CN112378735B - 一种考虑正交异性板残余应力效应的组合板梁单元分析法 - Google Patents

一种考虑正交异性板残余应力效应的组合板梁单元分析法 Download PDF

Info

Publication number
CN112378735B
CN112378735B CN202011176107.3A CN202011176107A CN112378735B CN 112378735 B CN112378735 B CN 112378735B CN 202011176107 A CN202011176107 A CN 202011176107A CN 112378735 B CN112378735 B CN 112378735B
Authority
CN
China
Prior art keywords
plate
displacement
longitudinal
unit
trapezoidal rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011176107.3A
Other languages
English (en)
Other versions
CN112378735A (zh
Inventor
马牛静
王荣辉
朴泷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011176107.3A priority Critical patent/CN112378735B/zh
Publication of CN112378735A publication Critical patent/CN112378735A/zh
Priority to US17/355,466 priority patent/US20220127802A1/en
Application granted granted Critical
Publication of CN112378735B publication Critical patent/CN112378735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0214Calculations a priori without experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开了一种考虑正交异性板残余应力效应的组合板梁单元分析法,用于分析由桥面顶板与梯形肋焊接而成的正交异性钢桥面板。其中,桥面顶板用平板壳单元分析,而构成梯形肋的各子板件则用板梁单元分析,顶板与梯形肋的焊接残余应力通过残余应力自平衡条件得到,并通过应力‑应变关系得到顶板及梯形肋左、右腹板的初始变形,该组合板梁单元分析方法具有自由度少、计算精度高等优点,因此,特别适用于梯形肋正交异性板的结构分析。

Description

一种考虑正交异性板残余应力效应的组合板梁单元分析法
技术领域
本发明涉及焊接技术领域,具体为一种考虑正交异性板残余应力效应的组合板梁单元分析法。
背景技术
交异性钢桥面板在大跨度桥梁中得到广泛的应用,对其力学特性进行准确、深入的分析具有非常重要的理论意义与工程价值。近年来,众多学者将构成正交异性钢桥面板的加劲肋视为常规矩形截面,或者是按照刚度等效进行分析。事实上,对于正交异性钢桥面板尤其是梯形肋正交异性钢桥面板而言,其板件数目多、受力复杂,如果简单地将由若干板件组成的加劲肋按照刚度等效的方法进行研究,势必导致研究结果与实际情况产生一定的偏差。相对而言,采用有限元分析方法,可以克服这类缺点,能够对正交异性钢桥面板的力学特性进行准确而有效的定量研究。
基于此,本发明设计了一种考虑正交异性板残余应力效应的组合板梁单元分析法,用于分析由桥面顶板与梯形肋焊接而成的正交异性钢桥面板。其中,桥面顶板用平板壳单元分析,而构成梯形肋的各子板件则用板梁单元分析,顶板与梯形肋的焊接残余应力通过残余应力自平衡条件得到,并通过应力-应变关系得到顶板及梯形肋左、右腹板的初始变形,该组合板梁单元分析方法具有自由度少、计算精度高等优点,因此,特别适用于梯形肋正交异性板的结构分析。
发明内容
本发明的目的在于提供一种考虑正交异性板残余应力效应的组合板梁单元分析法,以解决上述提到的问题。
为实现上述目的,本发明提供如下技术方案:一种考虑正交异性板残余应力效应的组合板梁单元分析法,包括以下步骤:
S1:分析对象由桥面顶板与梯形肋焊接而成的正交异性钢桥面板,将梯形肋正交异性板离散为组合板梁单元,顶板采用平板壳单元分析,而构成梯形肋的各子板件采用板梁单元分析;
S2:顶板的四个节点为1、2、3、4,顶板的分析由平面应力问题和薄板小挠度弯曲问题叠加,每个节点有5个自由度,包括对应于平面应力问题的线位移自由度u和v,以及对应于薄板小挠度弯曲问题的线位移与转角自由度w、θx和θy
建立组合板梁单元的顶板节点位移列阵:
δ=[δ1 δ2 δ3 δ4]T (1),
式中,
Figure GDA0003253321360000024
i=1,2,3,4;
S3:对于构成mn段梯形肋的各板梁子单元,其轴向位移在纵向采用一次多项式、竖向位移在纵向采用三次多项式,插值函数分别为:
Figure GDA0003253321360000021
Figure GDA0003253321360000022
式中,
Figure GDA0003253321360000023
d为mn段梯形肋的长度;
S4:根据顶板与梯形肋之间的变形协调条件,得到梯形肋各节点的位移,结合组合板梁单元横截面尺寸与位移参数以及平面应力单元的位移场,可得到梯形肋节点7、8的纵向位移:
Figure GDA0003253321360000031
Figure GDA0003253321360000032
节点7、8绕y轴的转角为:
Figure GDA0003253321360000033
Figure GDA0003253321360000034
式中,a为梯形肋腹板的上端间距;k为组合板梁单元的顶板宽度;
结合薄板小挠度弯曲的位移场,得到节点7、8的竖向位移:
Figure GDA0003253321360000035
Figure GDA0003253321360000036
S5:不考虑板梁子单元纵向纤维的挤压,考虑每个截面的转角相同,则m端左、右腹板绕y轴的转角分别与节点8、7绕y轴的转角相同,而底板中心绕y轴的转角在节点5、6之间进行线性插值,即:
Figure GDA0003253321360000041
Figure GDA0003253321360000042
Figure GDA0003253321360000043
S6:求m端的位移模式,
m端左、右腹板质心处的纵向位移为:
Figure GDA0003253321360000044
Figure GDA0003253321360000045
式中,h为梯形肋腹板的高度;
节点5、6的纵向位移为:
u5=u8-hθlcm (15),
u6=u7-hθrcm (16),
在节点5、6之间进行线性插值,得到m端底板质心处的纵向位移:
Figure GDA0003253321360000046
m端左、右腹板的竖向位移在质心处的竖向位移表示:
wlcm=w8 (18),
wrcm=w7 (19),
在节点5、6之间进行线性插值,得到m端底板质心处的竖向位移:
Figure GDA0003253321360000047
S7:根据S6求m端的位移模式方法,求n端的位移模式;
S8:求左腹板和底板的纵向和竖向位移,
左腹板板梁子单元质心处的纵向及竖向位移的节点位移参数分别用
Figure GDA0003253321360000048
表示,则有:
Figure GDA0003253321360000051
Figure GDA0003253321360000052
其纵向及竖向位移分别为:
Figure GDA0003253321360000053
Figure GDA0003253321360000054
式中,A为
Figure GDA0003253321360000055
与δ的转换矩阵;B为
Figure GDA0003253321360000056
与δ的转换矩阵;
S9:根据S8求左腹板和底板的纵向和竖向位移的方法,求右腹板和底板的纵向和竖向位移;
S10:根据S4-S9求得的梯形肋各板梁子单元的位移模式,运用势能变分法得到梯形肋的刚度矩阵:
Π=Πqlrb-FeTδ (25),
式中:Пq为顶板单元的应变能;Пl、Пr、Пb分别为梯形肋左、右腹板及底板单元的应变能;FeT为外力荷载列阵;
梯形肋左、右腹板及底板单元的应变能可分别表示为:
Figure GDA0003253321360000057
Figure GDA0003253321360000058
Figure GDA0003253321360000059
式中:
Figure GDA0003253321360000061
EAl、EIyl分别为梯形肋左腹板的刚度矩阵、轴向刚度及竖向弯曲刚度;
Figure GDA0003253321360000062
EAr、EIyr分别为梯形肋右腹板的刚度矩阵、轴向刚度及竖向弯曲刚度;
Figure GDA0003253321360000063
EAb、EIyb分别为梯形肋底板的刚度矩阵、轴向刚度及竖向弯曲刚度;
S11:假设顶板中沿x方向的残余应力为恒值σpx0,梯形肋的纵向残余应力σsx(z)沿z方向由σpx0渐变至σsx0
由残余应力自相平衡条件得到:
Figure GDA0003253321360000064
根据式(29),由残余应力σpx0和σsx0可求得g1和g2,g1和g2分别表示两个方向残余应力的分布宽度,
对于顶板,将残余应力σpx0代入平面应变单元的应力矩阵,即可求得顶板的初始变形;
对于梯形肋,结合左、右腹板的刚度矩阵及其残余应力分布,可以求得左、右腹板的初始变形,其中,左腹板的刚度矩阵为
Figure GDA0003253321360000065
右腹板的刚度矩阵为
Figure GDA0003253321360000066
残余应力为σsx(z)
与现有技术相比,本发明的有益效果是:
本发明用于分析桥面顶板与梯形肋的组合板梁单元。其中,桥面顶板用平板壳单元分析,而构成梯形肋的各个子板件则用板梁单元分析。该组合板梁单元具有自由度少、计算精度高等优点,因此,非常适用于梯形肋加劲板的结构分析。此外,对于桥面铺装,构造了8节点实体板单元进行铺装层的模拟,并考虑竖向位移的线性变化,分析中考虑铺装层与桥面板之间完全连续。该实体板单元的引进,不仅减少了单元划分的数量提高了计算效率,同时亦满足了计算精度的要求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明梯形肋加劲板结构图;
图2为本发明梯形肋加劲板计算示意图;
图3为本发明组合板梁单元结构示意图;
图4为本组合板梁单元横截面尺寸与位移参数示意图;
图5为本发明梯形肋加劲板焊接残余应力分布图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明以港珠澳大桥江海直达通道的钢箱梁梯形肋正交异性桥面板为工程背景,提出一种考虑正交异性钢桥面板焊接残余应力效应的组合板梁单元分析方法,用于分析由桥面顶板与梯形肋焊接而成的正交异性钢桥面板。其中,桥面顶板用平板壳单元分析,而构成梯形肋的各子板件则用板梁单元分析,顶板与梯形肋的焊接残余应力通过残余应力自平衡条件得到,并通过应力-应变关系得到顶板及梯形肋左、右腹板的初始变形,该组合板梁单元分析方法具有自由度少、计算精度高等优点,因此,特别适用于梯形肋正交异性板的结构分析。
港珠澳大桥通航孔江海直达船航道桥采用中央单索面三塔钢箱梁斜拉桥,主跨标准段采用整箱形式,标准节段长15m,共54段,整箱断面为两侧带长悬臂的单箱三室结构,箱梁的顶板宽38.8m,底宽20.7m,梁高4.5m,悬臂长度5.675m。顶板标准厚度为18mm,顶板加劲肋采用刚度较大的梯形肋形式,肋厚8mm,标准段肋高300mm,上口宽300mm,下口宽180mm,横桥向标准间距为600mm,桥面铺装层厚度70mm。桥面板结构如图1所示,相应于图1所示的梯形肋加劲板材料及几何参数为:ρ=7850kg/m3、E=206GPa、μ=0.3、b1=0.6m、b2=0.3m、b3=0.18m、hsx=0.3m、tr=0.008m、tp=0.018m。
本发明提供一种技术方案:一种考虑正交异性板残余应力效应的组合板梁单元分析法,包括以下步骤:
S1:分析对象如图1和图2所示,是由桥面顶板与梯形肋焊接而成的正交异性钢桥面板,将图2所示的梯形肋正交异性板离散为图3所示的组合板梁单元。顶板采用平板壳单元分析,而构成梯形肋的各子板件采用板梁单元分析;
S2:如图3所示,顶板的四个节点为1、2、3、4,顶板的分析由平面应力问题和薄板小挠度弯曲问题叠加,每个节点有5个自由度,包括对应于平面应力问题的线位移自由度u和v,以及对应于薄板小挠度弯曲问题的线位移与转角自由度w、θx和θy
建立组合板梁单元的顶板节点位移列阵:
δ=[δ1 δ2 δ3 δ4]T (1),
式中,式中,
Figure GDA0003253321360000081
i=1,2,3,4;
梯形肋的位移模式
由于构成梯形肋的各板件共同受力且类似于梁单元的受力特征,因此可将其视为板梁子单元进行分析。同时,梯形肋的主要作用是提高顶板的竖向弯曲刚度,因此文中分析仅考虑各板梁子单元的竖向及纵向位移。
S3:如图3所示,对于构成mn段梯形肋的各板梁子单元,其轴向位移在纵向采用一次多项式、竖向位移在纵向采用三次多项式,插值函数分别为:
Figure GDA0003253321360000091
Figure GDA0003253321360000092
式中,
Figure GDA0003253321360000093
d为mn段梯形肋的长度;
S4:根据顶板与梯形肋之间的变形协调条件,得到梯形肋各节点的位移,结合图4所示的组合板梁单元横截面尺寸与位移参数以及平面应力单元的位移场,可得到梯形肋节点7、8的纵向位移:
Figure GDA0003253321360000094
Figure GDA0003253321360000095
式中,a为梯形肋腹板的上端间距;k为组合板梁单元的顶板宽度;
节点7、8绕y轴的转角为:
Figure GDA0003253321360000096
Figure GDA0003253321360000097
结合薄板小挠度弯曲的位移场,得到节点7、8的竖向位移:
Figure GDA0003253321360000098
Figure GDA0003253321360000101
Figure GDA0003253321360000102
S5:不考虑板梁子单元纵向纤维的挤压,考虑每个截面的转角相同,则m端左、右腹板绕y轴的转角分别与节点8、7绕y轴的转角相同,而底板中心绕y轴的转角在节点5、6之间进行线性插值,即:
Figure GDA0003253321360000103
Figure GDA0003253321360000104
Figure GDA0003253321360000105
S6:求m端的位移模式,
m端左、右腹板质心处的纵向位移为:
Figure GDA0003253321360000106
Figure GDA0003253321360000107
式中,h为梯形肋腹板的高度;
节点5、6的纵向位移为:
u5=u8-hθlcm (15),
u6=u7-hθrcm (16),
在节点5、6之间进行线性插值,得到m端底板质心处的纵向位移:
Figure GDA0003253321360000111
m端左、右腹板的竖向位移在质心处的竖向位移表示:
wlcm=w8 (18),
wrcm=w7 (19),
在节点5、6之间进行线性插值,得到m端底板质心处的竖向位移:
Figure GDA0003253321360000112
S7:根据S6求m端的位移模式方法,求n端的位移模式;
S8:求左腹板和底板的纵向和竖向位移,
左腹板板梁子单元质心处的纵向及竖向位移的节点位移参数分别用
Figure GDA0003253321360000113
表示,则有:
Figure GDA0003253321360000114
Figure GDA0003253321360000115
其纵向及竖向位移分别为:
Figure GDA0003253321360000116
Figure GDA0003253321360000117
式中,A为
Figure GDA0003253321360000118
与δ的转换矩阵;B为
Figure GDA0003253321360000119
与δ的转换矩阵;
S9:根据S8求左腹板和底板的纵向和竖向位移的方法,求右腹板和底板的纵向和竖向位移;
S10:根据S4-S9求得的梯形肋各板梁子单元的位移模式,运用势能变分法得到梯形肋的刚度矩阵:
Π=Πqlrb-FeTδ (25),
式中:Пq为顶板单元的应变能;Пl、Пr、Пb分别为梯形肋左、右腹板及底板单元的应变能;FeT为外力荷载列阵;
梯形肋左、右腹板及底板单元的应变能可分别表示为:
Figure GDA0003253321360000121
Figure GDA0003253321360000122
Figure GDA0003253321360000123
式中:
Figure GDA0003253321360000124
EAl、EIyl分别为梯形肋左腹板的刚度矩阵、轴向刚度及竖向弯曲刚度;
Figure GDA0003253321360000125
EAr、EIyr分别为梯形肋右腹板的刚度矩阵、轴向刚度及竖向弯曲刚度;
Figure GDA0003253321360000126
EAb、EIyb分别为梯形肋底板的刚度矩阵、轴向刚度及竖向弯曲刚度。
正交异性钢桥面板的实际焊接残余应力分布十分复杂,但其横向分布影响较小,实际工程中主要考虑纵向残余应力的影响。对此,结构分析中可加以简化,近似地按图5分布,
S11:如图5所示,假设顶板中沿x方向的残余应力为恒值σpx0,梯形肋的纵向残余应力σsx(z)沿z方向由σpx0渐变至σsx0
由残余应力自相平衡条件得到:
Figure GDA0003253321360000127
根据式(29),由残余应力σpx0和σsx0可求得g1和g2,g1和g2分别表示两个方向残余应力的分布宽度,
对于顶板,将残余应力σpx0代入平面应变单元的应力矩阵,即可求得顶板的初始变形;其中,平面应变单元的应力矩阵是一个通用的矩阵,可以从各种《有限单元法》的书籍中查阅。
对于梯形肋,结合左、右腹板的刚度矩阵及其残余应力分布,可以求得左、右腹板的初始变形,其中,左腹板的刚度矩阵为
Figure GDA0003253321360000131
右腹板的刚度矩阵为
Figure GDA0003253321360000132
残余应力为σsx(z)
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (1)

1.一种考虑正交异性板残余应力效应的组合板梁单元分析法,其特征在于:包括以下步骤:
S1:分析对象由桥面顶板与梯形肋焊接而成的正交异性钢桥面板,将梯形肋正交异性板离散为组合板梁单元,顶板采用平板壳单元分析,而构成梯形肋的各子板件采用板梁单元分析;
S2:顶板的四个节点为1、2、3、4,顶板的分析由平面应力问题和薄板小挠度弯曲问题叠加,每个节点有5个自由度,包括对应于平面应力问题的线位移自由度u和v,以及对应于薄板小挠度弯曲问题的线位移与转角自由度w、θx和θy
建立组合板梁单元的顶板节点位移列阵:
δ=[δ1 δ2 δ3 δ4]T (1),
式中,
Figure FDA0003253321350000011
S3:对于构成mn段梯形肋的各板梁子单元,其轴向位移在纵向采用一次多项式、竖向位移在纵向采用三次多项式,插值函数分别为:
Figure FDA0003253321350000012
Figure FDA0003253321350000013
式中,
Figure FDA0003253321350000014
d为mn段梯形肋的长度;
S4:根据顶板与梯形肋之间的变形协调条件,得到梯形肋各节点的位移,结合组合板梁单元横截面尺寸与位移参数以及平面应力单元的位移场,可得到梯形肋节点7、8的纵向位移:
Figure FDA0003253321350000021
Figure FDA0003253321350000022
式中,a为梯形肋腹板的上端间距;k为组合板梁单元的顶板宽度;
节点7、8绕y轴的转角为:
Figure FDA0003253321350000023
Figure FDA0003253321350000024
结合薄板小挠度弯曲的位移场,得到节点7、8的竖向位移:
Figure FDA0003253321350000025
Figure FDA0003253321350000026
S5:不考虑板梁子单元纵向纤维的挤压,考虑每个截面的转角相同,则m端左、右腹板绕y轴的转角分别与节点8、7绕y轴的转角相同,而底板中心绕y轴的转角在节点5、6之间进行线性插值,即:
Figure FDA0003253321350000031
Figure FDA0003253321350000032
Figure FDA0003253321350000033
S6:求m端的位移模式,
m端左、右腹板质心处的纵向位移为:
Figure FDA0003253321350000034
Figure FDA0003253321350000035
式中,h为梯形肋腹板的高度;
节点5、6的纵向位移为:
u5=u8-hθlcm (15),
u6=u7-hθrcm (16),
在节点5、6之间进行线性插值,得到m端底板质心处的纵向位移:
Figure FDA0003253321350000036
m端左、右腹板的竖向位移在质心处的竖向位移表示:
wlcm=w8 (18),
wrcm=w7 (19),
在节点5、6之间进行线性插值,得到m端底板质心处的竖向位移:
Figure FDA0003253321350000037
S7:根据S6求m端的位移模式方法,求n端的位移模式;
S8:求左腹板和底板的纵向和竖向位移,
左腹板板梁子单元质心处的纵向及竖向位移的节点位移参数分别用
Figure FDA0003253321350000038
表示,则有:
Figure FDA0003253321350000041
Figure FDA0003253321350000042
其纵向及竖向位移分别为:
Figure FDA0003253321350000043
Figure FDA0003253321350000044
式中,A为
Figure FDA0003253321350000045
与δ的转换矩阵;B为
Figure FDA0003253321350000046
与δ的转换矩阵;
S9:根据S8求左腹板和底板的纵向和竖向位移的方法,求右腹板和底板的纵向和竖向位移;
S10:根据S4-S9求得的梯形肋各板梁子单元的位移模式,运用势能变分法得到梯形肋的刚度矩阵:
Π=Πqlrb-FeTδ (25),
式中:Пq为顶板单元的应变能;Пl、Пr、Пb分别为梯形肋左、右腹板及底板单元的应变能;FeT为外力荷载列阵;
梯形肋左、右腹板及底板单元的应变能可分别表示为:
Figure FDA0003253321350000047
Figure FDA0003253321350000048
Figure FDA0003253321350000049
式中:
Figure FDA0003253321350000051
EAl、EIyl分别为梯形肋左腹板的刚度矩阵、轴向刚度及竖向弯曲刚度;
Figure FDA0003253321350000052
EAr、EIyr分别为梯形肋右腹板的刚度矩阵、轴向刚度及竖向弯曲刚度;
Figure FDA0003253321350000053
EAb、EIyb分别为梯形肋底板的刚度矩阵、轴向刚度及竖向弯曲刚度;
S11:假设顶板中沿x方向的残余应力为恒值σpx0,梯形肋的纵向残余应力σsx(z)沿z方向由σpx0渐变至σsx0
由残余应力自相平衡条件得到:
Figure FDA0003253321350000054
根据式(29),由残余应力σpx0和σsx0可求得g1和g2,g1和g2分别表示两个方向残余应力的分布宽度,
对于顶板,将残余应力σpx0代入平面应变单元的应力矩阵,即可求得顶板的初始变形;
对于梯形肋,结合左、右腹板的刚度矩阵及其残余应力分布,可以求得左、右腹板的初始变形,其中,左腹板的刚度矩阵为
Figure FDA0003253321350000055
右腹板的刚度矩阵为
Figure FDA0003253321350000056
残余应力为σsx(z)。
CN202011176107.3A 2020-10-28 2020-10-28 一种考虑正交异性板残余应力效应的组合板梁单元分析法 Active CN112378735B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011176107.3A CN112378735B (zh) 2020-10-28 2020-10-28 一种考虑正交异性板残余应力效应的组合板梁单元分析法
US17/355,466 US20220127802A1 (en) 2020-10-28 2021-06-23 Combined Plate-Beam Unit Analysis Method Considering Residual Stress Effect of Orthotropic Plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011176107.3A CN112378735B (zh) 2020-10-28 2020-10-28 一种考虑正交异性板残余应力效应的组合板梁单元分析法

Publications (2)

Publication Number Publication Date
CN112378735A CN112378735A (zh) 2021-02-19
CN112378735B true CN112378735B (zh) 2021-11-09

Family

ID=74576332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011176107.3A Active CN112378735B (zh) 2020-10-28 2020-10-28 一种考虑正交异性板残余应力效应的组合板梁单元分析法

Country Status (2)

Country Link
US (1) US20220127802A1 (zh)
CN (1) CN112378735B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113761772B (zh) * 2021-09-17 2022-06-24 华南理工大学 一种正交异性钢桥面板的计算方法
CN114840897B (zh) * 2022-05-16 2024-02-02 金陵科技学院 钢箱梁焊接节点残余应力与车致结构应力耦合计算方法
CN115081148B (zh) * 2022-07-20 2022-11-15 上海索辰信息科技股份有限公司 一种基于势能理论的加筋板等效参数确定方法
CN115455771B (zh) * 2022-09-15 2023-06-16 华南理工大学 大节段钢箱梁制造中温度效应引起的变形误差控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1836473A1 (en) * 2004-12-16 2007-09-26 Jung, Won Seok Evaluating method of the residual stress determining method using the continuous indentation method
CN103729521A (zh) * 2014-01-20 2014-04-16 湖北工业大学 一种边坡稳定性计算的滑面边界法
CN103835233A (zh) * 2014-02-28 2014-06-04 华南理工大学 一种正交异性钢桥面铺装结构及其施工方法
KR20140098560A (ko) * 2013-01-31 2014-08-08 (주)프론틱스 계장화 압입 시험을 이용한 잔류응력 평가 방법 및 주응력 평가 방법
CN104236768A (zh) * 2014-09-05 2014-12-24 盐城工学院 一种基于有限元校正系数的钻孔法测量残余应力的方法
CN108804783A (zh) * 2018-05-25 2018-11-13 南昌航空大学 一种毛坯初始残余应力的测评方法
CN109858071A (zh) * 2018-12-06 2019-06-07 山西大学 一种考虑剪力滞后作用的薄壁箱梁结构动力特性分析方法
CN211285274U (zh) * 2019-09-17 2020-08-18 华南理工大学 一种具有多滑道与自定心功能的转体球铰

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1836473A1 (en) * 2004-12-16 2007-09-26 Jung, Won Seok Evaluating method of the residual stress determining method using the continuous indentation method
US7472603B2 (en) * 2004-12-16 2009-01-06 Frontics, Inc. Evaluating method of the residual stress determining method using the continuous indentation method
KR20140098560A (ko) * 2013-01-31 2014-08-08 (주)프론틱스 계장화 압입 시험을 이용한 잔류응력 평가 방법 및 주응력 평가 방법
CN103729521A (zh) * 2014-01-20 2014-04-16 湖北工业大学 一种边坡稳定性计算的滑面边界法
CN103835233A (zh) * 2014-02-28 2014-06-04 华南理工大学 一种正交异性钢桥面铺装结构及其施工方法
CN104236768A (zh) * 2014-09-05 2014-12-24 盐城工学院 一种基于有限元校正系数的钻孔法测量残余应力的方法
CN108804783A (zh) * 2018-05-25 2018-11-13 南昌航空大学 一种毛坯初始残余应力的测评方法
CN109858071A (zh) * 2018-12-06 2019-06-07 山西大学 一种考虑剪力滞后作用的薄壁箱梁结构动力特性分析方法
CN211285274U (zh) * 2019-09-17 2020-08-18 华南理工大学 一种具有多滑道与自定心功能的转体球铰

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"正交异性钢桥面板局部振动计算的组合板梁单元法";马牛静 等;《华南理工大学学报(自然科学版)》;20110930;第39卷(第9期);第34页左栏第2段至第39页左栏第2段 *
"钢桁梁桥主桁杆件厚板焊接残余应力空间分布试验研究";强斌 等;《铁道学报》;20190331;第41卷(第3期);第130页右栏第2段 *

Also Published As

Publication number Publication date
CN112378735A (zh) 2021-02-19
US20220127802A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
CN112378735B (zh) 一种考虑正交异性板残余应力效应的组合板梁单元分析法
JP6414374B1 (ja) 分析方法、設計方法、製造方法、及びプログラム
Eldib Shear buckling strength and design of curved corrugated steel webs for bridges
JP2018131883A (ja) 床構造
CN110020498A (zh) 曲线钢-混凝土组合箱型梁一维有限元模型的构建方法
JP5422891B2 (ja) 折板パネル構造
Wu et al. Structural performance of cold-formed steel box girders with C-section flanges and sinusoidal corrugated webs
CN111611642A (zh) 一种计算外包波纹侧板混凝土组合梁的抗弯刚度方法
JP2020133123A (ja) 柱と梁の接合構造
De’nan et al. The effects of the depth of web on the bending behaviour of triangular web profile steel beam section
Koo et al. A study on the stability of the single-layer latticed dome during erection using the step-up method
Fujii Minimum Weight Design of Structures based on Buckling Strength and Plastic Collapse (3 rd report) An Improved Theory on Post-buckling Strength of Plate Girders in Shear
KR20190064437A (ko) 복부판을 수평 절곡한 박스형 거더
JP2005042423A (ja) 金属平板のせん断補強構造
JP7145483B2 (ja) 構造部材および骨組構造
Kharoob et al. Linear investigation on tapered steel isolated plates with zigzag corrugated web
JP5176338B2 (ja) 建築構造用折板材
JP5864491B2 (ja) 上下柱異径の鋼管柱接合部のダイアフラム剛性予測方法および板厚設計方法
CN113761772B (zh) 一种正交异性钢桥面板的计算方法
CN113312751A (zh) 一种不同边界条件下混凝土连续板承载力计算方法
MBOH Finite element analysis applied to the study of stress transmission in the corrugated sheet slab
JP6784466B1 (ja) ハニカム構造を使用した建築物のパネル
Zou Design guidelines for FRP honeycomb sandwich bridge decks
Cai et al. Shear force distribution mechanism of perfobond leiste connectors in joint between corrugated steel web and concrete top slab
JP2022154265A (ja) 柱梁接合コア

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant