CN112383060A - 一种基于背对背主动式电力调节器的微电网 - Google Patents

一种基于背对背主动式电力调节器的微电网 Download PDF

Info

Publication number
CN112383060A
CN112383060A CN202011461551.XA CN202011461551A CN112383060A CN 112383060 A CN112383060 A CN 112383060A CN 202011461551 A CN202011461551 A CN 202011461551A CN 112383060 A CN112383060 A CN 112383060A
Authority
CN
China
Prior art keywords
module
microgrid
active power
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011461551.XA
Other languages
English (en)
Inventor
颜景斌
周唱
刘清岚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202011461551.XA priority Critical patent/CN112383060A/zh
Publication of CN112383060A publication Critical patent/CN112383060A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及微电网领域,具体的说是基于背对背主动式电力调节器的微电网。基于该背对背主动式电力调节器的微电网包括:微电网1模块,背对背主动式电力调节器模块,微电网2模块,交流电压反馈电路1模块,交流电流反馈电路1模块,驱动电路1模块,直流电压反馈电路模块,驱动电路2模块,交流电流反馈电路2模块,交流电压反馈电路2模块,DSP微控制器TMS320F28335(1)模块,DSP微控制器TMS320F28335(2)模块,本发明提出的背对背主动式电力调节器输出功率更稳定,对微电网的补偿效果更好,应用前景非常广泛。

Description

一种基于背对背主动式电力调节器的微电网
技术领域
本发明背对背涉及微电网领域,具体的说是基于背对背主动式电力调节器的微电网。
技术背景
目前,发展并普及绿色再生能源成为全球共同的目标。可再生能源当中以太阳能发电与风力发电最有能替代目前能源的可行性,这些分布式能源依供电区域可视为一个个小型的微电网。然而,有别于传统发电厂,可再生能源之供电质量容易受到不可预期的天气及环境因素所干扰,且更容易发生三相电压不平衡及电压骤降的情形,因此,提升微电网之可靠度与稳定度是使可再生能源微电网更加普及的重要研究之一。
背对背主动式电力调节器(Back-to-Back Active Power Conditioner)就是一种用于维持微电网电力质量之设备,其功能为将两个独立供电的微电网连接起来,当某一端的微电网发生异常事故,如频率变动、电压骤降时,可由另一端正常运作的微电网对其输送适当之有功与无功补偿,使发生异常事故的微电网能正常运作以维持稳定供电,为了能对异常的微电网做适当的补偿,背对背主动式电力调节必须要能分析电压异常时的不平衡成分,进一步控制功率潮流。
发明内容
本发明的目的是提供一种基于背对背主动式电力调节器的微电网,以解决电压不平衡造成的有功无功二倍频振荡并通过前级整流器补偿适当的零序电流来减少分离式电容上的电压纹波。
本发明采取的技术方案为:微电网1模块,背对背主动式电力调节器,微电网2模块,交流电压反馈电路1模块,交流电流反馈电路1模块,驱动电路1模块,直流电压反馈电路模块,驱动电路2模块,交流电流反馈电路2模块,交流电压反馈电路2模块,DSP微控制器TMS320F28335(1)模块,DSP微控制器TMS320F28335(2)模块。微电网1模块的输出与背对背主动式电力调节器的输入相连,微电网2模块的输出与背对背主动式电力调节器模块的输入相连,微电网1模块的输出与交流电压反馈电路1模块的输入相连,交流电压反馈电路1模块的输出与DSP控制器TMS320F28335(1)模块输入相连,微电网1模块的输出与交流电流反馈电流1模块的输入相连,交流电流反馈电路1模块的输出与DSP微控制器TMS320F28335(1)模块的输入相连,DSP控制器TMS320F28335(1)模块输出与驱动电路模块1的输入相连,驱动电路1模块的输出与背对背主动式电力调节器模块相连,微电网2模块的输出与交流电压反馈电路2模块的输入相连,交流电压反馈电路2模块的输出与DSP控制器TMS320F28335(2)模块的输入相连,微电网2模块的输出与交流电流反馈电路2输入相连,交流电流反馈电路2与DSP控制器TMS320F28335(2)模块的输入相连,DSP控制器TMS320F28335(2)模块的输出与驱动电路2模块的输入相连,驱动电路2模块的输出与背对背主动式电力调节器相连,背对背主动式电力调节器的输出与直流电压反馈电路模块输入相连,直流电压反馈电路模块的输出分别与DSP控制器TMS320F28335(1)模块的输入和DSP控制器TMS320F28335(2)模块的输入相连。
本发明的一步优化,所述的背对背主动式电力调节器采用三相四线制的换流器,加入对零序电流的控制,利用负序电流消除无功振荡,可以使得电力调节器的输出功率更加稳定,提升对脆弱的微电网的补偿效果。
本发明的一步优化,所述的微电网***解决大量的零序电流在直流总线产生的大量电压纹波,减少电容老化。
本发明的一步优化,所述的微电网***可以解决直流总线电压低于前级整流器连接的微电网1的交流电压峰值时,可能导致的输入的电流失真造成的背对背主动式电力调节器无法正常运作。
本发明的有益效果,所提出的微电网***具有很高的可靠性与稳定性,运作的更加顺畅,实施简单。
为更清楚的说明本发明所提的一种基于背对背主动式电力调节器的微电网,下面结合附图和具体实施方式对本发明做进一步详细的说明。
图1为本发明一种基于背对背主动式电力调节器的微电网的结构示意图。
图2为本发明一种基于背对背主动式电力调节器的微电网的原理图。
图3为本发明一种基于背对背主动式电力调节器的微电网的直流电压反馈电路的电路图。
图4为本发明一种基于背对背主动式电力调节器的微电网的交流电压反馈电路的电路图。
图5为本发明一种基于背对背主动式电力调节器的微电网的交流电流反馈电路的电路图。
具体实施方式
图1所示为一种基于背对背主动式电力调节器的微电网,微电网1模块,背对背主动式电力调节器,微电网2模块,交流电压反馈电路1模块,交流电流反馈电路1模块,驱动电路1模块,直流电压反馈电路模块,驱动电路2模块,交流电流反馈电路2模块,交流电压反馈电路2模块,DSP微控制器TMS320F28335(1)模块,DSP微控制器TMS320F28335(2)模块。微电网1模块的输出与背对背主动式电力调节器的输入相连,微电网2模块的输出与背对背主动式电力调节器模块的输入相连,微电网1模块的输出与交流电压反馈电路1模块的输入相连,交流电压反馈电路1模块的输出与DSP控制器TMS320F28335(1)模块输入相连,微电网1模块的输出与交流电流反馈电流1模块的输入相连,交流电流反馈电路1模块的输出与DSP微控制器TMS320F28335(1)模块的输入相连,DSP控制器TMS320F28335(1)模块输出与驱动电路模块1的输入相连,驱动电路1模块的输出与背对背主动式电力调节器模块相连,微电网2模块的输出与交流电压反馈电路2模块的输入相连,交流电压反馈电路2模块的输出与DSP控制器TMS320F28335(2)模块的输入相连,微电网2模块的输出与交流电流反馈电路2输入相连,交流电流反馈电路2与DSP控制器TMS320F28335(2)模块的输入相连,DSP控制器TMS320F28335(2)模块的输出与驱动电路2模块的输入相连,驱动电路2模块的输出与背对背主动式电力调节器相连,背对背主动式电力调节器的输出与直流电压反馈电路模块输入相连,直流电压反馈电路模块的输出分别与DSP控制器TMS320F28335(1)模块的输入和DSP控制器TMS320F28335(2)模块的输入相连。
结合图1-5说明本实施方式,本发明实施例的工作原理:
微电网1和微电网2分别为独立的两个微电网,当背对背主动式电力调节器检测到某一微电网发生异常时,必须由另一微电网提供能量对其进行有功无功补偿。假设较为稳定的为微电网1,较为不稳定的为微电网2,所以功率潮流方向是由微电网1至微电网2的。当检测到微电网2异常时,后级换流器从直流总线抽取能量对微电网2补偿,而此时前级整流器必须从微电网1抽取相应的能量去稳定直流总线电压。
为了稳定后级换流器的零序电流,在前级整流器补偿一个反向的零序电流来抵消后级换流器产生的零序电流,定义前级整流器与后级换流器的零序电流比值为零序电流补偿参数K(K的值大于等于0小于等于1),根据电容电压的最小值是否大于110%的微电网电压峰值来决定K的大小,补偿的零序电流为K与后级换流器零序电流乘积的负值。
由DSP控制器TMS320F28335控制前级整流器和后级换流器。
电压电流反馈电路可分为直流电压反馈电路,交流电压反馈电路和交流电流反馈电路,直流电压反馈电路采取的电压信号为直流信号,只需经过差动降压及电压保护电路,使其将至TMS320F28335所能承受的电压范围,并确保进入ADC脚位信号不会过高或过低;交流电压反馈电路,采取的信号为交流信号,需经过差动降压电路,将电压将至+3.3V以下,并加上全波整流电路使交流信号转换为正讯号,最后加上电压保护电路,避免送入TMS320F28335的电压信号过高或过低,而在全波整流电路的输出需加上零交越点侦测电路,用来判断原交流信号的正负半周;交流电流反馈电路使用霍尔传感器组件来获取交流电流信息,输入的交流电流信息转为交流电压信息输出,需经过全波整流电路,将交流信号转为正信号送入TMS320F28335,而最后同样需加上电压保护电路避免过高过低电压损坏TMS320F28335,并需在全波整流电路的输出加上零交越点侦测电路来判断原交流信号的正负半周,电压保护电路的低通滤波器的目的是消除高频噪声,需配合切换频率设计。
以上所述仅是本发明的优选实施方式,但并非用以限定本发明,对于熟悉本领域的技术人员在不脱离本发明的精神和范围内都可以做各种改动和修饰,因此,本发明的保护范围应该以权利要求书所界定的为准。

Claims (9)

1.一种基于背对背主动式电力调节器的微电网其特征是:它包括:微电网1模块,背对背主动式电力调节器,微电网2模块,交流电压反馈电路1模块,交流电流反馈电路1模块,驱动电路1模块,直流电压反馈电路模块,驱动电路2模块,交流电流反馈电路2模块,交流电压反馈电路2模块,DSP微控制器TMS320F28335(1)模块,DSP微控制器TMS320F28335(2)模块;微电网1模块的输出与背对背主动式电力调节器的输入相连,微电网2模块的输出与背对背主动式电力调节器模块的输入相连,微电网1模块的输出与交流电压反馈电路1模块的输入相连,交流电压反馈电路1模块的输出与DSP控制器TMS320F28335(1)模块输入相连,微电网1模块的输出与交流电流反馈电流1模块的输入相连,交流电流反馈电路1模块的输出与DSP微控制器TMS320F28335(1)模块的输入相连,DSP控制器TMS320F28335(1)模块输出与驱动电路模块1的输入相连,驱动电路1模块的输出与背对背主动式电力调节器模块相连,微电网2模块的输出与交流电压反馈电路2模块的输入相连,交流电压反馈电路2模块的输出与DSP控制器TMS320F28335(2)模块的输入相连,微电网2模块的输出与交流电流反馈电路2输入相连,交流电流反馈电路2与DSP控制器TMS320F28335(2)模块的输入相连,DSP控制器TMS320F28335(2)模块的输出与驱动电路2模块的输入相连,驱动电路2模块的输出与背对背主动式电力调节器相连,背对背主动式电力调节器的输出与直流电压反馈电路模块输入相连,直流电压反馈电路模块的输出分别与DSP控制器TMS320F28335(1)模块的输入和DSP控制器TMS320F28335(2)模块的输入相连。
2.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:微电网1与微电网2分别独立运作,较为稳定的微电网设为微电网1,较为不稳定易发生故障的微电网设为微电网2。
3.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:背对背主动式电力调节器是由两组三相四线制换流器背对背反接所组合而成的,其中直流总线由分离电容构成。
4.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:背对背主动式电力调节器与较为稳定的微电网1连接的三相四线制换流器为前级整流器,与较为不稳定的微电网2连接的三相四线制换流器为后级换流器。
5.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:背对背主动式电力调节器由十二个晶体管开关、两个直流稳压电容及六个滤波电感所组成,其交流侧的接线形式为Y型,且中性点与分离电容的中心点连接成为第四线。
6.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:背对背主动式电力调节器的十二个晶体管开关器件选择IGBT,为避免上下臂开关同时导通造成短路,采用光耦合驱动集成电路TLP350作为隔离性驱动电路的核心。
7.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:在反馈电压时,需使用差动降压电路将电压降到DSP微控制器TMS320F28335可以接受的范围,差动降压电路的核心为运算放大器(TL082)。
8.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:在检测交流信号时,须使用全波整流电路将交流信号转为微控制器TMS320F28335的ADC可以接收的正信号,全波整流电路的核心为LM358,转为的正信号通过零交越点侦测电路来判断正负周期,零交越点侦测电路的核心为比较器(LM311)。
9.如权利1所述的一种基于背对背主动式电力调节器的微电网,其特征是:所有将进入微控制器TMS320F28335的信号都需要加一电压保护电路来限制最高和最低电压。
CN202011461551.XA 2020-12-14 2020-12-14 一种基于背对背主动式电力调节器的微电网 Pending CN112383060A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011461551.XA CN112383060A (zh) 2020-12-14 2020-12-14 一种基于背对背主动式电力调节器的微电网

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011461551.XA CN112383060A (zh) 2020-12-14 2020-12-14 一种基于背对背主动式电力调节器的微电网

Publications (1)

Publication Number Publication Date
CN112383060A true CN112383060A (zh) 2021-02-19

Family

ID=74590761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011461551.XA Pending CN112383060A (zh) 2020-12-14 2020-12-14 一种基于背对背主动式电力调节器的微电网

Country Status (1)

Country Link
CN (1) CN112383060A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333026A (zh) * 2014-11-12 2015-02-04 广西大学 基于功率前馈补偿的孤立运行直流微网储能稳压控制方法
US20170279376A1 (en) * 2016-03-28 2017-09-28 The Aerospace Corporation Grid-tie inverter with active power factor correction
CN107591791A (zh) * 2017-09-07 2018-01-16 湖南利能科技股份有限公司 一种基于直流能源路由器的微电网***
CN207398839U (zh) * 2017-11-22 2018-05-22 四川农业大学 一种智能电网功率控制装置
CN111740454A (zh) * 2020-07-22 2020-10-02 太原理工大学 一种基于母线接口变换器的混合微电网交直流电压统一控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333026A (zh) * 2014-11-12 2015-02-04 广西大学 基于功率前馈补偿的孤立运行直流微网储能稳压控制方法
US20170279376A1 (en) * 2016-03-28 2017-09-28 The Aerospace Corporation Grid-tie inverter with active power factor correction
CN107591791A (zh) * 2017-09-07 2018-01-16 湖南利能科技股份有限公司 一种基于直流能源路由器的微电网***
CN207398839U (zh) * 2017-11-22 2018-05-22 四川农业大学 一种智能电网功率控制装置
CN111740454A (zh) * 2020-07-22 2020-10-02 太原理工大学 一种基于母线接口变换器的混合微电网交直流电压统一控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
颜景斌等: "虚拟同步发电机惯量阻尼协同自适应控制策略", 《哈尔滨理工大学学报》, 23 January 2020 (2020-01-23) *

Similar Documents

Publication Publication Date Title
US9276498B2 (en) Photovoltaic power generation system
CN103683356B (zh) 在线式不间断电源拓扑
US9413269B2 (en) Circuits and methods for photovoltaic inverters
US10122261B2 (en) Power conversion device
CN103023344B (zh) 一种通用的智能电网电力电子装置
CN103607131A (zh) 三电平逆变器中点电位平衡控制***及方法
CN105703689B (zh) 大功率无刷双馈电机三电平双向变频调速***
CN203027153U (zh) 一种通用的智能电网电力电子装置
CN105449830A (zh) 一种dc600v列车供电电源***
CN109888805A (zh) 变频器电压暂降保护***及方法
CN111786579B (zh) 具有公共高压直流母线的级联多电平整流器及控制策略
Liao et al. Notice of Violation of IEEE Publication Principles: Single-Phase Common-Ground-Type Transformerless PV Grid-Connected Inverters
US20230208312A1 (en) Power converter, photovoltaic power generation system, method, and apparatus
CN115241926B (zh) 母线电压控制方法、母线平衡控制方法及其***
CN112383060A (zh) 一种基于背对背主动式电力调节器的微电网
CN214176906U (zh) 一种基于背对背主动式电力调节器的微电网
CN109274281B (zh) 光伏并网逆变器低频输入脉动电流的抑制***及抑制方法
CN202712946U (zh) 一种ups充电模块装置
CN108377099A (zh) 一种双级输入升压型dc恒压输出变换器
CN108365761A (zh) 一种dc恒压输出变换器
CN102522813A (zh) 一种光伏发电稳压装置
CN108767841B (zh) 一种储能单元分离式变流器及控制方法
CN101888095A (zh) 光伏并网发电***的变结构控制方法
CN103928981A (zh) 变桨控制***用伺服驱动器与备用电源的一体化结构
CN212063830U (zh) 一种用于中高压12脉波整流的上电缓冲电路及变频器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination