-18h,获得种子液,将种子液以1-5mL/100mL的量加入反应体系中。
10.权利要求8或9所述方法在生产圣草酚或以圣草酚为原料的产品中的应用。
CN202011213885.5A 2020-11-04 2020-11-04 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用 Active CN112391300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011213885.5A CN112391300B (zh) 2020-11-04 2020-11-04 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011213885.5A CN112391300B (zh) 2020-11-04 2020-11-04 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用

Publications (2)

Publication Number Publication Date
CN112391300A true CN112391300A (zh) 2021-02-23
CN112391300B CN112391300B (zh) 2022-08-23

Family

ID=74598141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011213885.5A Active CN112391300B (zh) 2020-11-04 2020-11-04 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用

Country Status (1)

Country Link
CN (1) CN112391300B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391362A (zh) * 2020-11-04 2021-02-23 江南大学 催化活性提高的黄酮3β-羟化酶突变体及其应用
CN112391360A (zh) * 2020-11-04 2021-02-23 江南大学 黄酮3β-羟化酶还原酶辅酶突变体及其应用

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN838696A0 (en) * 1996-03-01 1996-03-21 Florigene Limited Genetic sequences encoding flavonoid pathway enzymes and uses therefor
EP1546340A1 (en) * 2002-08-30 2005-06-29 INTERNATIONAL FLOWER DEVELOPMENTS Pty. Ltd. Flavanoid 3',5'hydroxylase gene sequences and uses therefor
EP1629710A1 (en) * 2003-05-22 2006-03-01 Fumio Hashimoto Method of crossing flower color genotypes
JP2007325533A (ja) * 2006-06-07 2007-12-20 Kagoshima Univ 花色の予測方法
CN101668420A (zh) * 2007-04-26 2010-03-10 石原产业株式会社 花色改变了的蝴蝶兰属植物的制造方法
GB201119596D0 (en) * 2010-11-15 2011-12-28 Pitt Elaine Improved compositions
CN103589694A (zh) * 2012-10-31 2014-02-19 上海交通大学 郁金香类黄酮-3’-羟化酶TfF3’H蛋白及其编码基因
CN103865864A (zh) * 2014-03-04 2014-06-18 江南大学 一种代谢工程改造大肠杆菌产圣草酚的方法
CN105087508A (zh) * 2015-06-26 2015-11-25 上海交通大学 茄子黄烷酮3-羟化酶SmF3H及其基因和应用
US20190048374A1 (en) * 2017-08-09 2019-02-14 Conagen, Inc. Biosynthesis of eriodictyol from engineered microbes
CN109342415A (zh) * 2018-11-28 2019-02-15 江南大学 一种高通量检测圣草酚的方法
WO2020077367A1 (en) * 2018-10-12 2020-04-16 Conagen Inc. Biosynthesis of homoeriodictyol
WO2020165178A1 (fr) * 2019-02-11 2020-08-20 Abolis Biotechnologies Methode de biosynthese de l'eriodictyol et/ou de la luteoline dans une levure
CN111566222A (zh) * 2017-12-05 2020-08-21 埃沃尔瓦公司 在重组宿主中产生甜菊醇糖苷
CN112391362A (zh) * 2020-11-04 2021-02-23 江南大学 催化活性提高的黄酮3β-羟化酶突变体及其应用
CN112391360A (zh) * 2020-11-04 2021-02-23 江南大学 黄酮3β-羟化酶还原酶辅酶突变体及其应用
CN112458065A (zh) * 2020-11-04 2021-03-09 江南大学 水飞蓟来源黄酮3-羟化酶及其应用
WO2021076638A1 (en) * 2019-10-14 2021-04-22 Conagen Inc. Biosynthesis of eriodictyol
CN113403334A (zh) * 2021-06-11 2021-09-17 江南大学 一组用于酿酒酵母多拷贝整合的质粒工具包
WO2021220268A1 (en) * 2020-04-26 2021-11-04 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Phenol-rich grapes
CN114150011A (zh) * 2021-11-17 2022-03-08 天津大学 异源合成鼠尾草酸的重组酿酒酵母及构建方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN838696A0 (en) * 1996-03-01 1996-03-21 Florigene Limited Genetic sequences encoding flavonoid pathway enzymes and uses therefor
CN1216583A (zh) * 1996-03-01 1999-05-12 国际花卉开发有限公司 编码类黄酮途径酶的基因序列及其用途
EP1546340A1 (en) * 2002-08-30 2005-06-29 INTERNATIONAL FLOWER DEVELOPMENTS Pty. Ltd. Flavanoid 3',5'hydroxylase gene sequences and uses therefor
US20070033674A1 (en) * 2002-08-30 2007-02-08 Filippa Brugliera Flavanoid 3',5' hydroxylase gene sequences and uses therefor
EP1629710A1 (en) * 2003-05-22 2006-03-01 Fumio Hashimoto Method of crossing flower color genotypes
JP2007325533A (ja) * 2006-06-07 2007-12-20 Kagoshima Univ 花色の予測方法
CN101668420A (zh) * 2007-04-26 2010-03-10 石原产业株式会社 花色改变了的蝴蝶兰属植物的制造方法
GB201119596D0 (en) * 2010-11-15 2011-12-28 Pitt Elaine Improved compositions
CN103589694A (zh) * 2012-10-31 2014-02-19 上海交通大学 郁金香类黄酮-3’-羟化酶TfF3’H蛋白及其编码基因
CN103865864A (zh) * 2014-03-04 2014-06-18 江南大学 一种代谢工程改造大肠杆菌产圣草酚的方法
CN105087508A (zh) * 2015-06-26 2015-11-25 上海交通大学 茄子黄烷酮3-羟化酶SmF3H及其基因和应用
US20190048374A1 (en) * 2017-08-09 2019-02-14 Conagen, Inc. Biosynthesis of eriodictyol from engineered microbes
CN111263809A (zh) * 2017-08-09 2020-06-09 科纳根公司 从工程微生物中生物合成圣草酚
CN111566222A (zh) * 2017-12-05 2020-08-21 埃沃尔瓦公司 在重组宿主中产生甜菊醇糖苷
WO2020077367A1 (en) * 2018-10-12 2020-04-16 Conagen Inc. Biosynthesis of homoeriodictyol
CN109342415A (zh) * 2018-11-28 2019-02-15 江南大学 一种高通量检测圣草酚的方法
WO2020165178A1 (fr) * 2019-02-11 2020-08-20 Abolis Biotechnologies Methode de biosynthese de l'eriodictyol et/ou de la luteoline dans une levure
WO2021076638A1 (en) * 2019-10-14 2021-04-22 Conagen Inc. Biosynthesis of eriodictyol
WO2021220268A1 (en) * 2020-04-26 2021-11-04 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Phenol-rich grapes
CN112391362A (zh) * 2020-11-04 2021-02-23 江南大学 催化活性提高的黄酮3β-羟化酶突变体及其应用
CN112391360A (zh) * 2020-11-04 2021-02-23 江南大学 黄酮3β-羟化酶还原酶辅酶突变体及其应用
CN112458065A (zh) * 2020-11-04 2021-03-09 江南大学 水飞蓟来源黄酮3-羟化酶及其应用
CN113403334A (zh) * 2021-06-11 2021-09-17 江南大学 一组用于酿酒酵母多拷贝整合的质粒工具包
CN114150011A (zh) * 2021-11-17 2022-03-08 天津大学 异源合成鼠尾草酸的重组酿酒酵母及构建方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AMOR, I. L. 等: "Biotransformation of naringenin to eriodictyol by Saccharomyces cerevisiea functionally expressing flavonoid 3" hydroxylase", 《NAT PROD COMMUN》 *
NCBI: "flavonoid 3" hydroxylase, partial [Silybum marianum]", 《GENBANK DATABASE》 *
SAIJIE ZHU 等: "Efficient Synthesis of Eriodictyol from L-Tyrosine in Escherichia coli", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 *
SONG GAO 等: "Efficient Biosynthesis of (2 S)-Eriodictyol from (2 S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution", 《ACS SYNTH BIOL.》 *
SONG GAO 等: "Promoter library based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae", 《JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY》 *
侯杰 等: "植物类黄酮3’-羟化酶(F3’H)基因的研究进展", 《植物生理学报》 *
康美玲等: "水芹类黄酮3'-羟化酶基因的克隆与表达特性分析", 《植物生理学报》 *
王文丽等: "茶树类黄酮3′-羟化酶基因的克隆与表达特性分析", 《茶叶科学》 *
高松 等: "水飞蓟来源黄酮3-轻化酶鉴定及黄杉素发酵优化", 《生物工程学报》 *
高松: "代谢工程改造酿酒酵母从头合成黄杉素", 《中国优秀博士学位论文全文数据库(电子期刊)工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391362A (zh) * 2020-11-04 2021-02-23 江南大学 催化活性提高的黄酮3β-羟化酶突变体及其应用
CN112391360A (zh) * 2020-11-04 2021-02-23 江南大学 黄酮3β-羟化酶还原酶辅酶突变体及其应用
CN112391362B (zh) * 2020-11-04 2022-07-05 江南大学 催化活性提高的黄酮3β-羟化酶突变体及其应用
CN112391360B (zh) * 2020-11-04 2022-09-06 江南大学 黄酮3β-羟化酶还原酶突变体及其应用

Also Published As

Publication number Publication date
CN112391300B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
AU2019250216B2 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
CN113403334B (zh) 一组用于酿酒酵母多拷贝整合的质粒工具包
CN112391300B (zh) 水飞蓟来源的黄酮3β-羟化酶及其辅酶的应用
CN111434773A (zh) 一种高产檀香油的重组酵母菌及其构建方法与应用
CN112458065B (zh) 水飞蓟来源黄酮3-羟化酶及其应用
CN112920960B (zh) 一种提高酿酒酵母棕榈油酸含量的方法
CN112391362B (zh) 催化活性提高的黄酮3β-羟化酶突变体及其应用
CN112391396B (zh) 构建于大肠杆菌中的粪肠球菌群体感应基因开关***及其表达载体、工程菌和应用
CN112574898A (zh) 一种用于生产叶黄素的重组酵母及其应用
CN109337884B9 (zh) 一种丙酮酸激酶基因及其应用
CN112391360B (zh) 黄酮3β-羟化酶还原酶突变体及其应用
CN114426983B (zh) 敲除谷氨酸棒杆菌中转录调控因子Ncgl0580生产5-氨基乙酰丙酸的方法
CN114525215B (zh) 产萜类化合物的重组菌株及其构建方法和发酵产萜类化合物的方法及应用
CN114806913B (zh) 具有线粒体定位还原tca途径的高产琥珀酸酵母工程菌株及其构建方法和应用
CN112852847B (zh) 一种重组酿酒酵母菌株及其构建方法与应用
CN113249240B (zh) 一种高产羟基酪醇的酿酒酵母及其构建方法
KR20240019132A (ko) 효소 활성 및 곤충 페로몬의 생산을 증가시키기 위한 개선된 방법 및 세포
CN115873836A (zh) 一种橙花叔醇合成酶及应用
CN113832087B (zh) 一种利用大肠杆菌全生物合成丙二酸的方法
CN114672525A (zh) N-乙酰基-5-甲氧基色胺的生物合成方法及其应用
CN113817752B (zh) slr0681基因在合成集胞藻类胡萝卜素中的应用
CN114774443B (zh) 生产小白菊内酯的重组酿酒酵母菌株及其构建方法
CN111454976B (zh) 用于提高莱茵衣藻叶黄素含量的转基因衣藻及其构建方法、应用
CN115873732A (zh) 一种利用酿酒酵母工程菌制备神经酸的方法
CN114045300A (zh) 用于合成橄榄醇酸的构建体,载体和蓝细菌以及在蓝细菌中生产橄榄醇酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant